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Consider a toy system consisting of a marble and box. The marble has two sates, inΨ  and outΨ , 

corresponding to the marble being inside or outside the box. These states are eigenvectors of the operator 

B̂ , measuring whether the marble is inside or outside the box. The formalism of quantum mechanics 

(QM) has it that not only inΨ  and outΨ  themselves, but any superposition outinm ba Ψ+Ψ=Ψ  

where a  and b are complex numbers such that 1
22 =+ ba , can be the state of the marble. What are the 

properties of the marble in such a state? This question is commonly answered by appeal to the so-called 

Eigenstate-Eigenvalue Rule (EER): An observable O  has a well-defined value for a quantum a system S 

in state Ψ   if, and only if, Ψ  is an eigenstate of O . Since inΨ  and outΨ  are eigenstates of B̂ , EER 

yields that the marble is either inside (or outside) the box if its state is inΨ  (or outΨ ). However, states 

like mΨ defy interpretation on the basis of EER and we have to conclude that if the marble is in such a 

state then it is neither inside nor outside the box. This is unacceptable because we know from experience 

that marbles are always either inside or outside boxes. Reconciling this fact of everyday experience with 

the quantum formalism is the infamous measurement problem. Standard quantum mechanics solves this 

problem, following a suggestion of von Neumann’s, by postulating that upon measurement the system’s 

state is instantaneously reduced to one of the eigenstates of the measured observable, which leaves the 

system in a state that can be interpreted on the basis of EER (see Measurement Theory). However, it is 

generally accepted that this proposal is ultimately unacceptable. What defines a measurement? At what 

stage of the measurement process does the collapse take place (trigger problem)? And why should the 

properties of a system depend on actions of observers?  
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GRW Theory (sometimes also ‘GRW model’) is a suggestion to overcome these difficulties 

(Ghirardi, Rimini, and Weber (1986); Bell (1987) and Ghirardi (2002) provide short and non-technical 

presentations of the theory; for a comprehensive discussion of the entire research programme to which 

GRW Theory belongs see Bassi and Ghirardi (2003)). The leading idea of the theory is to eradicate 

observers from the picture and view state reduction as a process that occurs as a consequence of the basic 

laws of nature. The theory achieves this by adding to the fundamental equation of QM, the Schrödinger 

equation, a stochastic term which describes the state reduction occurring in the system. (For this reason 

GRW theory is not, strictly speaking, an interpretation of QM; it is a quantum theory in its own right). 

A system governed by GRW theory evolves according to the Schrödinger equation all the time 

except when a state reduction, a so-called hit, occurs (hits are also referred to as ‘hittings’, 

‘perturbations’, ‘spontaneous localisations’, ‘collapses’, and ‘jumps’). A crucial assumption of the theory 

is that hits occur at the level of the micro constituents of a system (in the above example at the level of the 

atoms that make up the marble). The crucial question then is: when do hits occur and what exactly 

happens when they occur?  

GRW Theory posits that the occurrence of hits constitutes a Poisson process. Generally speaking, 

Poisson processes are processes characterised in terms of the number of occurrences of a particular type 

of event in a certain interval of time τ , for instance the number of people passing through a certain street 

during time τ . These events are Poisson distributed if the probability that the number of events occurring 

during τ , n , takes value m is given by !/)()( memnp mλτλτ−== , where λ  is the parameter of the 

distribution. One can show that λ  is also the mean value of the distribution and hence it can be 

interpreted as the average number of events occurring per unit time. GRW theory sets 11610 −−= sλ and 

posits that this is a new constant of nature. Hence, in a macroscopic system that is made up of about 

2310 atoms there are on average 710 hits per second.  

