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Abstract

Chaos is often explained in terms of random behaviour; and having positive Kolmogorov–Sinai entropy (KSE) is
taken to be indicative of randomness. Although seemly plausible, the association of positive KSE with random behav-
iour needs justification since the definition of the KSE does not make reference to any notion that is connected to ran-
domness. A common way of justifying this use of the KSE is to draw parallels between the KSE and Shannon�s
information theoretic entropy. However, as it stands this no more than a heuristic point, because no rigorous connec-
tion between the KSE and Shannon�s entropy has been established yet. This paper fills this gap by proving that the KSE
of a Hamiltonian dynamical system is equivalent to a generalized version of Shannon�s information theoretic entropy
under certain plausible assumptions.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

On one influential suggestion, chaos is best explained in terms of randomness. It is this suggestion that this paper is
concerned with. The problem with this suggestion is that to characterize a system�s behaviour as random is that the
concept of randomness is as much in need of analysis as the notion of chaos itself. Common physical wisdom has it
that ergodic theory fits the bill. More specifically, the claim is that the ergodic hierarchy provides a set of concepts which
allow for an adequate characterization of random behaviour (see for instance [7,10,14,16,19]). Among the notions intro-
duced in this context, the Kolmogorov–Sinai entropy (KSE) is of particular importance since it is generally assumed
that the move from zero to positive KSE marks the transition from regular to chaotic behaviour.

Though plausible at first glance, a closer look at the KSE reveals a conceptual gap between the KSE and random
behaviour: the definition of the KSE is phrased in terms of partitions of the phase space and their time evolution and it
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does not make reference randomness or any related concept. How then are we to understand the KSE as a indicator of
random behaviour? Three suggestions have been made as to how to bridge this gap. First, connect the KSE to positive
Lyapunov exponents by invoking Pesin�s theorem [12]. Second, take algorithmic complexity to be a measure for ran-
domness and relate the KSE to this notion by dint of Brudno�s theorem [3]. Third, one can establish a link between the
KSE and Shannon�s information theoretic notion of entropy.

This brief summary reveals a lacuna in our theoretical edifice: while the association of the KSE with either positive
Lyapunov exponents or algorithmic complexity is backed by powerful theorems, no theorem to the same effect is avail-
able in the case of information theory. Mathematicians in general do not discuss the relationship between the KSE and
information (see for instance [1,4,15,18]). Others use the term �information� but without elucidating how phase space
topologies relate to the conceptual framework of information theory [5,6,9]. Yet others seem to be aware of the fact
that there is a gap to bridge, but then do not provide more than heuristic remarks [2,8,11,13].

The aim of this paper is to bridge this gap. I first generalize Shannon�s entropy and then prove that for Hamiltonian
systems this generalized version of Shannon�s entropy is equivalent to the KSE under plausible assumptions.

To this end, let me briefly recall some elements of dynamical systems theory. An abstract dynamical system is a triple
M ¼ ðM ; l;UtÞ where (M,l) is a measure space equipped with a one-parameter group Ut of automorphisms of (M,l), Ut

depending measurably on t. The parameter t plays the role of time, which in what follows is assumed to evolve in dis-
crete steps (t1 < t2 < t3 < � � �). Furthermore I assume that M is normalized, l(M) = 1, and that the dynamics of the sys-
tem is area preserving: l(UtA) = l(A) for all measurable subsets A � M and all times t.

I will use the following notational conventions: Ut(x) is the point in phase space onto which Ut maps the �initial con-
dition� x after time t has elapsed; and Ut(A) is the image of the subset A �M under Ut. I write Uti!tjðAÞ to denote the
image of A under the time development starting at ti and ending at tj.

It is often the case that the Uti , i = 1,2, . . . , are generated by an iterative application of one single automorphism U.
In this case we have Uti ¼ Ui and Uti!tj ðAÞ ¼ Uj�iðAÞ.

A partition a = {aiji = 1, . . ., n} ofM is a division ofM into finitely many measurable sets such that ai \ aj = ; for all
i5 j and lðM � [n

i¼1aiÞ ¼ 0. The ai are called �atoms� or �cells� of the partition. Furthermore notice that if a =
{aiji = 1, . . ., n} is a partition of M then Uta:¼{Utaiji = 1, . . ., n} is a partition as well. Given two partitions
a = {aiji = 1, . . ., n} and b = {bjjj = 1, . . ., m}, their least common refinement a _ b is defined as follows: a _ b =
{ai \ bjji = 1, . . ., n; j = 1, . . ., m}.

