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Abstract

Various processes are often classified as both deterministic and random or chaotic. The main

difficulty in analysing the randomness of such processes is the apparent tension between the notions

of randomness and determinism: what type of randomness could exist in a deterministic process?

Ergodic theory seems to offer a particularly promising theoretical tool for tackling this problem by

positing a hierarchy, the so-called ‘ergodic hierarchy’ (EH), which is commonly assumed to provide a

hierarchy of increasing degrees of randomness. However, that notion of randomness requires

clarification. The mathematical definition of EH does not make explicit appeal to randomness; nor

does the usual way of presenting EH involve a specification of the notion of randomness that is

supposed to underlie the hierarchy. In this paper we argue that EH is best understood as a hierarchy

of random behaviour if randomness is explicated in terms of unpredictability. We then show that,

contrary to common wisdom, EH is useful in characterising the behaviour of Hamiltonian dynamical

systems.
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1. Introduction

Various deterministic processes are frequently classified as random. The main difficulty
in analysing random behaviour in such processes is the apparent tension between the
notions of randomness and determinism. Intuitively, in deterministic processes the past
determines the future, and the question is then: what type of randomness could exist in
such processes? One influential suggestion has it that the so-called ‘ergodic hierarchy’ can
elucidate the nature of randomness in dynamical processes that are (by assumption)
deterministic.
The ergodic hierarchy (EH henceforth) is a hierarchical classification of dynamical

systems, and it is typically presented as consisting of five levels:

Ergodic �Weak Mixing � Strong Mixing � Kolmogorov � Bernoulli:

The diagram above indicates that all B-systems (Bernoulli systems) are K-systems
(Kolmogorov systems), all K-systems are SM-systems (strong mixing systems), all SM-
systems are WM-systems (weak mixing systems), and all WM-systems are E-systems
(ergodic systems). A system that is an E-system but not a WM-system will be referred to
below as ‘merely ergodic’, and similarly for the next three levels.1

This hierarchy is often presented as a hierarchy of random behaviour: the higher up in
this hierarchy a system is placed the more random its behaviour.2 But in what sense is it
random? With the exception of B-systems, the mathematical definitions of the different
levels of the hierarchy do not make explicit appeal to randomness or any notion that can
readily be connected to randomness. Nor does the usual way of presenting EH involve a
specification of the notion of randomness that is supposed to underlie the hierarchy. So
what is the notion of randomness that underlies EH and in what sense exactly is EH a
hierarchy of random behaviour? The aim in this paper is to answer these questions and to
show how EH can be used to characterise the behaviour of Hamiltonian dynamical
systems.
The primary contention of our analysis is that EH can naturally be understood as a

hierarchy of randomness if different degrees of randomness are explicated in terms of
different degrees of unpredictability, where unpredictability is accounted for in terms of
probabilistic relevance. Different degrees of probabilistic relevance, in turn, are spelled out
1Sometimes EH is presented as having yet another level, namely C-systems (also referred to as Anosov systems

or completely hyperbolic systems). Although interesting in their own right, C-systems are beyond the scope of this

paper. They do not have a unique place in EH and their relation to other levels of EH depends on details, which

we cannot discuss here. Paradigm examples of C-systems are located between K- and B-systems; that is, they are

K-systems but not necessarily B-systems. The cat map, for instance, is a C-system that is also a K-system

(Lichtenberg & Liebermann, 1992, p. 307); but there are K-systems such as the stadium billiard which are not C-

systems (Ott, 1993, p. 262). Some C-systems preserve a smooth measure (where ‘smooth’ in this context means

absolutely continuous with respect to the Lebesgue measure), in which case they are Bernoulli systems. But not all

C-systems have smooth measures. It is always possible to find other measures such as SRB (Sinai, Ruelle, Bowen)

measures. However, matters are more complicated in such cases, as such C-systems need not be mixing and a

fortiori they need not be K- or B-systems (Ornstein & Weiss, 1991, pp. 75–82).
2This claim is common in the literature on chaos theory where EH is presented as a hierarchy of random

behaviour (see for instance Lichtenberg & Liebermann, 1992; Ott, 1993; Tabor, 1989). Recently, Belot and

Earman (1997) have used EH to define chaos in dynamical systems.
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in terms of different types of decay of correlation between a system’s states at different
times.3

The structure of the paper is as follows. After a brief introduction to dynamical systems
and EH in Section 2, we show in Section 3 that EH can (and should) be interpreted as a
hierarchy of degrees of unpredictability. To this end, we first motivate the idea that
dynamical randomness can be explicated in terms of unpredictability and that different
degrees of unpredictability can be cashed out in terms of different types of decay of
correlation. Then we show that each level of EH exhibits a different type of decay of
correlation. In Section 4 we address the question of the applicability of EH to Hamiltonian
systems. It is frequently argued that EH is useless because almost all Hamiltonian systems
of interest are non-ergodic. We reply that, contrary to common wisdom, these arguments
do not undermine the usefulness of the EH. Finally, in Section 5 we draw some conclusions
from our analysis of EH for the definition of chaos. In particular, we suggest that chaos
comes in degrees rather than being an all or nothing matter.

2. Classical dynamical systems and the EH

In this section we provide a brief introduction to dynamical systems and the EH.
Intuitive and accessible introductions can be found in Lichtenberg and Liebermann (1992)
and Tabor (1989); for detailed discussions the reader may consult Arnold and Avez (1968),
Mañé (1983), Nadkarni (1998), Parry (1981), Petersen (1983), Sinai (1980), and Walters
(1982), as well as many other monographs on the subject.

2.1. Classical dynamical systems

The fundamental object in ergodic theory is a dynamical system [X, S, m, t]. It consists of
a dynamical law t on a probability space [X, S, m]. X is a set of elements, which is
sometimes called the phase space. S is a s-algebra of measurable subsets of X, meaning
that:4
(1)
3W

of tw

we u
4I

from

emp
XAS,

(2)
 A\BAS for all A, BAS, andP

(3)
 [n

i¼1B 2 if BiAS for 1pipnpN.
This implies that S also contains + as well as all (finite or countably infinite)
intersections \n

i¼1Bi, where fBig
n
i¼1 � S for 1pnpN. Furthermore, there is a probability

measure m on S:
(1)
 m: S-[0,1] with mðX Þ ¼ 1, and � � P

(2)
 If fBig

n
i¼1 � S and Bj \ Bk ¼+ for 1pjpkpnpN, then m [n

i¼1Bi ¼
n
i¼1mðBiÞ.
ithin the literature on EH and chaos, the term ‘correlation’ is often used to denote the integral of the product

o functions, where the argument of one of the functions is shifted by a constant. As we explain in Section 3,

se ‘correlation’ in a different sense, which is close to how the term is used in probability theory.

n what follows, ‘A’ denotes the set-theoretical membership, ‘A’ denotes the set-theoretical subtraction of A

B, ‘
S
’ is the set-theoretical union. In the text that follows, ‘

T
’ is the set-theoretical intersection, ‘+’ is the

ty set, and ‘iff’ is a shorthand for if and only if.
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An automorphism T is a transformation that maps the probability space [X, B, m] onto
itself; it is measure-preserving iff for all BAS:
(1)
5E

mat

EH

own
T�1BAS and,

(2)
 m(T�1B) ¼ m(B), where T�1B ¼ fx 2 X : Tx 2 Bg.
A dynamical law t :¼ fTtgt2I is a group of measure-preserving automorphisms Tt:X-X

of the probability space [X, B, m], where I is either R (the real numbers) or Z (y �1, 0, 1,
y).5 In the discrete case (I ¼ Z), t is often generated by the iterative application of the
same automorphism T and accordingly we have Tt ¼ T t.
The set a ¼ fai : i ¼ 1; . . . ; ng is a partition of X iff
(1)
 ai \ aj ¼+ for all iajS

(2)
 mðX \

n
i¼1aiÞ ¼ 0.
The ai are called ‘atoms of the partition’. It is important to observe that the image of a
partition under any element Tt of t is still a partition. Given two partitions a ¼ fai : i ¼

1; . . . ; ng and b ¼ fbj : j ¼ 1; . . . ;mg, their least common refinement (sometimes also
referred to as their sum) a _ b is defined as follows: a _ b ¼ fai \ bj : i ¼ 1; . . . ; n; j
¼ 1; . . . ;mg.
In what follows we will, by and large, confine our attention to discrete dynamical

systems involving a measure-preserving automorphism in which the dynamics is induced
by an iterative application of this automorphism. Some of these restrictions are more
significant than others. Nothing of what we have to say about randomness in this paper
hinges in any way on the choice of discrete time and a dynamic that is based on the
iterative application of the same map. We focus on these systems just for the sake of
simplicity; most our results readily generalise to the case of continuous flows. Other
systems we omit from our analysis are ones whose dynamics is based on endomorphisms
(non-invertible maps) or non-area preserving mappings, or ones that have a phase space
whose measure is not normalisable. Whether or not our results can be carried over to these
cases is an interesting question, which for want of space we cannot discuss here.
2.2. The ergodic hierarchy

The lowest level of the EH is ergodicity. Let f be any complex-valued Lebesgue-
integrable function on a probability space. Its space mean f̄ is defined as f̄ :¼

R
X

f ðxÞ dm,
and its time mean f �ðxÞ is defined as f �ðxÞ :¼ limk!1

1
k

Pk�1
i¼0 f ½TkðxÞ�. The Birkhoff–

Khinchin theorem assures that f �ðxÞ exists almost everywhere (i.e. except, possibly, on a
set of measure zero). A dynamical system [X, S, m, t] is ergodic iff for every complex-
valued, Lebesgue-integrable function f the time mean equals the space mean, i.e. f �ðxÞ ¼ f̄ ,
almost everywhere. Furthermore, one can prove that a system is ergodic iff the following
rgodic theory is not limited to the study maps based on R and Z. In particular, a considerable body of

hematics has been collected on amenable groups (e.g. spatial translations). Furthermore, substantial parts of

have been extended to the quantum realm. However, these developments, interesting and important in their

right, fall outside the scope of this paper, which only deals with classical dynamical systems.
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holds for all sets A, BAS:

ðEÞ lim
n!1

1

n

Xn�1
k¼0

mðTkB \ AÞ ¼ mðBÞmðAÞ.

A system is strongly mixing iff for all A, BAS:

ðSMÞ lim
n!1

mðTnB \ AÞ ¼ mðAÞmðBÞ.

One can relax condition a bit by only requiring that the system be ‘mixing’ on average.
This gives weak mixing. A system is weakly mixing iff for all A, BAS:

ðWMÞ lim
n!1

1

n

Xn�1
k¼0

mðTkB \ AÞ � mðBÞmðAÞ
�� �� ¼ 0:

Strong mixing implies weak mixing, and weak mixing implies ergodicity. The converse
relations do not hold. Hence, strong mixing is a stronger condition than weak mixing, and
weak mixing is a stronger condition than ergodicity.

