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Solving the Riddle of Coherence
Luc Bovens and Stephan Hartmann

A coherent story is a story that fits together well. This notion plays a central role in
the coherence theory of justification and has been proposed as a criterion for scien-
tific theory choice. Many attempts have been made to give a probabilistic account of
this notion. A proper account of coherence must not start from some partial intui-
tions, but should pay attention to the role that this notion is supposed to play within
a particular context. Coherence is a property of an information set that boosts our
confidence that its content is true ceteris paribus when we receive information from
independent and partially reliable sources. We construct a measure cr that relies on
hypothetical sources with certain idealized characteristics. A maximally coherent in-
formation set, that is, a set with equivalent propositions, affords a maximal confi-
dence boost. cr is the ratio of the actual confidence boost over the confidence boost
that we would have received, had the information been presented in the form of
maximally coherent information, ceteris paribus. This measure is functionally de-
pendent on the degree of reliability r of the sources. We use cr to construct a coher-
ence quasi-ordering over information sets S and S�: S is no less coherent than S� just
in case cr(S) is not smaller than cr(S�) for any value of the reliability parameter. We
show that, on our account, the coherence of the story about the world gives us a rea-
son to believe that the story is true and that the coherence of a scientific theory, con-
strued as a set of models, is a proper criterion for theory choice. 

When we are curious about what some corner of the world looks like,
we can do all kinds of things to find an answer. We can go take a look
ourselves, ask experts, consult textbooks … Sometimes the story that
we get falls nicely into place like a jigsaw puzzle and we are confident
that the story is true. Sometimes the story that we get just does not
hang together and we are doubtful that the story is true. Some philoso-
phers have been very impressed by this item of common sense and have
made it into the cornerstone of their coherence theory of justification.
Consider the grand sceptical question: do we have any reason to believe
the story about the world that materialized through centuries of (scien-
tific) inquiry? Common sense teaches us that if the story that we gather
about some small corner of the world is a coherent story, then this gives
us at least some reason to believe it. Some philosophers propose to
recruit this item of common sense to combat sceptical worries: it is the
very coherence of the story about the world that warrants our confi-
dence. 
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When we borrow from common sense, it is important that we
understand what common sense really has to offer. Let us represent a
story by an information set, that is, a set of propositions that we have
acquired through gathering information. We can give examples of
information sets that are more coherent than other information sets.
BonJour presents us with the following two sets: S = {[All ravens are
black]1, [This bird is a raven], [This bird is black]} and S� = {[This
chair is brown], [Electrons are negatively charged], [Today is Thurs-
day]} (, p. ). Set S is clearly more coherent than set S�. But this is
no more than an example. There is a long-standing embarrassment
here. A definition of what it means for one set of propositions to be
more coherent than another set has not been forthcoming. Already in
, A. C. Ewing writes that the absence of such a definition reduces
the theory ‘to the mere uttering of a word, coherence, which can be
interpreted so as to cover all arguments, but only by making its mean-
ing so wide as to rob it of almost all significance’ (, p. ). In The
Structure of Empirical Knowledge, BonJour says many illuminating
things about coherence, but admits that his account ‘is a long way
from being as definitive as desirable’ (, p. ) and more recently he
writes that ‘the precise nature of coherence remains an unsolved prob-
lem’ (, p. ).

The notion of coherence also plays a role in the philosophy of sci-
ence. Kuhn (, pp. –) mentions consistency as one of the (admit-
tedly imprecise) criteria for scientific theory choice, along with
accuracy, scope, simplicity and fruitfulness. Salmon (, p. ) dis-
tinguishes between the internal consistency of a theory and the consist-
ency of a theory with other accepted theories. In discussing the latter
type of consistency, he claims that there are two aspects to this notion,
namely, the ‘deductive relations of entailment and compatibility’ and
the ‘inductive relations of fittingness and incongruity’. We propose to
think of the internal consistency of a theory in the same way as Salmon
thinks of the consistency of a theory with accepted theories. Hence, the
internal consistency of a theory matches the epistemologist’s notion of
the coherence of an information set: how well do the various compo-
nents of the theory fit together, how congruous are these components?
Salmon also writes that this criterion of consistency ‘seem[s] … to per-
tain to assessments of the prior probabilities of the theories’ and ‘cr[ies]
out for a Bayesian interpretation’ (, p. ). 