Given this, the KSE HU of an automorphism U is defined as
HU :¼ sup
a

lim
k!1

ð1=kÞHða _ Ua _ � � � _ Uk�1aÞ; ð1Þ
where the function on the right-hand side is the entropy of a partition, which is defined as follows:
HðbÞ :¼ �

Pm
i¼1z½lðbiÞ�, zðxÞ ¼ x logðxÞ if x > 0 and z(x) = 0 if x = 0; supa is the supremum over all possible finite par-

titions a of the phase space [1].
2. Generalizing the Shannon entropy

Consider a source S, which at every discrete instant of time ti selects one of the available messages S1, . . ., Sn and
sends it to a receiver R through a noiseless and deterministic channel. The production of a symbol by the source when
time proceeds from ti to ti+1 will be referred to as a �step�. When taking the received messages down (on a paper strip, for
instance), the receiver adds a time superscript to indicate when the message was received. Assuming that this process
starts at time t0 the receiver has produced the string St1

l1
St2
l2
� � � Stk

lk
at time tk, where all the li range over 1, . . ., n (i.e.

the number of symbols available). Furthermore assume that the source is probabilistic and let p(S1), . . ., p(Sn) be the
respective probabilities that S1, . . ., Sn occur (hence p(S1) + � � � + p(Sn) = 1). In this case, the Shannon entropy is de-
fined as (see [17])
H step :¼ �
Xn

i¼1

z½pðSiÞ�. ð2Þ
Hstep is a measure of the uncertainty about what symbol will crop up at the next step; the greater Hstep the less certain
we are about the outcome. I now generalize this expression in four stages.

First, we need to conditionalise on past events, as the probability that a particular symbol is chosen at time t may
depend on what has been chosen beforehand. In the simplest case, a Markov process, the choice only depends on the
preceding letter and not on the ones before that. In general, however, the choice can depend on the entire history of the
process: the conditional probability of receiving Si at time tk+1 is pðStkþ1

i =St1
l1
St2
l2
� � � Stk

lk
Þ. Since these probabilities may
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vary with k, the entropy may have a different value at every step. To make this explicit, I replace the subscript �step� in
Eq. (2) by �k�. The expression for the entropy then is
HkðSt1
l1
St2
l2
� � � Stk

lk
Þ :¼ �

Xn

i¼1

z pðStkþ1
i =St1

l1
St2
l2
� � � Stk

lk
Þ

h i
ð3Þ
and can be understood as a measure for the uncertainty about what symbol will show up at time tk+1 given that the
previous history of the process (recorded on R�s tape) is St1

l1
St2
l2
� � � Stk

lk
.

Second, as we usually do not know the entire history of a process it is convenient to consider the weighted average of
all HkðSt1

l1
St2
l2
� � � Stk

lk
Þ. As weight we choose the probability of the respective history, which does justice to the fact that not

all histories are equally likely:
Hk :¼
Xn

l1 ;...;lk¼1

pðSt1
l1
St2
l2
� � � Stk

lk
ÞHkðSt1

l1
St2
l2
� � � Stk

lk
Þ; ð4Þ
where pðSt1
l1
St2
l2
� � � Stk

lk
Þ :¼ pðSt1

l1
ÞpðSt2

l2
=St1

l1
Þ � � � pðStk

lk
=St1

l1
� � � Stk�1

lk�1
Þ.