K-systems mark the next higher level in the EH after strong mixing. A dynamical system
[X, S, m, t] is a K-system iff there is a subalgebra S0CS such that the following three
conditions hold: (1) S0 � TS0, (2) V1n¼�1TnS0 ¼ S, (3) L1n¼�1TnS0 ¼ N. In this
definition, T nS0 is the s-algebra containing the sets T nB (BAS0), N is the s-algebra
consisting uniquely of sets of measure one and measure zero, V1n¼�1TnS0 denotes the sum
or the ‘refinement’ of all the T nS0 (as introduced in Section 2), and L1n¼�1TnS0 denotes
the largest subalgebra of S which belongs to each T nS0. There is an important theorem
due to Cornfeld, Fomin, and Sinai (1982, p. 283) which states that a dynamical system [X,
S, m, t] is a K-system iff it is K-mixing (KM). A system is KM iff for any set A0, for any
positive integer r and for any set of measurable subsets A1; . . . ;Ar 2 S

ðKMÞ lim
n!1

sup
B2sn;r

mðB \ A0Þ � mðBÞmðA0Þ
�� �� ¼ 0,

where sn,r is the minimal s-algebra generated by TkAi : kXn; i ¼ 1; . . . ; r
� �

. The algebra
sn,r is obtained as follows: Add X to the above set, add all differences TkAi\T

lAj, where
k; lXn and i; j ¼ 1; . . . ; r, and finally also add all (finite and infinite) unions of these. The
set we get is a s-algebra by construction; it is minimal because apart from the T kAi no
other set has been used to construct it.

Bernoulli systems mark the highest level of EH. The intuitive idea is that a Bernoulli
system is one whose behaviour is as random as a coin toss or a roulette wheel. We first
introduce so-called Bernoulli schemes, which then give rise to the definition of a Bernoulli
system. Let Y be a finite set of elements Y ¼ ff 1; . . . ; f ng (sometimes also called the
‘alphabet’ of the system) and let nðf iÞ ¼ pi be a probability measure on Y : 0ppip1 for all
1pipn, and

Pn
i¼1 pi ¼ 1. Furthermore, let X be the direct product of infinitely many

copies of Y: X ¼
Qþ1

i¼�1Y i, where Yi ¼ Y for all i. The elements of X are doubly-infinite
sequences x ¼ fxig

þ1
i¼�1, where xiAY for each iAZ. As the s-algebra C of X we choose the

s-algebra generated by all sets of the form fx 2 X xi ¼ k;mj pipmþ ng for all mAZ, for
all nAN, and for all kAY (the so-called ‘cylinder sets’). As a measure on X we take the
product measure

Qþ1
i¼�1ni, that is mfxig

1
i¼�1 ¼ :::nðx�2Þnðx�1Þnðx0Þnðx1Þnðx2Þ . . . The triple

[X, C, m] is commonly referred to as a ‘stochastic process’. This process is stationary if the
chance element is constant in time, that is iff for all cylinder sets mðy : yiþ1 ¼ wi;mpiomþ
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nÞ ¼ mðy : yi ¼ wi;mpiomþ nÞ holds. An invertible measure-preserving transformation
T : X ! X , the so-called shift map, is naturally associated with every stationary stochastic
process: Tx ¼ fyig

þ1
i¼�1 where yi ¼ xiþ1 for all iAZ. It is straightforward to see that the

measure m is invariant under T (i.e. that T is measure preserving) and that T is invertible.
This construction is commonly referred to as a ‘Bernoulli Scheme’ and denoted by
‘Bðp1; . . . ; pnÞ’. Hence, the quadruple [X, C, m, T] is a dynamical system.
Naturally the question arises of how all this relates to automorphisms of continuous

spaces we have been discussing in connection with all the other levels of the hierarchy. In
order to relate these two frameworks to one another we chose a partition a ¼ fa1; . . . ; ang

of the phase space X of the continuous system and say that the system is Bernoulli if the
coarse grained dynamics behaves like a stochastic process. More specifically, an
automorphism T : X ! Xof a probability space [X, S, m] is a Bernoulli automorphism
if there exists a partition a ¼ fa1; :::; ang such that all T ia, �1oio1, are independent of
each other,6 where two partitions a and b are independent of each other iff mðai \ bjÞ ¼

mðaiÞmðbjÞ for all atoms ai 2 a and bi 2 b. Finally, a dynamical system [X, S, m, T] is a
Bernoulli system if T is a Bernoulli automorphism.
We would like to mention that there are other types of Bernoulli conditions: Weak

Bernoulli and Very Weak Bernoulli processes. These conditions are mathematically
complicated and the discussion of their nature and their intimate relationships to B-
systems is beyond the scope of this paper (the interested reader may consult Ornstein, 1974
or Shields, 1973). Yet, what is important to mention here is that these conditions are of
special interest in practice. It is often very difficult to demonstrate that a dynamical system
[X, S, m, T] is a B-system by way of showing that the automorphism T is a Bernoulli
automorphism. It is easier to show that a dynamical system is Very Weak Bernoulli, and
satisfaction of this condition is sufficient for the system to be Bernoulli. Ornstein
demonstrated this sufficiency condition, and showed that many dynamical systems are
Very Weak Bernoulli.

3. Decay of correlations, unpredictability and randomness

3.1. Introducing the central notions

The term ‘randomness’ may refer to many different things. Among them are the absence
of order or pattern, the occurrence of events by accident or chance, the lack of structure,
being brought about without method, purpose, plan or principle, being computationally
complex, the absence of dynamical stability, having positive Kolmogorov–Sinai entropy
(KS-entropy), the probabilistic independence of future from past events, and unpredict-
ability. Some of these have been given detailed treatment within well worked-out theories
while others have attracted less attention.
Which of these notions of randomness can be used to understand EH as a hierarchy of

random behaviour? The sought after notion of randomness has to allow for a uniform
characterisation of the EH. That is, it must be possible to understand each level of the
hierarchy as manifesting some degree of the same notion of randomness and the higher the
level is in the hierarchy the greater is its degree of this kind of randomness.
6A second condition needs to be satisfied: a must be T-generating:
S

nVn
i¼�nTia generates S. However, what

matters for our considerations is the independence condition.
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Several of the above-mentioned conceptions of randomness do not seem to square
with EH at all and can be dismissed as inapplicable (e.g. chance process or pattern
breaking). Some seemingly obvious candidates such as the KS-entropy, algorithmic
complexity and exponential divergence of nearby trajectories are ruled out by the
above criterion of adequacy. The problem with these notions is that while they can
be used to distinguish between the kind of randomness that we find within the higher
and the lower levels of EH, they remain silent about how the random properties of
different levels at the high or the low end differ from one another. It is a theorem that a
system is a K-system iff it has positive KS-entropy (Cornfeld et al., 1982, p. 283). From
this it follows that merely E, merely WM and merely SM-systems have zero KS-entropy
while K and B-systems have positive KS-entropy. For this reason the KS-entropy
fails to distinguish between merely E, merely WM and merely SM-systems. In fact, it also
fails to distinguish between merely K and B-systems, as there are B-systems whose entropy
is smaller than that of certain merely K-systems. So the KS-entropy is blind towards both
the differences within the lower and the higher regions of the hierarchy. Other notions
‘inherit’ this problem from the KS-entropy. Algorithmic complexity is linked to the
presence of positive KS-entropy by Brudno’s theorem, which roughly says that the KS-
entropy of a system is equal to the algorithmic complexity of almost all its trajectories
(Brudno, 1978; for details see Alekseev & Yakobson, 1981). And similarly for the
exponential divergence of nearby trajectories, which can only occur in K or B-systems.
Pesin’s theorem states that a dynamical system is dynamically unstable in the sense of
having positive Lyapounov exponents (i.e. that it has exponential divergence of nearby
trajectories) iff it has a positive KS-entropy (Lichtenberg & Liebermann, 1992, p. 304 and
references therein).

It is the main contention of this paper that unpredictability may be used to characterise
the nature of increasing degrees of randomness involved in EH. But before arguing
the case for unpredictability in detail, we first have to briefly review the basic notions
of unpredictability and randomness we have in mind (precise definitions will be given
below). At the most basic level, an event is said to be unpredictable if the probability
of its occurrence is independent of past events; and a process is unpredictable if the
probability of its present and future stages is independent of its past history. This
basic notion of unpredictability can be refined by relaxing the requirement of total
probabilistic independence and only demanding that past states are of limited relevance
for present and future states. Furthermore, one can discuss the relevance of different
parts of the past for our predictions: do our predictions get better when we know
more about the past of the system? Does such knowledge make predictions more reliable
than they would be in light of total ignorance about what happened earlier on in the
process? Intuitively, the less relevance the information of the past history has for the
quality of our predictions, the more random the process is. For instance, tossing a coin has
a high degree of randomness as we are not able to predict whether the coin lands on
heads or tails, and things do not improve in the light of better knowledge of the outcomes
of past tosses.

We reach an interpretation of EH as a hierarchy of unpredictability in three steps. First,
we introduce the notion of correlation between two subsets of the phase space and then
show that different levels of EH exhibit different patterns of decay of correlations. At this
stage, our analysis is purely mathematical and does not rely on any philosophical views
about randomness, predictability, or probability. Second, we introduce the notions of



ARTICLE IN PRESS
J. Berkovitz et al. / Studies in History and Philosophy of Modern Physics 37 (2006) 661–691668
event and predictability. Third, we introduce an interpretative principle that connects the
notions of decay of correlation and predictability, and on its basis demonstrate how the
different patterns of decay of correlation we find in the different levels of EH correspond to
different types of unpredictability.

3.2. EH and decay of correlation

The correlation between two sets A, BAS is defined as

ðCÞ CðB;AÞ :¼ mðA \ BÞ � mðAÞmðBÞ.

If the numerical value of C(B, A) is positive (negative) there is positive (negative)
correlation between A and B; if it is zero then A and B are uncorrelated. Using this notion
of correlation we now turn to analyse the pattern of decay of correlations involved in the
different levels of EH.

3.2.1. Ergodic systems

From (E), (C) and the fact that T is area-preserving—i.e. that mðBÞ ¼ mðTiBÞ—it follows
that a system is ergodic iff:

ðC2EÞ lim
k!1

1

k

Xk�1
i¼1

C TiB;A
� �

¼ 0 for all A;B 2 S.