1 Following Quine (, p. ), the square brackets are used to refer to the proposition ex-
pressed by the enclosed sentence.
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Following Salmon’s lead, we will construct a probabilistic measure
that permits us to read off a coherence quasi-ordering over a set of
information sets and show how our relative degree of confidence that
one or another scientific theory is true is functionally dependent on
this quasi-ordering.2 

1. Strategy

The problem with existing probabilistic accounts of coherence is that
they try to bring precision to our intuitive notion of coherence inde-
pendently of the particular role that it is meant to play within the
coherence theory of justification.3 This is a mistake. To see this, con-
sider the following analogy. We not only use the notion of coherence
when we talk about information sets, but also, for example, when we
talk about groups of individuals. Group coherence tends to be a good
thing. It makes ant heaps more fit for survival, it makes law firms more
efficient, it makes for happier families, and so on. There is not much
sense in asking what makes for a more coherent group independently of
the particular role that coherence is supposed to play in the context in
question. We must first fix the context in which coherence purports to
play a particular role. For instance, let the context be ant heaps and let
the role be that of promoting reproductive fitness. We give more precise
content to the notion of coherence in this context by letting coherence
be the property of ant colonies that plays the role of boosting fitness
and at the same time matches our pre-theoretic notion of the coherence
of social units. A precise fill-in for the notion of coherence will differ as
we consider fitness boosts for ant heaps, efficiency boosts for law firms,
or happiness boosts for families. 

Similarly, it does not make any sense to ask what precisely makes for
a more coherent information set independently of the particular role
that coherence is supposed to play within the context in question. What
is this context and what is this role? The coherence theory of justifica-
tion rides on a particular common sense intuition. When we gather
information, then the more coherent the story that materializes is, the
more confident we may be, ceteris paribus. In other words, within the
context of information gathering, coherence is a property of informa-
tion sets that plays a confidence boosting role. But what features should

2 Following Sen (, p. ), a quasi-ordering (or a pre-ordering) is a binary relation that is
transitive and reflexive, but need not be complete, which distinguishes it from an ordering. 

3 Lewis (, p. ) is the locus classicus. More recently, proposals were suggested or defended
by Shogenji (), Olsson (, p. ) and Fitelson (). 
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the information sources have, so that the coherence of the information
set indeed boosts our degree of confidence that the information is true?
And what goes into the ceteris paribus clause—what other factors affect
our confidence that the information is true? Let us take up these ques-
tions in turn. 

2. The nature of the information sources4 

Coherence will play a confidence boosting role when the information
sources are independent and partially reliable. There are two aspects to
independence. C. I. Lewis writes that ‘it is the possible role of congru-
ence [that is, coherence] in the determination of empirical truth which
is dramatized in detective stories …’ (, p. ). So let us construct a
detective story. We interview various sources in a murder case and the
information set that materializes fits nicely together: one source tells us
that the murderer was wearing a butler’s jacket, a second source that the
murder was committed with a kitchen knife and a third source reports
that the butler was having an affair with the victim’s wife. First, we will
not be impressed by the coherence of this story if the sources have had a
chance to put their heads together and concoct a coherent story. This
would make us feel little more confident than if we had read the story in
the yellow press. Second, we will not be impressed by the coherence of
this story if it turns out that each source has witnessed precisely the
same fact, namely, that the murderer was wearing a butler’s jacket. The
first source simply reported this fact, but the second and third sources
respectively inferred that the murder weapon was probably a kitchen
knife and that the butler was probably having an affair with the victim’s
wife, and they chose to report this instead. The coherence of the story is
of no consequence when the sources have had a chance to confer or
when the sources are reporting what they inferred from the facts that
other sources are reporting on. So a plausible interpretation of inde-
pendence in this context is that independent sources are sources that
gather information by and only by observing the facts that they report
on. They may not always provide a correct assessment of these facts, but
they are not influenced by the reports of other sources, nor by the facts
that other sources are reporting on. 