Third, on the basis of this we can now define the entropy ~Hk of the entire process of the composition of a message of
length k. Since no step is privileged over the others, this can be effected by simply taking the average of the entropy at
every step of the process:
~Hk :¼
1

k

Xk�1

j¼0

Hj. ð5Þ
Fourth, we can say that the entropy of the source itself, HS, is the average of the uncertainty at every step in the
infinite limit:
HS :¼ lim
k!1

~Hk . ð6Þ
I will refer to this as �communication-theoretic entropy� (CTE).
It is important to point out that the CTE can be used to characterize the random behaviour of a process. It is usually

assumed that the probabilities are given and that the value of the CTE is calculated on the basis of these probabilities.
However, this �natural order� can be reversed. If the CTE is given, it can be used to characterize the probabilities in-
volved even if they are not known independently. HS > 0 expresses the fact that, on average, at every step there is some
uncertainty about what the next symbol printed by the receiver will be. More precisely, whatever the past history of the
system, we are not sure as to what the next symbol will be. And this characteristic persists forever, there exists no �cut-off
time� tc in the process from which on the past history of the system allows us to predict with certainty what its future will
be sinceHS is greater than zero only if there do not cease to be �Hk greater than zero. Now recall that �Hk is a measure for
the uncertainty about what the message printed at time k + 1 will be. Hence, if there do not cease to be �Hk > 0 as time
goes on, there will always be times at which we are not sure about what is going to happen next. As a consequence, we
cannot predict with certainty what the future will be. (This does not imply that there are no instants of time for which
this is possible; HS > 0 is compatible with there being some particular �Hk ¼ 0 from time to time.) In terms of proba-
bilities this means that as the process goes on we never reach a stage where pðStkþ1

i =St1
l1
St2
l2
� � � Stk

lk
Þ equals one for some

particular symbol and zero for all the others. In sum, we can characterize a system with positive entropy as one in which
the past history never conveys certainty onto what will happen at the next step and more generally in the future.
3. The equivalence of KSE and CTE

The strategy now is to first carry over Eqs. (3)–(6) to the context of dynamical systems theory and then prove that
the �dynamical system version� of Eq. (6) is equivalent to the KSE as defined above.

The problem we face in doing so is that the messages we have been dealing with so far are discrete entities whereas
the phase space of a dynamical system is continuous. This mismatch is removed by coarse graining the phase space. Let
a = {a1, � � �, an} be a partition of the phase space and assume that the state of the system at t0 is x. Then trace the tra-
jectory Uti

(x) of x and register at each time ti, i = 1,2, . . . in what cell aj, j = 1, . . ., n, of the partition Uti
(x) is. That is,

write down at1j if Ut1
(x) 2 aj at time t1 and so on. If we do that up to time tk this generates the string a

t1
l1
at2l2 � � � a

tk
lk
, which is

structurally identical to St1
l1
St2
l2
� � � Stk

lk
. Furthermore, we need something in M corresponding to the probability p(Si) of

choosing a particular symbol Si. By assumption, there is a normalised measure l on M and it is a straightforward move
to interpret this measure as a probability measure: interpret l(ai) as the probability of finding the system�s state in ai.
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Note, however, that although this move is quite natural, the interpretation of l as the probability of finding the system�s
state in a particular cell is not compulsory. Not all measures reflect our ignorance about the system�s real state; it could
also simply be the spatial volume. However, this interpretation is perfectly possible, and that is all we need.

Then, the following associations are made to connect dynamical systems to communication theory:

(a) The atoms of the partition ai correspond to the symbols (messages) Si of the source.
(b) The measures of an atom l(ai), interpreted as the probability of finding the system�s state in cell ai, correspond to

the probability p(Si) of obtaining symbol Si.
(c) The automorphism Ut corresponds to the source S, since they both do the job of generating the strings

at1l1a
t2
l2
� � � atklk and St1

l1
St2
l2
� � � Stk

lk
respectively.

Given these associations, the Shannon entropy of a, commonly referred to as he �entropy of the partition a�, is
HðaÞ :¼ �

Pn
i¼1z½lðaiÞ�.