Notice that ð1=kÞ
Pk�1

i¼1 CðTiB;AÞ is the average of the correlations between the T iB and A.
So (C–E) says that, as k tends towards infinity, the average of all C(T iB, A) approaches
zero. The qualification ‘the average’ is essential since ergodicity is compatible with there
being high correlations during the entire process. In fact, there need not be any decay of
correlations; that is, there need not be a single i for which C(T iB, A) equals zero. (C–E) is
compatible, for instance, with positive and negative correlations trading off against each
other in such a way that the average of all C(T iB, A) is washed out as k tends towards
infinity.

3.2.2. Mixing systems

From (SM) and the fact that T is area-preserving it follows that a system is SM iff the
correlations between A and T kB tend to zero as k approaches infinity:

ðC2SMÞ lim
i!1

CðTiB;AÞ ¼ 0 for all A;B 2 S.

Unlike in a merely ergodic system, where none of the C(T iB, A) has to equal zero, in SM
all correlations tend towards zero as i tends towards infinity.
Weak mixing also involves some decay of correlations, albeit of a weaker sort. Again,

using the fact that T is area preserving the condition for weak mixing becomes:

ðC2WMÞ lim
k!1

1

k

Xk�1
i¼1

CðTiB;AÞ
�� �� ¼ 0 for all A;B 2 S.

This implies that in the course of its evolution, the correlations between A and T iB

asymptotically approach zero.
The important difference between weak mixing and ergodicity is that since we sum over

the modulo of the correlations it is no longer possible that positive and negative
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correlations between states cancel each other out without themselves ever approaching
zero. Thus, WM is stronger than E. On the other hand, WM is weaker SM. In a WM-
system, some correlations may remain (even as k approaches infinity). Weak mixing is
compatible with the presence of correlations from time to time as long as they are
infrequent enough to have no significance influence on the weighted average of the
correlations between A and T iB.

3.2.3. K-systems

It is a theorem that a dynamical system is a K-system iff it is KM (Section 2.2). This
equivalence allows us to focus on the study of the KM property rather than the abstract
definition of a K-system, which is not very telling for the analysis of the nature of
dynamical randomness in K-systems.

In order to discuss the KM conditions along the lines of our discussion of E, WM and
SM, it is convenient to use the standard e-definition of the limit. For any sequence
fanjn ¼ 0; 1; 2; . . .g, limn!1 an ¼ 0 iff for any �40 there exists a n040, such that, for all
n4n0, janjo�. Then the KM condition becomes:7
7Thanks to Davi

confusion in an ear
(C–KM)
 A system is KM iff for any integer r and any sets A0;A1; . . . ;Ar 2 S, and
for any �40 there exists a n040, such that, for all n4n0 and all

B 2 sn;rðA1; . . . ;ArÞ, we have CðB;A0Þ
�� ��o�.
To clarify the kind of decay of correlation involved in K-systems, we first have to spell out
the nature of the sigma algebra sn;rðA1; . . . ;ArÞ. From what has been said about sigma
algebras in Section 2 it follows that sn;rðA1; . . . ;ArÞ contains, among others, the following
sets: all sets having the form T kAi (for all kXn and i ¼ 1; . . . ; r); all finite and infinite
sequences having the forms TnAm1

[ TnAm2
[ TnAm3

[ . . . and TnAm1
[ Tnþ1Am2

[

Tnþ2Am3
[ . . . (where the mi are indices ranging over 1; . . . ; r); and all finite and

infinite intersections having the forms TnAm1
\ TnAm2

\ TnAm3
\ . . . and TnAm1

\ Tnþ1

Am2
\ Tnþ2Am3

\ . . ..
The elements A1; . . . ;Ar in the expression sn;rðA1; . . . ;ArÞ are measurable sets in X. For

the purposes of our current discussion it is convenient to choose A1; . . . ;Ar such that they
form a partition of X. This can be done without any loss of generality, because the sigma
algebra sn;rðA1; . . . ;ArÞ always contains a partition based on A1; . . . ;Ar. This can be seen as
follows. First, assume that A1; . . . ;Ar are disjoint. By definition sn;rðA1; . . . ;ArÞ contains
Arþ1 :¼ X \

Sr
i¼1Ai and trivially fAig

rþ1
i¼1 is a partition. Second, if A1; . . . ;Ar overlap, then the

sigma algebra contains (by definition) all intersections and all set-theoretic differences
between A1; . . . ;Ar, which together with X \

Tr
i¼1Ai generate a partition. For example, let

r ¼ 2 and suppose that A1 and A2 are measurable overlapping subsets of X (see Fig. 1a). A
partition of X may then be generated as follows. Let P1 ¼ A1\ðA1 \ A2Þ, P2 ¼ ðA1 \ A2Þ,
P3 ¼ A2\ðA1 \ A2Þ, P4 ¼ X \ðA1 [ A2Þ; then P ¼ fP1;P2;P3;P4g forms a partition of X (see
Fig. 1b).

Based on the above analysis of the sigma algebra sn;rðA1; . . . ;ArÞ, we can now turn to
discuss the nature of the decay of correlation in K-systems. For reasons that will be
become clear as we proceed, we only focus on two types of elements of the sigma algebra
and disregard the others.
d Lavis for suggesting this formulation of (C–KM) to us and for his help with clearing up a

lier version.
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 A1  A2   X  P1  P2  P4 P3

(a) (b)

Fig. 1. Generating a partition from overlapping sets.
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Type I: ‘Basic’ sets. B ranges over all sets T kAi, i ¼ 1; . . . ; r and kXn (which are, by
definition, elements of sn;rðA1; . . . ;ArÞ for every n). Substituting these sets into (C–KM) we
obtain:
(C–KM 1)
 Given any �40 there exists n040, such that, for all

n4n0; we have jCðT
kAi;A0Þjo� for all kXn and i ¼ 1; . . . ; r.
This trivially implies that given any �40 there exists a n040, such that, for all n4n0 and
all i ¼ 1; . . . ; rjCðTnAi;A0Þjo�. This, by definition, is equivalent to
limn!1jCðT

nAi;A0Þj ¼ 0, i ¼ 1; . . . ; r. It is a theorem that for any sequence fanjn ¼

0; 1; 2; . . .g : limn!1janj ¼ 0 iff limn!1an ¼ 0. Hence the above is equivalent to
limn!1CðTnAi;A0Þ ¼ 0, for all i ¼ 1; . . . ; r. This is just the strong mixing condition
(C–SM) since there are no restrictions on the choice of Ai and A0. So KM implies SM; and
accordingly everything that has been said about SM above is also valid in the present case.

Type II: Intersections of different sets. What marks the difference between SM- and K-
systems is that in the case of K-system the set B in C(B, A0) also ranges over all finite and
infinite intersections of T kAi, i ¼ 1; . . . ; r (as opposed to only basic sets). Substituting one
of these intersections into (C–KM) we obtain:
(C–KM 2)
 Given any �40 there exists n040, such that, for all n4n0, we have

jCðTkAm1
\ Tkþ1Am2

\ Tkþ2Am3
\ . . . ;A0Þjo� for all kXn and mi

ranging over f1; . . . ; rg.
This condition is equivalent to limn!1CðTnAm1
\ Tnþ1Am2

\ Tnþ2Am3
\ . . . ;A0Þ ¼ 0,

where the mi range over f1; . . . ; rg. Since we are free to choose the Ai as we like, this is
true for any refinement of such an infinitely remote (coarse-grained) past history (provided
that it is still a coarse-grained history).

3.2.4. Bernoulli systems

Recall that [X, S, m, T] is a Bernoulli system if there is a partition a of X such that T ia,
�1oio1, are independent; that is if mðTnai \ TmajÞ ¼ mðTnaiÞmðTmajÞ for any
�1om; no1 and where i, j range over the number of atoms in the partition a. Let
m ¼ 0. Then we get mðTnai \ ajÞ ¼ mðTnaiÞmðajÞ. Denoting (for the sake of consistency with
the above notation) the relevant sets by ‘A’ and ‘B’ we have:

ðC2BÞ CðTnB;AÞ ¼ 0 for all integers n and for all A;B 2 S.
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Since, trivially, (C–B) holds for n ¼ 1, a Bernoulli process reaches strong mixing after just
one step. Furthermore, since all T ia are independent, we also have:8

ðC2B�Þ CðTnAm1
\ Tnþ1Am2

\ Tnþ2Am3
. . . ;A0Þ ¼ 0

for all mi;which range over f1; . . . ; rg.

(An intuitive account of what it means for a system to satisfy this condition will be given
below in Section 3.5.)

3.3. States, events and unpredictability

The aim of this subsection is to present the notion of unpredictability that underlies our
analysis of the kind of randomness involved in EH. To this end, we first introduce the
notions of event and probability we are working with.

It is a common to associate with every subset A of the sigma algebra of the phase space
X a property PA. This property obtains if and only if the state x of the system lies within
the set A. For instance, given the phase space X ¼ ðq; pÞ : q; p 2 R

� �
of a classical particle

moving along a straight line, one may associate with the set A ¼ ðq; pÞ : q 2 R; p 2 Rþ
� �

the property of ‘having positive momentum’. This property obtains iff the system’s state
lies within A. In case A is a point in the phase space, we call PA an ‘atomic property’. It is
important to mention that in general A may be arbitrary and the property corresponding
to a set A will be rather contrived. But this is not a problem for our analysis since nothing
in what follows hinges on PA being a ‘natural’ or ‘intuitive’ property.

Let us define an ‘event’ At as the obtaining of the property PA at some time t (or,
equivalently, as the system’s state being in subset A at time t). For instance, assuming that
A is defined as above, At is the event of the particle having positive momentum at time t.
This definition of event, which is somewhat similar to Kim’s (1973), is not uncontroversial.
However, the typical problems with this notion of event, e.g. problems associated with
event causation, are irrelevant to our analysis of the nature of randomness underlying EH.

Now, although at each time the system is assumed to be exactly in one state x 2 X and
thus posses all properties PA for which x 2 A, we may not know this state. For this reason
it is convenient to introduce a measure that reflects our uncertainty or ignorance about the
system’s state. A natural choice for such a measure is probability. Let p(At) denote the
epistemic probability of the event At; i.e., a probability that reflects a degree of belief that
the state of the system lies within A at time t. Hence, p(At) reflects a degree of belief in PA’s
obtaining at time t.

We can similarly introduce conditional probabilities. Let At and Bt1 denote the events of
the system’s state being in A at t and in B at t1, where t4t1. The expression pðAtjBt1 Þ

denotes the probability that event At takes place given that evnt Bt1 takes place. By the
common definition of conditional probability, pðAtjBt1 Þ can be expressed in terms of
unconditional ones: pðAtjBt1Þ ¼ pðAt & Bt1Þ=pðBt1 Þ. This conditional, epistemic probability
reflects the degree of belief in the event At on the basis of knowledge of, or belief in the
earlier event Bt1 .