4 Our model of independent sources can be found in Bovens and Olsson (, pp.  and
– and , pp. –) and in Earman (, pp. –). Our model of partially reliable
sources matches interpretation (ii) of ‘dubious information gathering processes’ in Bovens and
Olsson (, p. ). Olsson (, p. ) substitutes ‘partial reliability’ for ‘relative
unreliability’ —which is the term used by Lewis (, p. ). 
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What can we say about the reliability of the sources? First, if we know
that the information sources are fully reliable, that is, that they are
truth-tellers, then the coherence of the information set is a red herring.
Whether the story that materializes hangs together nicely or not, the
content of the story is certain. Second, if we know that the information
sources are randomizers, that is, that they just flip a coin to determine
how they will answer your questions, then the information that we
receive is entirely useless. If some coherent story were to materialize,
then it would be entirely due to chance. The coherence of the story does
not increase our confidence in the story a bit. So we take our sources to
be partially reliable—they are more reliable than randomizers, but
short of being fully reliable.

3. The determinants of our degree of confidence 

Suppose that we receive items of information from independent and
partially reliable sources, say, observations, witness consultations,
experimental tests, and so on. Then what determines our degree of
confidence that the conjunction of these items of information is true?
Consider the following case. We are trying to determine the locus of the
faulty gene on the human genome that is responsible for a particular
disease. Before conducting the experiments, there are certain loci that
we consider to be more likely candidates. We run tests with independ-
ent and partially reliable instruments. Each test identifies an area on the
human genome where the faulty gene might be located. It turns out
that there is a certain overlap between the indicated areas. It is plausible
that the following three factors affect our degrees of confidence that our
tests are providing us with correct data, that is, that the faulty gene is
indeed located somewhere in the overlapping area. 

(i) How expected are the results? 
Compare two cases of the above procedure. Suppose that the only dif-
ference between the cases is that, given our background knowledge, in
one case the overlapping area is initially considered to be a highly
expected candidate area, whereas in the other case the overlapping area
is initially considered to be a highly unexpected candidate area for the
faulty gene. Then clearly, our degree of confidence that the locus of the
faulty gene is in the overlapping area will be lower in the latter than in
the former case. 
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(ii) How reliable are the tests? 
Again, compare two cases of the above procedure. Suppose that the
only difference between the cases is that in one case the tests are highly
reliable, whereas in the other case they are highly unreliable. Then
clearly, our degree of confidence that the locus of the faulty gene is in
the overlapping area will be lower in the latter than in the former case. 

(iii) How coherent is the information? 
This time suppose that the only difference is that in one case the test
reports fit together extremely well—they point to precisely the same
relatively narrow area —whereas in the other case they fit together
poorly — they point to broad and diverging areas but the overlap
between these areas coincides with the relatively narrow area in the first
case. Then clearly, our degree of confidence that the locus of the faulty
gene is in the overlapping area will be lower in the latter than in the
former case. 

We will construct a model in order to define a measure for each of
these determinants. It is easy to construct an expectance measure and a
reliability measure. As to coherence, the matter is more complex. We
will show that there does not exist a coherence measure as such, but will
define a measure that yields a coherence quasi-ordering over informa-
tion sets. 

4. The model

Suppose that there are n independent and relatively unreliable sources
and source i informs us of a proposition Ri, for i = ,…, n, so that the
information set is {R,…,Rn}. For proposition Ri (in roman script) in
the information set, let us define a propositional variable Ri (in italic
script) which can take on two values, namely, Ri and ¬Ri, for i = ,…, n.
Let REPRi be a propositional variable which can take on two values,
namely, REPRi, that is, upon consultation with the proper source, there
is a report to the effect that Ri is the case, and ¬REPRi, that is, upon
consultation with the proper source, there is no report to the effect that
Ri is the case. We construct a joint probability distribution P over
R1,…,Rn, REPR1,…,REPRn, satisfying the constraint that the sources
are independent and partially reliable. 