In order to �translate� Eqs. (3)–(6) into the �language� of dynamical systems, we have to express the probabilities in
terms of the measure l. To this end realize that for any two instants of time ti and tj (where ti < tj) and any two mea-
surable subsets A and B of M the following holds:
pðAtiBtjÞ ¼ l Uti!tjðAÞ \ B
� �

. ð7Þ
The generalisation of this equality to any number of sets and instants of time is straightforward.
Now we spell out the conditional probabilities in terms of unconditional ones,
pðatkþ1
i =at1l1a

t2
l2
� � � atklk Þ ¼ pðatkþ1

i &at1l1a
t2
l2
� � � atklk Þ=pða

t1
l1
at2l2 � � � a

tk
lk
Þ ð8Þ

¼ pðat1l1a
t2
l2
� � � atklka

tkþ1
i Þ=pðat1l1a

t2
l2
� � � atklk Þ. ð9Þ
Apply Eq. (7) to this expression and then plug what we get into Eq. (3):
Hkða; at1l1a
t2
l2
� � � atklk Þ :¼ �

Xn

i¼1

z
l ai \ Utk!tkþ1

alk \ � � � \ Ut1!tkþ1
al1

� �
l alk \ Utk�1!tkalk�1

\ � � � \ Ut1!tkal1
� �" #

. ð10Þ
Given this, Eq. (4) carries over to dynamical systems easily,
�HkðaÞ :¼
Xn

l1 ;...;lk¼1

l alk \ Utk�1!tkalk�1
\ � � � \ Ut1!tkal1

� �
Xn

i¼1

z
l ai \ Utk!tkþ1

alk \ � � � \ Ut1!tkþ1
al1

� �
l alk \ Utk�1!tkalk�1

\ � � � \ Ut1!tkal1
� �" #

ð11Þ
and similarly for the entropy of the process of the composition of a string of length k:
~HkðaÞ :¼
1

k

Xk�1

j¼0

�HjðaÞ. ð12Þ
Finally, on the basis of this we define the entropy of an automorphism with respect to partition a as follows:
HUt ðaÞ :¼ lim
k!1

~HkðaÞ. ð13Þ
However, there is an important disanalogy between a source and a dynamical system. In the case of a source S, the
set of possible messages (S1, . . ., Sn) is a part of the definition of the source. This is not so with the partition a, which is
no constitutive part of the dynamical system M. Rather it has been �imposed� on the system. This is a problem because
the values we obtain for HUt

(a) essentially depend on the choice of the partition a. To get rid of this dependence, we
define the entropy of the automorphism as the supremum of HUt

(a) over all finite measurable partitions:
HUt ¼ sup
a

HUt ðaÞ. ð14Þ
Now we have to prove that this expression is equivalent to the KSE as defined in Eq. (1). To this end, first introduce an
auxiliary device. Let a and b be two partitions; then the conditional entropy of a with respect to b is defined as
Hða=bÞ :¼
Xm
j¼1

lðbjÞ
Xn

i¼1

z
lðai \ bjÞ
lðbjÞ

" #
. ð15Þ
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Then realize that the standard definition of the KSE assumes that the flow is generated by the iterative application of
the same automorphism U. Therefore, Uti ¼ Ui and Uti!tjðAÞ ¼ Uj�iðAÞ. Given this, we have

Theorem 1
~HkðaÞ ¼ Hða=Ua _ U2a _ � � � _ UkaÞ. ð16Þ
The prove of this theorem—along with the proof of the next theorem—will be given in the following section. Then the
entropy of the process as given in Eq. (12) reads
~HkðaÞ ¼
1

k
HðaÞ þ Hða=UaÞ þ � � � þ Hða=Ua _ � � � _ Uk�1aÞ
� �

. ð17Þ
This can be considerably facilitated by using

Theorem 2
Hða _ Ua _ � � � _ UkaÞ ¼ HðaÞ þ Hða=UaÞ þ � � � þ Hða=Ua _ � � � _ UkaÞ. ð18Þ
Hence,
~HkðaÞ ¼
1

k
Hða _ Ua _ � � � _ Uk�1aÞ. ð19Þ
Inserting this first into (13) and then (14) we obtain
HU ¼ sup
a

lim
k!1

ð1=kÞHða _ Ua _ � � � _ Uk�1aÞ ð20Þ
and this is the definition of the entropy of an automorphism towards which we were aiming. Gathering the pieces to-
gether, we have proven the following:

Equivalence theorem
HU ¼ sup
a

lim
k!1

ð1=kÞHða _ Ua _ � � � _ Uk�1aÞ

¼ sup
a

lim
k!1

�1

k

Xk�1

j¼0

Xn

l1 ;...;lk¼1

pðat1l1a
t2
l2
� � � atklk Þ

Xn

i¼1

z½pðatkþ1
i =at1l1a

t2
l2
� � � atklk Þ�. ð21Þ
Since, by construction, the last term in this equation is equivalent to the CTE, the sought-after connection between the
notion of entropy in dynamical systems theory and in information theory is established.