This conditional probability can easily be generalised to the case of more than two
events. Let B1; . . . ;Br (where r is any natural number) be measurable but otherwise
8This is intuitively clear. We refer those who desire a rigorous proof of this to Mañé (1983, p. 87), who

formulates the independence condition such that (C–B*) follows immediately from it.
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arbitrary subsets of X and consider r+1 instants of time t1; . . . ; tr; t such that
t4t14 � � �4tr. Then, pðAtjBt1

1 & . . . & Btr
r Þ is the degree of belief in the system’s state

being in A at time t given that it was in B1 at t1 and in B2 at t2 and y in Br at tr.
We can now make the notion of unpredictability we have in mind more precise. The

basic idea is that unpredictability is to be measured in terms of how relevant the
information about states of the system at a certain time is to its states at other times. In
particular, it is a measure of the extent to which the information that the state of the system
is in the subset B at t1 is relevant to the probability that the state of the system will be in the
subset A at t. It is common to measure uncertainty about the event At given the
information about past event Bt1 in terms of the relevance that Bt1 has for the degree of
belief in At. A natural measure of an agent’s inability to predict At on the basis of the
information about Bt1 is the probabilistic relevance of Bt1 for At, which is abbreviated as
RpðB

t1 ;AtÞ, where

ðRpÞ RpðB
t1 ;AtÞ :¼ pðAtjBt1 Þ � pðAtÞ; provided that pðBt1 Þa0.

No probabilistic relevance, i.e. RpðB
t1 ;AtÞ ¼ 0, means that the information that the

system is in B at t1 has no bearing on the agent’s degree of belief in the system being in A at
t. More generally, the weaker the probabilistic relevance of past events for At is, the more
unpredictable is At for the agent.
For purely technical reasons, which will become apparent soon, it turns out to be more

convenient to work with a slightly different but equivalent notion of relevance in what
follows, which is obtained from the above by multiplying both sides of the equation with
pðBt1Þ. We call this new quantity simply relevance and denote it by the symbol RðBt1 ;AtÞ:

ðRÞ RðBt1 ;AtÞ :¼ RpðB
t1 ;AtÞpðBt1 Þ ¼ pðAt&Bt1Þ � pðAtÞpðBt1Þ.

As, by assumption pðBt1Þ is a real number greater than zero, we (trivially) have:
RðBt1 ;AtÞ&0 iff RpðB

t1 ;AtÞ&0 and RðBt1 ;AtÞ&RðBt1 ;CtÞ iff RpðB
t1 ;AtÞ&RpðB

t1 ;CtÞ,
where ‘&’ is a placeholder that has to be substituted by either ‘o’, or ‘ ¼ ’ or, ‘4’. It will
turn out that R is more useful when it comes to connecting the above notion of
unpredictability to dynamical systems and for this reason we choose to work with R rather
than with Rp.
This basic notion of unpredictability can be refined in various ways. First, the type of

unpredictability we obtain depends on the type of events to which (R) is applied. For
example, the degree of the unpredictability of At increases if its probability is independent
not only of Bt1 or other ‘isolated’ past events, rather than the entire past. For another
example, the unpredictability of At increases if its probability is independent not only of
the actual past, but also of any possible past. Second, unpredictability of a future event At

increases if the probabilistic dependence of that event on past events Bt1 decreases rapidly
with the increase of the temporal distance t�t1 between the events. Third, as we shall see
below, there could be various types of probabilistic independence, which may indicate
different degrees of unpredictability. For example, the probability of At may be
independent of past events simpliciter, or it may be independent of such events only ‘on
average’.
In sum, our suggestion is to explicate the notion of degrees of randomness in terms of

degrees of unpredictability and to explicate unpredictability in terms of probabilistic
dependence between properties of systems at different times. In the next section we show



ARTICLE IN PRESS
J. Berkovitz et al. / Studies in History and Philosophy of Modern Physics 37 (2006) 661–691 673
how, given plausible assumptions, epistemic probabilities should be constrained by
dynamical properties of the systems.

3.4. Epistemic probabilities and dynamical systems

How can we determine the values of the probabilities in (R)? If the probabilities are to be
useful to understanding randomness in dynamical systems, the probability assignment has
to reflect the properties of the system. That is, in order for unpredictability as introduced
above to reflect the random behaviour of a dynamical system, the relevant probabilities
cannot be merely subjective degrees of belief. In order for subjective probabilities to reflect
objective dynamical randomness, the probabilities have to reflect dynamical properties of
systems.

Given that we are working with a dynamical system that is by assumption endowed with
a probability measure m, it is natural to suggest that the relevant probabilities should be
associated with the measure m. Indeed, m per se need not reflect ignorance about the
system’s state. A measure on a phase space can have a purely geometrical interpretation
and need not necessarily be interpreted as reflecting our ignorance. But, if we have no
information about the system’s fine grained state, it is natural (and in fact standard in the
literature on statistical mechanics) to assume that the probability of the system’s state to be
in a particular subset A of X is proportional to the measure of A.

While this general idea is straightforward, the question of the exact relation between the
measure m and the probability p is non-trivial. The problem is the following: the measure m
takes subsets A of the phase space as arguments, while the probability p takes events At as
arguments. As the notation indicates, the main difference between the two is that the
events are time-indexed whereas sets are not. The main idea of how to relate m to p is to
postulate that the probability of an event At is the measure of A. Formally:

ðm�StatÞ For all instants of time t and for all A 2 S : pðAtÞ ¼ mðAÞ.

This principle assumes that the probability measure p is stationary and that p is determined
by m. For this reason we refer to this principle as (m-Stat).

(m-Stat) can be generalised to joint simultaneous events:

ðm�Stat�Þ For all instants of time t and for all A;B 2 S : pðAt&BtÞ ¼ mðA \ BÞ.

We can further generalise (m-Stat) to joint non-simultaneous events:

ðm�DynÞ For all instants of time t; for all times t1pt and for all A;B 2 S:

pðAt&Bt1 Þ ¼ mðA \ Tt1!tBÞ,

where Tt1!tB is the evolution of the subset B forward in time from t1 to t. The LHS of this
equation denotes the probability that the system is in B at t1 and then in A at some later
time t whereas the RHS denotes the measure of the intersection of the set A and the set of
points in Tt1!tB, which is the evolution of the subset B forward in time from t1 to t. The
plausibility of this formula becomes clearer in Fig. 2.

It is worth pointing out that the rule (m-Dyn) is not an independent assumption because
it follows from (m-Stat)*, the law for joint probabilities, and the requirement that our
degrees of belief are updated according to the dynamical law of the system (which, recall, is
deterministic). This can be seen as follows. From the fact that the time evolution T is
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A

 B

Fig. 2. An illustration of (m-Dyn).
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deterministic it follows that every point x of X which lies within Tt1!tB lies on a trajectory
that passed B at time t1, and no other point does. Therefore the points which lie within
A \ Tt1!tB are exactly those who lie on trajectories that pass A at time t and went through
B at time t1ot. In other words, A \ Tt1!tB contains all points for which At & Bt1 is true.
Hence, it is plausible to extend (m-Stat*) to (m-Dyn).
The condition (m-Dyn) readily generalises to more than two events. Consider r+1

instants of time: t4t14 � � �4tr and r+1 sets A;B1; . . . ;Br of S (where again r is any
natural number). Then we have:
For all instants of time t, for all times trp � � �pt1pt, and for all A;B1; . . . ;Br 2 S:

pðAt&Bt1
1 &:::B

tr
r Þ ¼ mðA \ Tt1!tB1 \ � � � \ Ttr!tBrÞ.
So far we have been dealing with continuous time for heuristic purposes. However, the
above results easily carry over to the case of discrete time. In this case the time evolution is
induced by a mapping applied to the system at discrete instants of time separated by unit
time intervals. In this case we have Tt1!tBi ¼ T ðt�tiÞBi, where i ¼ 1; . . . ; r. Now let ni :¼
t� ti be the time difference between t (‘now’) and the past instant ti. Then we obtain:
(m-DynT)
 For all instants of time t, for all natural numbers nrX � � �Xn1, and for all

A;B1; . . . ;Br 2 S: pðAt & Bt1
1 & . . .Btr

r Þ ¼ mðA \ Tn1B1 \ � � � \ Tnr BrÞ.
ðRCÞ RðBt1 ;AtÞ ¼ CðTt�t1B;AÞ.

On the basis of (RC) we will formulate below the basic relations between correlation,
unpredictability, and dynamical randomness.
Summing up, we suggest that the notion of degrees of randomness is to be explicated in

terms of degrees of unpredictability and that unpredictability is to be explicated in terms of
epistemic dependence, which is to be informed by objective features of the system through
(RC). In the next section, these basic connections between epistemic unpredictability, lack
of correlation, and randomness will be used to explicate the degrees of dynamical
randomness involved in the different levels of EH.
Before we use (RC) to understand EH as a hierarchy of randomness, let us briefly deal

with the issue of how to interpret the ignorance probabilities we are dealing with. So far we
have considered the measure m as given. This is in line with the fact that m is a part of the
definition of a dynamical system (see Section 2). However, one may wish to ask where m
comes from and ‘what it means’. A question very similar to this has been extensively



ARTICLE IN PRESS
J. Berkovitz et al. / Studies in History and Philosophy of Modern Physics 37 (2006) 661–691 675
discussed in the context of the foundation of statistical mechanics and we therefore only
briefly want to hint at the two most prominent answers, the ensemble interpretation and
the time-average interpretation of m.

Imagine that we start only with a triple consisting of a phase space X, a sigma algebra S,
and an automorphism t, and then proceed to construct a measure m. According to the so-
called ensemble interpretation, m is a measure over systems with the same phase space X,
sigma algebra S, and group t of automorphisms, but different initial conditions. The
measure of a certain set A 2 S at time t then is defined as the fraction of those systems
whose state is in set A at t; if this fraction is independent of t, the measure is stationary. On
the time-average interpretation, the measure m of a set A 2 S of the phase space is defined
as the long-run average of the fraction of time that the system’s state spends in A.9 This
measure can then naturally be regarded as the probability that the system’s state is in set A.
On both interpretations, in the absence of knowledge of the system’s state, it is natural to
base one’s beliefs on m thus construed.