We model our earlier account of the independence of the sources by
stipulating that P respects the following conditional independences: 
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() REPRi  R1, REPR1,…,Ri – 1, REPRi – 1, Ri + 1, REPRi + 1,…,Rn,
REPRn|Ri  for i = ,…, n (see footnote5)

or, in words, REPRi is probabilistically independent of R1, REPR1,…,
Ri – 1, REPRi – 1, Ri + 1, REPRi + 1,…,Rn, REPRn, given Ri, for i = ,…, n.
What this means is that the probability that we will receive a report that
Ri given that Ri is the case (or is not the case) is not affected by any
additional information about whether other propositions are true or
whether there is a report to the effect that other propositions are true.
Equivalently, in the terminology of the theory of probabilistic causa-
tion, we say that Ri screens off REPRi from all other fact variables Rj and
from all other report variables REPRj.

6 
We make the assumption that our partially reliable sources are all

equally reliable. We specify the following two parameters, that is to say,
the true positive rate P(REPRi|Ri) = p and the false positive rate
P(REPRi|¬Ri) = q for i = ,…, n. We will discuss the assumption of
equal reliability in section . If the information sources are truth-tellers,
then q = . They never provide a report to the effect that Ri given that Ri
is false. If they are fully unreliable, then it is as if they did not even
attend to whether Ri is or is not the case. Rather they act as if they were
randomizers. They might as well flip a coin or cast a die to determine
whether they will or will not report that Ri is the case. Hence, for fully
unreliable information sources, p = q for p, q �(, ). Since partially
reliable information sources are more reliable than randomizers,7 but
less reliable than truth-tellers, we impose the following constraint on P:

()  p > q > 

The degree of confidence in the information set is the posterior joint
probability of the propositions in the information set after all the
reports have come in:

() P*(R,…,Rn) = P(R,…,Rn|REPR,…,REPRn).

5 This notation was introduced by Dawid () and has become standard notation. See Pearl
() and Spirtes et al. ().

6 See Reichenbach () and Salmon (). 

7 One might object that liars are even less reliable than randomizers since they consistently pro-
vide us with false information. But notice that we assume in our model that the values of p and q are
known. Our sources are like medical tests whose false positive rates q and false negative rates  – p
are known. Now suppose that a source is a consistent liar, that is, p =  and q = . Such a source ac-
tually becomes a very reliable source, since if the source reports that Ri then we can be certain that
Ri is false and if the source refrains from reporting that Ri then we can be certain that Ri is true.    

~
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We apply Bayes’ Theorem and expand the denominator by means of
the chain rule:

We simplify on grounds of the conditional independences in ():

Let P(R,..., Rn) = a > .8 The subscript ‘’ indicates that we assess the
prior probability of the conjunction of n –  positive values and  nega-
tive values of the variables R1,…,Rn. Hence, the numerator of ()
equals:

In the denominator, we will collect the terms in the sum in the follow-
ing way. First, we calculate the term in which the variables R1,…,Rn
take on n positive values and  negative values. This is once again the
expression in (). Subsequently we collect the terms in which the varia-
bles R1,…,Rn take on n –  positive values and  negative value. Let us
consider one such term, namely, the term in which the variable R1 takes
on a negative value and R2,…,Rn take on positive values: 

() P(REPR|¬R)×P(REPR|R)×…×P(REPRn|Rn)×P(¬R,...,Rn) =
qpn-P(¬R,...,Rn)

We do the same for all the other terms in which the variables R1,…,Rn
take on n –  positive values and  negative value: 

() P(REPR|R)×P(REPR|¬R)×…×P(REPRn|Rn)×P(R,¬R,...,Rn) =
qpn  –1P(R,¬R,...,Rn)