A hit transforms the system’s state into another state according to a probabilistic algorithm that 

takes the position basis as the privileged basis (in that the reduction process leads to a localisation of the 

system’s state in the position basis). Let SΨ  be state of the entire system (e.g. the marble) before the hit 
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occurs. When the thk  particle, say, is hit the state is instantaneously transformed into another, more 

localised state:  
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ckL , , the localisation operator, that has the shape of Gaussian (a bell-shaped curve) centred around c , 

which is chosen at random according to the distribution 
2
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is also a new constant of nature, and it is of the magnitude m710− . The choice of this distribution assures 

that the predictions of GRW Theory coincide almost always with those of standard QM (there are 

domains in which the two theories do not yield the same predictions, but these are (so far) beyond the 

reach of experimental test; see Rimini (1995)).  

Due to the mathematical structure of QM (more specifically, due to the fact that |ΨS〉 is the tensor 

product of the states of all its micro constituents) the hits at the micro level ‘amplify’: if the marble is in 

state mΨ  and thk  particle gets hit, then the entire state is transformed into a highly localised state, i.e. all 

terms except one in the superposition are suppressed. This is GRW’s solution of the measurement 

problem. A macro system gets hit 710  times per second and hence superpositions are suppressed almost 

immediately; micro systems are not hit very often and hence retain their ‘quantum properties’ for a very 

long time.  

This proposal faces two important formal problems. First, the wave function of systems of identical 

particles has to be either symmetrical (in the case of Bosons) or antisymmetrical (in the case of 

Fermions), and remain so over the course of time. GRW theory violates this requirement in that wave 

functions that are symmetric (or antisymmetric) at some time need not be (and generally are not) 

symmetric (or antisymmetric) at later times. Second, although hits occur at the level of the system’s wave 

function, the fundamental equation of the theory is expressed in terms of the density matrix. This strikes 

physicists as odd and as one would like to have an equation governing the evolution of the wave function 

itself. Both difficulties are overcome within the so-called CSL model (for ‘continuous spontaneous 

localization’) introduced in Pearle (1989) and Ghirardi, Pearle  Rimini (1990). The model belongs to the 
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same family of proposals as GRW theory in that it proposes to solve the measurement problem by an 

appeal to a spontaneous localisation processes. The essential difference is that the discontinuous hits of 

GRW theory are replaced by a continuous stochastic evolution of the state vector in Hilbert space (similar 

to a diffusion process).  

Another serious problem concerns the nature of GRW hits. Unlike the state reduction that von 

Neumann introduced into standard QM, the hits of GRW theory do not leave the system’s state in an 

exact position eigenstate; the post-hit state is highly peaked, but nevertheless fails to be a precise position 

eigenstate. This is illustrated schematically in Figure 1. Hence, strictly speaking the post-hit states are not 

interpretable on the basis of EER and we are back where we started. Common wisdom avoids this 

conclusion by pointing out that GRW post-hit states are close to eigenstates and positing that being close 

to an eigenstate is as good as being an eigenstate. This has been challenged by Lewis (1997), who 

presents an argument, now commonly referred to as the ‘counting anomaly’, for the conclusion that 

because of the failure of GRW hits to leave the system in a precise position eigenstate, GRW theory 

implies that arithmetic does not apply to macroscopic objects. For a critical discussion of this argument 

see Frigg (2003).  

 

What is the correct interpretation of the theory? That is, what, if anything, does the theory describe? 

The answer to this question is less obvious than it might seem. Clifton and Monton (1999) regard it as a 

‘wave function only theory’ according to which the world literally is just the wave function that the 

theory describes. Monton (2004) later criticises this view as mistaken and suggests a variation on the 
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mass densitiy interpretation originally proposed by Ghirardi, Grassi, and  Benatti (1995) as the right 

interpretation. Lewis (2005) points out that all versions of the mass density interpretation lead to a 

violation of common sense should hence not be regarded as a problem-free alternative.  

How should we interpret the probabilities that the theory postulates in its hit mechanism? Are they 

best interpreted as propensities, frequencies, Humean chances, or yet something else? Or should the quest 

for such an interpretation be rejected as ill-conceived? This question is discussed in Frigg and Hoefer 

(2007) who come to the conclusion that GRW probabilies can be understood either as single case 

propensities or as Humean chances, while all other options are ruled out by GRW Theory itself.   
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