Further, on both interpretations, the formal relations between unpredictability, lack of
correlations and randomness are the same. Degrees of unpredictability are explicated in
terms of decay of correlations, where the basic relation between unpredictability and decay
of correlation is expressed by (RC), and degrees of dynamical randomness are explicated in
terms of degrees of unpredictability. But the meaning of randomness is not the same.
Under the time-average interpretation, it is natural to think of the degree of randomness of
a system as reflecting an intrinsic property of the system, whereas under the ensemble
interpretation of randomness, it is natural to think of randomness as reflecting a property
of an ensemble.

3.5. The EH as a hierarchy of degrees of unpredictability

We now turn to explicate how the EH can be interpreted as a hierarchy of increasing
degrees of randomness. The basic idea is simple: given (RC) the pattern of decay of
correlations characteristic of a particular dynamical system is translated into the relevance
of past states to the prediction of the future states.

3.5.1. Ergodic systems

To understand the kind of randomness we find in ergodic systems, we ‘translate’ (C–E)
into epistemic probabilities in the following way. We set (without loss of generality) t ¼ 0,
i.e. we choose t to be ‘now’ and then apply (RC). (C–E) then becomes
limk!1ð1=kÞ

Pk�1
i¼1 RðBti ;A0Þ ¼ 0, where ti ¼ �i. This can readily be interpreted as the

average of the relevance of being in B at t ¼ �1 to the probability of being in A at t ¼ 0,
the relevance of being in B at t ¼ �2 to the probability being in A at t ¼ 0, etc.
approaching zero as time tends towards minus infinity. This does not mean, however, that
any individual relevance of Bti to the probability of A0 has to be zero. The infinite average
being zero is compatible with RðBti ;A0Þa0 for all ti. Since we can choose A and B as we
like, this is true for any current state A and any past state B. Hence, ergodicity allows for
the past to be highly relevant to the prediction of the probabilities of future events. That is
why ergodicity per se need not involve any randomness.
9The exact definition of ‘long-term time-average’ does not matter for our purposes. However, it is important

that the average converges towards a value that remains constant.
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3.5.2. Mixing systems

Unlike ergodicity, mixing involves some degree of randomness. Applying (RC) to
(C–SM) and again setting t ¼ 0 we obtain: limi!1RðBti ;A0Þ ¼ 0, where ti ¼ �k. Then SM
can be interpreted as saying that for any two sets A, BAS, having been in B at time ti ¼ �i

becomes irrelevant to the probability of being in A now (t ¼ 0) as i tends towards infinity.
In other words, the past event Bti is irrelevant to our ability to predict the probability of the
present event A0, as the past becomes infinitely remote. More generally, in SM the
relevance of the system’s states in the remote past for the prediction of the probability of
the system’s current state decreases as the temporal distance between these states grows;
and it vanishes completely in the limit of the temporal distance tending towards infinity.
Thus, strong mixing involves a substantial degree of dynamical randomness.
Weak mixing also involves some degree of randomness. Again applying (RC), (C–WM)

readily implies limk!1ð1=kÞ
Pk�1

i¼1 jRðB
ti ;A0Þj ¼ 0, where t and ti have been chosen as

above. That is, the average of the modulo of the relevance of being in B at t ¼ �1 to the
probability being in A at t ¼ 0 and the modulo of the relevance of being in B at t ¼ �2 to
the probability of being in A at t ¼ 0; etc. approaches zero as time tends towards minus
infinity. Since we can choose A and B as we like, this intuitively means that all events that
have or could have occurred in the remote past are irrelevant to predicting the probability
of present events. Since it is the average of the modulo of the relevance of past events that
has to approach zero, WM involves a weaker degree of unpredictability than SM, but a
stronger degree than E.
3.5.3. K-systems

In K-systems both (C–KM 1) and (C–KM 2) obtain. As observed in Subsection 4.2.3,
(C–KM 1) is equivalent to strong mixing. The crucial difference lies with (C–KM 2).
Applying (RC), (C–KM-2) implies limn!1RðAtn

m1
& Atnþ1

m2
& Atnþ2

m3
; . . . ;A0Þ ¼ 0, with

tn ¼ �n. This means that as n tends towards infinity the fact that the system’s state was in
Am1

at t ¼ �n, in Am2
at t ¼ �ðnþ 1Þ, and so on becomes irrelevant to our ability to

predict the probability of the present state. By assumption A1; :::;Ar form a partition and
therefore TnAm1

\ Tnþ1Am2
\ Tnþ2Am3

\ . . . may be chosen so that it represents the entire

infinitely remote past coarse-grained history of the system (see Fig. 3). Thus (C–KM 2)
implies that the probability of the present state A0 becomes independent of the entire

infinitely remote past coarse-grained history of the system. Moreover, since we are free to
choose the Ai as we like, this will be true for any refinement of such infinitely remote
(coarse-grained) past history (provided that it is still a coarse-grained history).
There may be some correlations between a system’s remote past history and its present

state, but they asymptotically approach zero: the more remote the past history is the
weaker the correlations are.
This is the significant difference between K and SM. While SM only requires

probabilistic independence of the system’s present state from its states at particular
Event A0

ttn

Range of B Events

Fig. 3. The remote past of the system.
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instants of time in the remote past, K requires probabilistic independence from the
system’s entire remote past history.

Since we are free to choose the Ati
mj

as we wish, we can ‘patch together’ whatever
sequence we like, including any sequences that denote other possible, infinitely remote past
histories. Accordingly, in K-systems the system’s present state is independent not only of
the actual remote past history of the system but also of any of its possible infinitely remote
past histories (i.e. any infinitely remote (coarse-grained) past history that could evolve to
the present state Ai).
3.5.4. Bernoulli systems

While in SM and KM, the decay of correlation occurs only in the infinite limit, in B-
systems the decay of the correlations is immediate: the present state of a B-system is
uncorrelated with any of its past (and future) states. For example, in a series of coin tosses
the current outcome does not depend on previous outcomes.

Applying (RC), (C–B) implies RðAtn

i ;A
0
j Þ ¼ 0 for all integers n, where tn ¼ �n; and

similarly for (C–B*). Hence, the probabilities of the present state are totally independent of
whatever happened in the past, even if we have perfect knowledge of the entire (coarse-
grained) history of the system. Thus, B-systems involve the highest degree of randomness
in EH.10
4. Using EH: characterising randomness in physical systems

In the previous sections we have introduced EH and provided a uniform characterisa-
tion of the underlying concept of randomness. In the remainder of the paper we shall
discuss the relevance of EH for characterising randomness and chaos in classical physics.
4.1. The ‘no-application’ charge

A popular objection to ergodic theory is that it is not more than a sophisticated but
eventually useless piece of mathematics since Hamiltonian systems are typically non-
ergodic. This bit of conventional wisdom is backed-up by a theorem by Markus and Mayer
(1974) which is based on KAM theory and basically says that generic Hamiltonian
dynamical systems are not ergodic.11

There are two strategies to counter this objection. The first is to mitigate its force by
emphasising that it is not the ‘sheer number’ of the applications that makes a physical
concept important. Rather, the question is whether the systems that we are interested in are
ergodic. And at least some of them are. Most importantly, hard sphere models of the ideal
gas, are K-systems and hence ergodic. We discuss this case in detail in Section 4.2 below.
10In a sense, B-systems are an ‘anomaly’ in EH; for it is the only level of the hierarchy in which correlations

decay ‘immediately’ rather than asymptotically. There are systems who lie ‘in-between’ B and K in this sense,

namely Markov systems of order n. In these systems the current state correlates with the previous n states. Space

constraints prevent us from further discussing these systems.
11Criticisms of this kind are usually put forward to undermine explanations based on ergodicity of why

statistical mechanics works (see Earman & Redei, 1996). However, our concern is whether EH can be used to

characterise randomness in dynamical systems; whether ergodicity provides us with a justification of why

statistical mechanics works is an altogether different matter.
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The second strategy is to shift the focus from continuous to discrete transformations. To
this end notice that the aforementioned theorem applies only to continuous Hamiltonian
systems of the kind we find in classical mechanics; but it has no force in the case of mappings
of the sort we have been dealing with in this paper. Moreover, the great number of ergodic
mappings we find in the literature suggests that in this case (unlike in the case of continuous
systems) ergodicity is standard, or at least central enough to justify serious consideration.
This shifts the focus of our attention. What we need is an argument that maps of this sort are
relevant to physical problems. In Sections 4.3–4.5 we argue that they are indeed.
4.2. The relevance of ergodic theory in light of the KAM theory

The relevance of ergodic theory (and consequently the EH) for the effective modelling of
actual physical systems has come into serious question due to KAM theory (named after
Kolmogorov, Arnold, and Moser). The discussion below shows that KAM theory does
not, as is often alleged, undermine the status of ergodic theory.
The term ‘KAM theory’ is used here to refer to a theorem of Kolmogorov and its many

consequences. Kolmogorov (1954) formulated the theorem, which concerns Hamiltonian
systems and perturbation theory, and provided an outline of a proof. The theorem
basically says that if a small perturbation is added to an integrable system with two
physical degrees of freedom, then the tori with a sufficiently irrational winding number
survive the perturbation. Arnold (1963) and Moser (1962) independently provided
rigorous proofs of it; so, it is now usually referred to as the ‘‘KAM theorem’’. Markus and
Meyer (1974) developed some important consequences of the KAM theorem, and one of
these is a theorem that is pertinent to the relevancy issue. For the purposes of this essay, we
shall refer it as the ‘Markus–Meyer theorem’. We turn now to discuss this theorem.
The Markus–Meyer theorem is often informally characterised as the claim that generic

Hamiltonian dynamical systems are not ergodic. This is a striking claim and its effect
appears to undermine the relevancy of ergodic theory immediately. But this effect is
mitigated as soon as the theorem is stated in full: the set of Hamiltonian flows that are
ergodic on the energy hypersurfaces associated with each element of a dense set of energy
values is of first category in the set of infinitely differentiable Hamiltonian flows. In short,
the class of ergodic Hamiltonians is of first category in the set of generic Hamiltonians.12A
set P is of first category in set Q, if P can be represented as a countable union of nowhere
dense sets in P. All other sets are of second category. Loosely speaking, a set of first
category is the ‘topological counterpart’ to a set of measure zero in measure theory, and it
is sometimes referred to as ‘meager’. The contrast class is ‘second category’, which is
sometimes referred to as ‘non-meager’ and is the ‘topological analogue’ of a set of non-zero
measure (see Kelley, 1975, p. 201). It is worth noting, however, that these two notions can
(though need not) be diametrically opposed. For example, the real line can be decomposed
into two complementary sets A and B such that A is of first category and B is of measure
zero—see Theorem 1.6 in Oxtoby (1971).
The key phrase that has the mitigating effect is infinitely differentiable.13 This restriction

is substantial. It actually rules out a large class of Hamiltonian systems that are of physical
12It is the second of two important theorems that Markus and Meyer prove in their memoir. The first says that

generic Hamiltonian systems are not integrable (in the sense of Liouville).
13Markus and Mayer (1974) introduce this restriction on page 4.
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interest particularly for classical statistical mechanics, as will be shown below. Before
doing so, it is worth contrasting the Markus–Meyer theorem with a theorem (the first) of
Oxtoby and Ulam (1941): in the set of measure-preserving generalised dynamical flows,14

the set of dynamical flows that are not ergodic is of first category. The class of Hamiltonian
flows of physical interest is substantially broader than the class considered in the
Markus–Meyer theorem, but substantially narrower than that considered in the
Oxtoby–Ulam theorem.