(…)

() P(REPR|R)×…×P(REPRn|¬Rn)×P(R,…,¬Rn) = qpn – 1P(R,…,¬Rn)

Let P(¬R,…,Rn) +…+ P(R,…,¬Rn) = a. The subscript ‘’ indicates that
we assess the sum of the prior probabilities of the conjunctions of n – 

8 If P(R,…,Rn) = , then the information is inconsistent, and however reliable our sources
may be, P*(R,…,Rn) = , that is, our confidence in the information remains unaffected. We take
inconsistency to be a limiting case of a lack of coherence.   

() P*(R,…,Rn) =
 P(REPR,…,REPRn|R,…,Rn)P(R,…,Rn)

�P(REPR,…,REPRn|R1,…,Rn)P(R1,…,Rn)
R1,…,Rn

() P*(R,…,Rn)=
P(REPR|R)×…×P(REPRn|Rn)×P (R,…,Rn)

�P(REPR |R)×…× P(REPRn|Rn)×P (R1,…,Rn)

R1,…,Rn

() P(REPR|R)×…×P(REPRn|Rn)×P(R,..., Rn) = pna
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positive values and  negative value of the variables R1,…,Rn. Hence, a
is the prior probability that exactly one proposition in the information
set is false. We can now construct the sum of the expressions in ()
through ():

() qpn – P(¬R,...,Rn)+ … + qpn – P(R,...,¬Rn)= qpn – a

Subsequently we gather all terms in the denominator in which the vari-
ables R1,…,Rn take on n –  positive values and  negative values and so
on until we reach the term in which these variables take on  positive
values and n negative values. We can now write down the denominator
in ():

()  P(REPR|R)×…×P(REPRn|Rn) × P(R,…,Rn) = 

pna + qpn –a + qpn – a +… + qnan

and hence,

() P*(R,…,Rn) = .

Divide numerator and denominator by pn in () and substitute x for
the likelihood ratio q/p: 

() P*(R,…,Rn) = 

To illustrate (), we constructed a diagram which represents a joint
probability distribution over the propositional variables R1, R2, R3 and
contains the corresponding values for ai, for i = ,…,  in Figure . Let
us name <a,…,an> the weight vector of the information set {R,…,
Rn}. Note that:

= . 

Suppose that the sources are twice as likely to report that Ri is the case
when it is the case than when it is not the case, so that x = .. Then our
degree of confidence after we have received the reports from the sources
is:

() P*(R,…,Rn) =  .

�
R,…,Rn

pna

pna + qpn  – 1a+q2pn  – 2a+…+qnan

a

�
n

i=o

aix
i

�
n

i=

ai

.

.×.+.×.+. × . +.×. l
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Figure  Calculating the weight vector for a probability distribution 
over R, R, and R

5. Expectance, reliability and coherence

We can directly identify the first determinant of the degree of confi-
dence in the information set. Note that a = P(R,…,Rn) is the prior
joint probability of the propositions in the information set, that is, the
probability before any information was received. This prior probability
is higher for more expected information and lower for less expected
information. Let us call this prior probability the expectance measure.
Note that P*(R,…,Rn) increases as we increase a and decrease at least
one ai (for i � {,…, n}) so that  remains .   

We can also directly identify the second determinant, that is, the reli-
ability of the sources. Note that P*(R,…,Rn) in () is a monotonically
decreasing function of the likelihood ratio x = q/p. Let us call r :=  – x
the reliability measure. P*(R,…,Rn) is a monotonically increasing
function of r and the limits of this measure are  for sources that are
randomizers and  for sources that are truth-tellers.9

9 Note that r measures the reliability of the source with respect to the report in question and not
the reliability of the source tout court. To see this distinction, consider the case in which q equals .
In this case, r reaches its maximal value , no matter what the value of p is. Certainly, a source that
provides fewer rather than more false negatives, as measured by  – p, is a more reliable source tout
court. But when q is , the reliability of the source with respect to the report in question is not af-
fected by the value of p > . No matter what the value of p is, we can be fully confident that what
the source says is true, since q = —that is, she never provides any false positives. We will use the
elliptical expression of the reliability of the source to stand for the reliability of the source with re-
spect to the report in question, not for the reliability of the source tout court. 