As a consequence, everything that has been said at the end of Section 2 about the unpredictable behaviour of a
source can be carried over to dynamical systems one-to-one. However, a proviso with regard to the choice of a partition
must be made. The exact analogue of the CTE is HU(a) and not HU, which is defined as the supremum of HU(a) over all
partitions a. For this reason, the characterization of randomness devised in the context of information theory strictly
speaking applies to HU(a) rather than HU. However, there is a close connection between the two: whenever HU > 0,
there trivially is at least one partition for whichHU(a) > 0. In this case Ut is random in precisely the way described above
with respect to this partition, and more generally with respect to all partitions for which HUt

(a) > 0. Moreover, if the
system is a K-system, the KSE is greater than zero for every partition which is not a trivial partition, that is a partition
consisting of sets of measure 1 and zero only [4]. For this reason, statements about HU and HU(a) naturally translate
into one another.
4. Proofs of Theorems 1 and 2

In order to prove the two main theorems five lemmas are needed. The proof of Lemmas 1 and 3 can be found in [1],
the other proofs are trivial.

Lemma 1. H(a _ b) = H(a) + H(b/a).

Lemma 2. H(a) = H(Uta).
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Lemma 3. U(a _ b) = Ua _ Ub.

Lemma 4. H(a _ b) = H(b _ a).

Lemma 5. _ is associative: a _ b _ c = (a _ b) _ c = a _ (b _ c).

Proof of Theorem 1. For the case of an automorphism generated by a mapping we have Uti!tjðAÞ ¼ Uj�iðAÞ (see
above). Then, (11) becomes
�HkðaÞ ¼ �
Xn

l1 ;...;lk¼1

lðalk \ � � � \ Uk�1al1Þ
Xn

i¼1

z
lðai \ Ualk \ � � � \ Ukal1Þ
lðalk \ � � � \ Uk�1al1Þ

� �
. ð22Þ
Using the fact that U is area preserving we get lðalk \ � � � \ Uk�1al1Þ ¼ lðUalk \ � � � \ Ukal1Þ. Plugging this into Eq. (22)
and taking the associativity of set intersection into account we obtain:
�HkðaÞ ¼ �
Xn

l1 ;...;lk¼1

lðUalk \ � � � \ Ukal1Þ
Xn

i¼1

z
lðai \ fUalk \ � � � \ Ukal1gÞ

lðUalk \ � � � \ Ukal1Þ

� �
. ð23Þ
Now realize that what the first sum effectively does is sum over all elements of a partition consisting of all intersections
Ualk\ � � � \Ukal1. This partition, however, is just Ua _ � � � _ Uka. Furthermore, compare Eq. (23) with the definition of
the conditional entropy in Eq. (15). We then obtain: �HkðaÞ ¼ Hða=Ua _ � � � _ UkaÞ. h

Proof of Theorem 2. By weak induction on k:
Base case: H(a _ Ua) = H(a) + H(a/Ua).

Proof: H(a _ Ua) = H(Ua _ a), by Lemma 4, and H(Ua _ a) = H(Ua) + H(a/Ua) by Lemma 1. Now use Lemma 2
and get H(a _ Ua) = H(a) + H(a/Ua). h

Inductive step: H(a _ Ua _ � � � _ Uk+1a) = H(a) + � � � + H(a/Ua _ � � � _ Uk+1a).

Proof: Consider H(a _ Ua _ � � � _ Uk+1a). With Lemmas 5 and 4 this is H([Ua _ � � � _ Uk+1a] _ a), and now applying
Lemma 1 yields H(Ua _ � � � _ Uk+1a) + H(a/[Ua _ � � � _ Uk+1a]). Lemmas 2 and 3 together with the fact that U is
measure preserving give: H(a _ � � � _ Uka) + H(a/[Ua _ � � � _ Uk+1a]). With the induction hypothesis this is H(a _
Ua _ � � � _ Uk+1a) = H(a) + � � � + H(a/[Ua _ � � � _ Uk+1a]). h
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