Among the Hamiltonian flows that are excluded from consideration in the
Markus–Meyer theorem are those for systems that involve particle collisions. They are
excluded because collisions, which are typically modeled using an extremely steep repulsive
hard-core potential, result in singularities in the dynamical flow; thus, the flow will be
continuous everywhere but not differentiable everywhere. Such models are now referred to
as ‘hard ball systems’. They may be conceptualised concretely as collections of hard balls
having a finite radius but no rotational motion that interact by elastic collision, and they
(and more sophisticated variants of them) are effective idealisations of the dynamics of gas
molecules.

There are other models aside from hard ball systems that involve singularities such as
billiards and the Lorentz gas, and they are just as important as hard ball systems for the
purposes of characterising real physical systems.15 But, it will suffice for the purposes at
hand to consider hard ball systems. Boltzmann (1871) studied hard ball systems in
developing a mathematical foundation for statistical mechanics. He conjectured that such
systems are ergodic when the number N of hard balls is sufficiently large.16 Whether this is
the case is still an open question. However, it turns out that hard ball systems are ergodic
for some small N. Sinai (1970) provided the first rigorous demonstration that a hard ball
system is ergodic. He did so for a pair of colliding two-dimensional disks moving on T 2

(the unit two-torus) seven years after he put forward what is now called the
‘‘Boltzmann–Sinai ergodic hypothesis’’ (Sinai, 1963). This hypothesis says that a system
of N hard balls on T 2 or T 3 is ergodic for any NX2, and it was inspired by Krylov’s
observation, made in 1942 that hard ball systems exhibit an instability that is similar to
geodesic flows on hyperbolic surfaces, known at the time to be ergodic (Krylov, 1979).

Since Sinai’s groundbreaking work, there have been some notable advances in
understanding hard ball systems. The EH plays a central role in characterising many of
them as it does in the ones considered here. Simányi (1992) demonstrated that a system of
N hard balls is K-mixing (and hence ergodic) on T m for NX2 and mXN. This result falls
short of what is desired since the minimal size of m is restricted by the size of N, but it is
still significant. Chernov and Haskell (1996) showed that any system of hard balls or disks
on a torus or in any container is Bernoulli, provided that it is K-mixing and completely
hyperbolic.17 Recently, Simányi and Szász (1999) demonstrated that a system of N hard
14They are ‘generalised’ in the sense that they are not necessarily differentiable or derivable from a set of

differential equations.
15A billiard system is commonly taken to be a system having a finite two-dimensional planar phase space with a

piecewise smooth boundary in which a point particle moves with constant velocity and bounces off the wall in an

optical manner (i.e. the angle of incidence is assumed to be equal to the angle of reflection). A Lorenz gas is a

dynamical system of one point particle moving in the complement of regular lattice of rounded scatters.
16The discussion of hard ball systems below is inspired by a brief historical survey by Szász (1996), reprinted in

Szász (2000), and a survey by Simányi (2000).
17Complete hyperbolicity means that all Lyapunov exponents are nonzero almost everywhere.
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balls on T m is completely hyperbolic for NX2 and mX2. Combining the above one can
derive that a system of N hard balls on T m is Bernoulli for NX2 and mXN. Of course, a
rectangular box is more realistic than a torus. It is also more difficult to treat.18

Nevertheless, Simányi (1999) demonstrated that the dynamics of N hard spheres in an m-
dimensional box is ergodic for N ¼ 2 and mX2.19 The same result is expected but has not
yet been demonstrated for any N42.
4.3. The surface of section approach

Our second line of defence against the claim that EH is useless because most systems are
not ergodic is that EH may be used to characterise randomness in systems that are not
ergodic. The main idea is that systems that are not ergodic with respect to the relevant
phase space may well display ergodic behaviour on some subspaces of it.
The reasoning is as follows. So far we have been dealing with abstract dynamical systems

whose dynamics is defined on an abstract state space X. In order to bring to bear this
notion of a dynamical system on a ‘real’ physical system as treated within the context of
classical Hamiltonian mechanics, certain contextualisations are needed. The full state
space of a classical system is the so-called phase space, basically consisting of a position
and momentum dimension for each of the n physical degree of freedom, denoted by
q ¼ ðq1; . . . ; qnÞ and p ¼ ðp1; . . . ; pnÞ, respectively. For instance, the phase space of a point
mass moving on a plane is four dimensional, having two position and two momentum
dimensions. The motion of the system’s state in this space is governed by Hamilton’s
equation of motion, dqi=dt ¼ qHðq; pÞ=qpi and dpi=dt ¼ �qHðq; pÞ=qqi, where H(q, p) is
the so-called Hamilton function (or Hamiltonian, for short) of the system. If the system’s
motion is not subject to explicitly time-dependent geometrical constraints on its motion
H(q, p) is the energy of the system. The solutions of Hamilton’s equation are commonly
referred to as ‘Hamiltonian flow’. For details we refer the reader to Goldstein’s (1980)
classical book on mechanics.
Due to geometrical constraints on the motion and conservation laws, only parts of the

entire phase space is accessible. The most important of these restrictions in the context of
Hamiltonian systems is the conservation of energy: H(q, p) ¼ E. This restricts the motion
on a hypersurface, which is commonly referred to as the ‘energy shell’. It is now natural
(and common) to associate the energy shell of a Hamiltonian system with X of an abstract
dynamical system.
Accordingly, when a system is claimed not to be ergodic it is usually tacitly assumed that

this it is not ergodic with respect to this hypersurface. It is important to bring this hidden
assumption to the fore because the fact that the dynamics of a system is not ergodic with
respect to the energy shell does not preclude it from being ergodic with respect to another
(more restricted) portion of the phase space. This is what Lichtenberg and Lieberman have
in mind when they observe that ‘[i]n a sense, ergodicity is universal, and the central
question is to define the subspace over which it exists’ (Lichtenberg & Liebermann, 1992,
18Conceptually speaking, one obtains a torus by replacing the boundary conditions corresponding to the walls

of a rectangular box with periodic boundary conditions (meaning that parallel sides of the box are identified),

which are much easier to utilise mathematically than the former.
19The ratio of the length of the sides to the radius of the balls must be less than 1/6. There are no requirements

concerning the equality of the sides of the container, the masses of the balls, or the radii of the balls.
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Fig. 4. A particle trajectory intersecting a surface at three points.
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p. 295). So EH can be used to characterise randomness in dynamical systems that are not
ergodic with respect to the entire energy shell, the main idea being to consider the system’s
behaviour on a subspace of this shell where it may well be ergodic.20

The crucial question for the success of this line of defence obviously is whether such
subspaces exist. The aim of this subsection is to show that they do; and the strategy is to
study what happens in a surface of section rather than to focus on the full-fledged
continuous dynamics (Fig. 4).

Consider a continuous Hamiltonian system with two (physical) degrees of freedom. (For
the sake of simplicity and convenience, in what follows we limit our attention to such
systems. But, the techniques described below equally apply to systems with a greater
number of degrees of freedom.) The phase space of such a system (assuming that it is
autonomous) is four dimensional.21 Now, observe that since by assumption the energy is
conserved, the motion takes place on a three–dimensional hypersurface in the phase space
defined by the condition H(q, p) ¼ E, where E is some constant. We now choose a two-
dimensional surface S within this hypersurface and label its two sides SL and SR; L and R
denote left and right. We then study the successive points of intersection as the trajectory
passes through S in a particular direction, say from L and to R. The points of intersection
are labelled in succession xn; xnþ1;xnþ2; . . . (see Fig. 4).

What we get in the surface of section is successive intersections and these can be
described by a mapping. That is, in the surface of section the dynamics of the system is
represented by a mapping T that takes a phase point xi to xi+1: xi+1 ¼ Txi. Furthermore,
one can prove that the discrete dynamics in the surface of section is area preserving (or, to
20One might even conjecture that this method can be extended beyond Hamiltonian systems to dissipative

systems. In this vein Ornstein (1989) writes: ‘‘The main example that I used to illustrate our results was billiards.

These results, however, apply to a large class of dissipative systems [y] I conjecture that long-term statistical

averages exist for dissipative as well as conservative systems.’’
21A Hamiltonian system is autonomous, if the system’s Hamiltonian does not explicitly depend on time,

meaning that qH=qt ¼ 0.
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be more specific, symplectic) as well (Tabor, 1989, pp. 123–126). Hence, the continuous
Hamiltonian flow generates an area-preserving mapping that describes a trajectory’s
successive crossings of the surface of section. This shows that there is a close connection
between continuous Hamiltonian systems with two degrees of freedom and area preserving
mappings of a two dimensional surface onto itself.22

Also, from the construction of T it is obvious that there is a close connection between
the dynamics of the continuous system and the mapping. In fact, such mappings may
display all typical properties of continuous systems such as the breaking up of tori and the
occurrence of island chains (we will discuss an example below). For this reason we can use
two-dimensional mappings to discuss the behaviour of continuous systems. This has
great advantages since mappings are analytically and numerically much easier to handle
than continuous flows and, owing to their relative simplicity, many theorems about
dynamical systems are more easily proven for mappings than for general Hamiltonians
(e.g. the Poincaré Birkhoff fixed-point theorem and the KAM theorem as proven by
Moser, 1973).
Yet, although the connection between the continuous flow and the mapping in the

surface of section is close, it is still loose enough to allow for mappings to have properties
that the continuous flow as a whole does not possess. Most notably, even if the system is
not ergodic, some of its trajectories can give rise to ergodic mappings in the surface of
section. This insight (which will be illustrated in due course) paves the way to use mappings
to discuss the behaviour of a system in some region of the phase space. More specifically,
the study of ergodic maps, mixing maps, etc. can help to understand the behaviour of
Hamiltonian systems in various distinct regions of the phase space because they can serve
as models of the flow when studied in the surface of section. Hence, ergodic maps can be
used to ‘characterise’ random behaviour in certain regions of a continuos flow even if the
flow itself is not ergodic.
To see how all this works we will now discuss KAM-type systems (i.e., ‘nearly

integrable’ systems, meaning integrable systems plus a small perturbation). This class of
systems is the touchstone for our claim that EH can be used to study the behaviour
of dynamical systems even if they are not ergodic. The key feature of a KAM-type
system is the presence of both regular and stochastic regions, which are closed (so that the
system as a whole is not ergodic with respect to the energy shell) but intermeshed with each
other.
Consider an integrable Hamiltonian (for the details of what follows see for instance

Tabor (1989, pp. 126ff), Lichtenberg and Liebermann (1992, pp. 166ff), Ott (1993,
pp. 229ff). In this case the phase space is foliated into tori; that is, every trajectory is
confined to one particular torus. When we now focus on one particular trajectory,
it is easily seen that in the surface of section all points lie on a smooth curve, which
corresponds to the intersection of the torus (on which the trajectory moves) with the
surface of section.
22Two remarks: (1) it is noteworthy that the converse is also true for a broad class of mappings. As Lichtenberg

and Liebermann (1992, p. 171) show, radial twist maps can be converted into a continuous Hamiltonian system by

expansion of the transformation in a Fourier series. (2) In passing we would like to mention that beside the surface

of section, there is another technique by which a continuous system (i.e. a system that is defined by a continuous

transformation) can be converted into a mapping: the discretisation of time (sometimes also referred to as

‘stroboscopic projection’). The method basically consists in taking ‘snapshots’ of the system at discrete times

(Tabor, 1989, p. 125; Argyris et al., 1994, p. 57).
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The motion of the particle on the surface of section may be represented by the so-called
‘twist map.’ Using polar co-ordinates, the mapping can be written as

T :
yði þ 1Þ ¼ yðiÞ þ 2po1=o2;

rði þ 1Þ ¼ rðiÞ;

(

where o1 and o2 are the angular velocities along y1 and y2, respectively, and o1/o2 is the
so-called ‘winding number.’ The elements r, y of the twist map may be, respectively,
associated with r1, y1 in Fig. 5. If the ratio of the two frequencies, o1/o2, is irrational the
sequence xn; xnþ1;xnþ2; . . . fills up the curve ergodically, whereas if the ratio is rational only
a finite sequence of iterates, corresponding to a closed orbit, appears.

Now we add a small perturbation to the original (integrable) Hamiltonian. This
perturbation changes the twist map as follows (Tabor, 1989, p. 128):

T � :
yði þ 1Þ ¼ yðiÞ þ 2po1=o2 þ �f ðyðiÞ; rðiÞÞ;

rði þ 1Þ ¼ rðiÞ þ �gðyðiÞ; rðiÞÞ;

(

where e is a small perturbation parameter; f and g are periodic in the angle and are chosen
such that the resulting transformation is area-preserving. The natural question to ask
about this transformation is what happens to the invariant circles of the unperturbed
mapping when the perturbation is ‘switched on’. The KAM theorem answers this question
by stating, roughly, that for sufficiently small perturbations circles with a ‘sufficiently
irrational’ winding number o1/o2 are preserved.

On the other hand, the Poincaré–Birkhoff fixed-point theorem informs us that the tori
with a rational winding number get destroyed under the perturbation and are replaced by
an even number of fixed-points. These fixed-points are alternately stable (i.e. elliptical) and
unstable (i.e. hyperbolic). Schematically we can represent this as shown in Fig. 6.

Note that it follows immediately from this that KAM-type systems are not ergodic (and
a fortiori do not possess any other property of EH either): Ergodic systems are irreducible,
i.e. their phase space is not separable in two (or more) regions that are mapped onto
themselves by the time evolution. But this is exactly what happens in a KAM system. The
invariant curves surviving the perturbation divide the phase space into distinct parts to
which a trajectory remains confined for all times because no trajectory can move across an
invariant torus and therefore it can never get from one part into the other.

As a concrete example of such mapping consider the (by now famous) Henon system,
which involves a quadratic twist map (a thorough discussion is provided by Argyris, Faust,
and Haase (1994, pp. 110–126); brief summaries can be found in Lichtenberg and
 r2

 r1

θ1

θ2

Fig. 5. A particle trajectory on the surface of a torus corresponding to constant energy E.
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Fig. 6. The diagram on the left exhibits two stable points and two hyperbolic points. The diagram on the right

shows in more detail stable points corresponding to islands of stability and hyperbolic points corresponding to

zones of instability.

Fig. 7. A phase plane of the Henon map. Stable fixed points are located at the centre of the ‘ovals’; the

intersections of the dotted lines mask unstable fixed points.
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Liebermann (1992, pp. 191–195) and Tabor (1989, pp. 129–132). The transformation, now
in Cartesian co-ordinates, reads:

T :
xði þ 1Þ ¼ xðiÞ cos aþ ðyðiÞ � ðxðiÞÞ2Þ sin a;

yði þ 1Þ ¼ xðiÞ cos aþ ðyðiÞ � ðxðiÞÞ2Þ cos a;

(

where a is a parameter and T : X ! X , where X ¼ ½�1; 1� � ½�1; 1� (see Fig. 7).
This is a clear illustration of the above-mentioned ‘mixture’ of regions with chaotic and

regular behaviour. There are island chains corresponding to irrational tori surviving the
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perturbation. The circles correspond to elliptical fixed-points; and the motion in the
surrounding of these points is quite regular. This is not the case for the hyperbolic fixed-
points. When the scale is enlarged an incredibly rich, fine structure interspersed in a ‘sea of
irregularity’ shows up having zones of instability and islands of stability similar to those
shown in Fig. 7.

But what do we mean by ‘quite regular’ or ‘sea of irregularity’? It is at this point where
ergodic theory comes into play because it provides notions that can be used to characterise
the system’s behaviour in different regions of the surface of section. To begin with, we
know from the KAM theorem that the remaining closed lines are the intersections of the
surface of section with the irrational tori that survived the perturbation. From that it
follows that the motion on these curves is ergodic.

Further, one can show that near hyperbolic fixed points it is possible to embed a
Bernoulli shift (with an infinite alphabet) in the phase space. From a mathematical point of
view, all this is rather involved and we cannot go into details here. (The original source is
Moser, 1973, Chapter 3.) A more intuitive description of the situation can be found in
Reichl (1992, pp. 76–80). However, the upshot is that if we choose an arbitrary point near
a hyperbolic fixed-point its trajectory will behave like a B-system. For this reason we can
say that in the region close to such a fixed-point the system behaves like a Bernoulli system
and therefore exhibits all the random properties these systems possess.

Furthermore, there is strong numerical evidence that each (connected) stochastic region
in the phase space, such as a separatrix layer, has positive Kolmogorov–Sinai entropy and
thus the system exhibits the same behaviour as a K-system in these regions (Lichtenberg &
Liebermann, 1992, p. 309).

Since the dynamics of a non-ergodic continuous flow in certain regions of the phase
space can be characterised in terms of maps that are (merely) ergodic or Bernoulli, the fact
that the flow as a whole is not ergodic does not undercut the usefulness of ergodic theory as
a tool for characterising a system’s random behaviour.

We should mention, however, that we have not been able to find any cases in the
literature where the dynamics of the system in some region of the phase space is described
as merely mixing. One may just speculate what the reasons for this absence are. Looking at
the enormous mathematical sophistication that is needed to show that certain regions
exhibit Bernoulli behaviour, one may suspect that similar proofs for other mixing just may
not be available. Another reason might be that due to the lack of conceptual clarity in the
EH as a whole, physicists did not find it useful to characterise dynamical properties using
the notions of strong or weak mixing. Be this as it may, given the unified treatment of the
EH we presented in the previous section, we think that our analysis could add to the
understanding of the character of randomness in classical ergodic and non-ergodic
systems.

4.4. Maps as analogues of continuous flows

Ergodic maps are also used as ‘analogue pictures’ of continuous flows. An analysis of
EH can be used to study the degree of randomness involved in such maps and accordingly
the dynamical randomness involved in the corresponding continuous flows. Systems that
are commonly considered as chaotic have positive Lyapunov exponents and hence nearby
orbits diverge exponentially. But this cannot be the case for all directions since this would
not be compatible with the fact that the phase flow is area preserving. Therefore, while



ARTICLE IN PRESS

B′

A′

BA

Fig. 8. The folding back can be envisioned by conceptually identifying edge AB with edge A0B0.
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nearby trajectories diverge in one direction they converge in some other direction so that
the sum of all Lyapunov exponents is zero. More precisely, the phase decomposes at every
point into three subspaces: The first is simply the trajectory of the system through that
point. The second is a manifold of trajectories that exponentially diverge from the
trajectory of our reference point, and the third is a manifold consisting of trajectories that
exponentially converge towards that same trajectory. Hence, what we end up with is that
every finite element of the phase space shrinks in one direction while it spreads in another
and as a result of this a bundle of trajectories get squeezed into something like a thin sheet.
Now, chaotic motion is characteristically bounded, i.e. it is confined to a finite region of
the phase space. As a consequence, this squeezing of trajectories cannot continue forever.
What happens is that, in order to secure confinement to such region, a ‘folding back’ of the
sheet onto itself is taking place. Schematically, this can be visualised as shown in Fig. 8.
It is at this point that ergodic maps enter the scene. Looking at Fig. 8, what we identify

as the basic pattern is a motion consisting of stretching and folding back. And it is
precisely this stretching and folding that many of the mappings that are discussed in chaos
theory (e.g. the cat map, the baker’s transformation or the horseshoe) are supposed to
capture. The horseshoe mapping, for instance, is best interpreted as a schematic picture of
precisely this mechanism of stretching and folding we find in a continuous phase space.
Obviously, these mappings are much simpler than the full-fledged dynamics and their
mechanism is not quite the same as in the continuous case. But they capture the basic
structure (that is why we refer to theses maps as ‘analogue pictures’) and thereby help to
elucidate what happens in the more intricate case of a continuous flow.

4.5. Mappings as tools for analysing physical problems

So far we have used mappings as tools to understand the properties of a continuous
phase flow, with which the ‘real physics’ was associated. But maps can also be used in a
more direct way to study various physical problems. That is, there are physical problems
whose formalisation immediately results in a mapping. In these cases the mapping emerges
directly from the physical phenomenon under investigation and no ‘detour’ to a
continuous formulation is needed. A case in point is the so-called Fermi accelerator (see
Lichtenberg & Liebermann, 1992, pp. 57–59, 215–230). The system was proposed by
Enrico Fermi in 1949 to model the acceleration of cosmic rays. The model consists of a ball
bouncing between a fixed and a sinusoidally oscillating wall. Depending on the concrete
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assumptions about the behaviour of the components of the model one obtains various
mappings, including well-known mappings such as the twist map and the Chirikov–Taylor
map (also referred to as the ‘standard map’). As a consequence, the whole machinery of
ergodic theory can be directly used to discuss such physical problems, and in particular the
degrees of randomness that they involve.

In sum, we think that the three uses discussed above—i.e. the use of mappings in
surfaces of sections, as analogue pictures and as ‘direct’ models of physical phenomena—
forcefully counter the objection that ergodic theory is irrelevant to physics in general and
to characterising dynamical randomness in physical processes in particular.

5. Summary and concluding remarks

5.1. Summary of the main arguments

EH is often regarded as relevant for explicating the nature of randomness in
deterministic dynamical systems. It is not clear, however, what notion of randomness
this claim invokes. The formal definitions of EH do not make explicit appeal to
randomness and the usual ways of presenting EH do not involve specifications of the
notion (or notions) of randomness that is (or are) supposed to underlie EH. After
considering some seemingly obvious candidates, we have suggested that EH can be
interpreted as a hierarchy of randomness if degrees of randomness are explicated in terms
of degrees of unpredictability, which in turn are explicated in terms of conditional degrees
of beliefs. In order for these degrees of belief to be indicative of the system’s dynamical
properties, they have to be updated according to a system’s dynamical law, i.e. according
to (m-DynT). In technical terms, these degrees of belief equal the corresponding degrees of
decay of correlation which are dictated by the system’s dynamical properties.

5.2. Randomness and the decay of correlations

In EH, the different degrees of randomness, which correspond to the different levels of
the hierarchy, are (generally) defined in asymptotic terms (the exception being Bernoulli
processes). Each of these degrees of randomness expresses a different degree of
unpredictability that corresponds to a different type of asymptotic decay of correlations
between states of systems at different times. This might suggest that a similar pattern can
be found in the rates of decay. That is, one might be tempted to think that EH can equally
be characterised as a hierarchy of increasing rates of decay of correlations. On this reading,
a K-system, for instance, which exhibits exponential divergence of trajectories would be
characterised by an exponential rate of decay of correlations, while a SM-system would
exhibit a polynomial rate of decay.

This, unfortunately, does not work.23 Natural as it may seem, EH cannot be interpreted
as a hierarchy of increasing rates of decay of correlations. It is a mathematical fact that
there is no particular rate of decay associated with each level of EH. For instance, one can
construct K-systems in which the decay is as slow as one wishes it to be (e.g. polynomial).
So the rate of decay is a feature of certain properties of a system rather than of a level of
EH.
23Thanks to Viviane Baladi and Dan Rudolph for pointing this out to us.



ARTICLE IN PRESS
J. Berkovitz et al. / Studies in History and Philosophy of Modern Physics 37 (2006) 661–691688
5.3. Chaos is a matter of degree

We mentioned at the beginning that it has become customary among physicists and
philosophers alike to characterise the behaviour of chaotic systems in terms of certain
levels of EH, typically K- and B-systems. More recently, it was suggested by Belot and
Earman (1997, p. 155) that being SM is a necessary condition and being a K-system is a
sufficient condition for a system to be chaotic. This view faces two difficulties: the first is
technical and the second is conceptual.
Let us begin with the technical difficulty. Intuitively, the claim that SM is a necessary

condition for chaos appears appealing, because SM-systems involve a significant degree of
‘disorder,’ which seems necessary for chaos. However, a closer look at chaotic systems soon
reveals that, if no further provisos are made, this claim is false. Take, for a notable example,
KAM-type systems. Clearly, these systems with their intermingled regions of irregular and
regular motion exhibit a kind of behaviour that we would like to call ‘chaotic’ (for a discussion
of such systems see Section 4.3). But according to the proposed criterion KAM-type systems
are not chaotic since it is a straightforward consequence of the KAM theorem that these
systems are not mixing. (In fact, as we have seen in Section 4.2, KAM systems are not even
ergodic.) For this reason it is too restrictive to make SM a necessary condition for chaos.
One may try to rescue the idea that SM is a necessary condition for chaos by restricting

the scope to more favourable cases (i.e. ones in which no disturbing KAM-curves are
present). This can be achieved, for instance, by making the perturbation so strong that all
invariant curves vanish, or by restricting the focus to the ‘right’ regions of the phase space
(see Section 4.3). The claim then is: Given that a system is ergodic, SM is a necessary
condition and KM is a sufficient condition for it to be chaotic. Or similarly, if the system is
not ergodic, then focusing on the regions where the system displays ergodic behaviour, SM
is a necessary condition and KM is a sufficient condition for chaos.
From a technical point of view, this is a workable suggestion. However, there is a

problem with the basic mindset behind it. The search for necessary and sufficient
conditions for chaos presupposes that there is a clear-cut divide between chaotic and non-
chaotic cases. We believe that our analysis of EH challenges this view. EH provides a
hierarchy of random behaviour and every attempt to draw a line somewhere to demarcate
chaotic from non-chaotic systems is bound to be somewhat arbitrary. Ergodic systems are
pretty regular, mixing systems are less regular and the higher positions in the hierarchy
exhibit still more haphazard behaviour. But is there one particular point where the
transition from ‘non-chaos’ to chaos takes place? Based on our argument that EH is a
hierarchy of increasing degrees of randomness and degrees of randomness correspond to
different degrees of unpredictability, we suggest that chaos may well be viewed as a matter
of degree rather than an all-or-nothing affair. Bernoulli systems are very chaotic, K-
systems are slightly less chaotic, SM-systems are still less chaotic, and ergodic systems are
non-chaotic. This suggestion connects well with the idea that chaos is closely related to
unpredictability. For if chaos in deterministic systems is closely related to unpredictability,
there seems to be no good reason to claim that SM is a necessary condition for chaos and
that K is a sufficient condition for it. First, SM already involves a significant degree of
unpredictability. And, secondly, if there were a clear point where unpredictability starts to
reflect chaotic behaviour, why should it be K—rather than SM—or B-systems?
The view that being a K-system is the mark of chaos and that any lower degree of

randomness is not chaotic is frequently motivated by two ideas. The first is the idea that
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chaotic behaviour involves dynamical instability in the form of exponential divergence of
nearby trajectories. Thus, since a system involves an exponential divergence of nearby
trajectories only if it is a K-system, it is concluded that (merely) ergodic and mixing
systems are not chaotic whereas K- and B-systems are. It is noteworthy, however, that SM
is compatible with there being polynomial divergence of nearby trajectories and that such
divergence sometimes exceeds exponential divergence in the short run. Thus, if chaos is to
be closely associated with the rate of divergence of nearby trajectories, there seems to be no
good reason to deny that SM- systems exhibit chaotic behaviour.

The second common motivation for the view that being a K-system is the mark of chaos
is the idea that the shift from zero to positive KS-entropy marks the transition from a
‘regular’ to ‘chaotic’ behaviour. This may suggest that having positive KS-entropy is both
necessary and sufficient condition for chaotic behaviour. Thus, since a system has positive
KS-entropy if and only if it is a K-system, it is concluded that K-systems are chaotic
whereas SM-systems are not.

Why is KS-entropy a mark of chaos? The answer to this question depends on the exact
interpretation of KS-entropy. Three interpretations suggest themselves. One interpretation
is based on Pesin’s theorem, which states that a dynamical system has positive KS-entropy
if, and only if, it is dynamically unstable in the sense of having exponential divergence of
nearby trajectories (see Lichtenberg & Liebermann, 1992, p. 304). As we have just argued
above, this interpretation does not seem to support the suggestion that having a KS-
entropy is a necessary condition for chaotic behaviour even if we accept the idea that chaos
is closely related to the rate of divergence of nearby trajectories.

The second interpretation of KS-entropy is based on Brudno’s theorem, which connects
it to algorithmic complexity (Brudno, 1978). Though elegant in its own right, this does not
seem to get us very far in the context of our investigation because it does not connect to
physical intuitions about randomness. Admittedly, ‘randomness’ is a vague notion that
allows for different interpretations, but algorithmic complexity is just too far off the mark
for the needs of physics.

Finally, in a recent paper Frigg (2004) relates the KS-entropy to a generalised version of
Shannon’s information theoretic entropy. According to this approach, positive KS-
entropy implies a certain degree of unpredictability. The idea is that this degree of
unpredictability is sufficiently high to deserve the title chaotic. But this takes us back to the
original question. Why draw the line here rather than somewhere else? Why should the line
between non-chaotic and chaotic behaviour be drawn between unpredictability that
implies zero KS-entropy and unpredictability that implies positive KS-entropy? Also, even
if we suppose that positive KS-entropy is a necessary condition for chaotic behaviour, the
question is why should we draw the line at K-systems rather B-systems.

All these problems do not arise for our suggestion that chaotic behaviour of a system
should be measured in terms of degrees of unpredictability, which are measured by degrees
of beliefs that are constrained by the relevant dynamical laws and can be characterised
precisely by EH. On this suggestion, no sharp line between chaotic and non-chaotic
behaviour is called for: Chaos is conceived as a matter of degree.

Acknowledgements

For helpful discussions we would like to thank the audiences at the conference ‘New
Directions in the Foundation of Physics’ (Maryland, May 2001), the Quantum Club



ARTICLE IN PRESS
J. Berkovitz et al. / Studies in History and Philosophy of Modern Physics 37 (2006) 661–691690
(Utrecht, March 2003), and the members of the Foundations of Physics Group in
Barcelona (March 2003). For helpful discussions and communications we would like to
thank Viviane Baladi, David Lavis, Janneke van Lith, Donald Ornstein, Dan Rudolph, Jos
Uffink and two anonymous referees. We also would like to thank the Centre for
Philosophy of Social and Natural Science at LSE for providing us with a stimulating
environment in which much of the research for this paper has been done. For financial
support, JB would like to thank the Faculty of Arts and Sciences, University of Maryland
Baltimore County.

References

Alekseev, V. M., & Yakobson, M. V. (1981). Symbolic dynamics and hyperbolic dynamical systems. Physics

Reports, 75, 287–325.

Argyris, J., Faust, G., & Haase, M. (1994). An exploration of chaos. Amsterdam: Elsevier.

Arnol’d, V. I. (1963). Proof of a theorem of A.N. Kolmogorov on the preservation of conditionally periodic

motions under a small perturbation of the Hamiltonian. Uspekhi Matematicheskikh Nauk, 18(5, 113), 13–40

(Russian).

Arnol’d, V. I., & Avez, A. (1968). Ergodic problems of classical mechanics. New York and Amsterdam:

W. A. Benjamin.

Belot, G., & Earman, J. (1997). Chaos out of order: Quantum mechanics, the correspondence principle and chaos.

Studies in the History and Philosophy of Modern Physics, 28, 147–182.
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