. . .

. .

.

.

R R

R.

a0 = .05
a = 3×. = .
a = 3×. = .
a = .20

�
n

i=

ai
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Let us now turn to the third determinant, namely, the coherence of
the information set. The coherence of the information set is some func-
tion of the weight vector <a,…,an> of the information set {R,…,Rn}.
A maximally coherent information set has the weight vector <a,
,…,,  – a>. In this case, all items of information R,…,Rn are equiv-
alent. If a or a … or an– exceeds , then the items of information are
no longer equivalent and the information set loses its maximal coher-
ence. But it is not clear what function of the weight vector determines
the coherence of the information set. 

We mentioned earlier that coherence is the confidence-boosting
property of information sets. We could measure this confidence boost
by considering the ratio 

() b({R,…,Rn}) = .

But this runs into the following problem. Suppose that we have a set of
propositions that are independent of each other whose prior joint
probability is rather low, say, ., and a set of propositions that are
equivalent to each other whose prior joint probability is rather high,
say, .. For a particular value of the reliability parameter r, the poste-
rior joint probability of the propositions in the former set may double,
but the posterior joint probability of the propositions in the latter set
can maximally increase by a factor ¹⁰⁄₉. And clearly, a set of equivalent
propositions is more coherent than a set of independent propositions. 

Our strategy will be to assess the coherence of an information set by
measuring the proportion of the confidence boost b that we actually
receive, relative to the confidence boost bmax that we would have
received, had we received this very same information in the form of maxi-
mally coherent information. So we measure the proportional confi-
dence-boosting property of the information set. The following example
will make this clear. Consider once again our example of independent
tests that identify sections on the human genome that contain the locus
of a genetic disease. The tests pick out different areas and the overlap
between these areas is �. The information is more coherent when the
reports are all clustered around the region � than when they are scat-
tered all over the human genome but have this relatively small area of
overlap on the region �. The information is maximally coherent when
every single test points to the region �. Suppose that we had received
the information from our tests in the form of maximally coherent
information, ceteris paribus. We calculate the degree of confidence that

P(R,...,Rn)

P*(R,...,Rn)
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the locus of the disease is in the region �. Let Ri
� be the proposition that

test i picks out the area � for i = ,…, n. We construct a joint probability
distribution Pmax over the variables R1

�,…,Rn
�.   The weight vector for

the information set {R
�,…,Rn

�} is <a, ,…,, –a> and so, from (),
substituting ‘–r’ for ‘x’, our degree of confidence that the information
is correct would have been: 

() Pmax*(R
�,…,Rn

�) = .

Hence, in this counterfactual state of affairs our confidence boost
would have been: 

() bmax({R,...,Rn}) = .  

Since the prior probability Pmax(R
�,…,Rn

�) = P(R,…,Rn) = a, the
measure of the proportional confidence-boosting property of the infor-
mation set is:

() cr({R,...,Rn})  

This measure is functionally dependent on the expectance measure a
and on the reliability measure r. That it is functionally dependent on
the expectance measure is desirable, since how much complete overlap
there is between the various items of information is relevant to the
determination of coherence. But it is unwelcome that this measure is
dependent on the reliability measure. Clearly, our pre-theoretical
notion of the coherence of an information set does not encompass the
reliability of the sources that provide us with its content. So how can we
assess the relative coherence of two information sets by this measure of
the proportional confidence-boosting property of the information set? 

The measure cr in () permits us to construct a quasi-ordering
which is independent of the reliability measure. For some pairs of
information sets {S, S�}, cr(S) will always be greater than cr(S�), no mat-
ter what value we choose for r. In this case, S is more coherent than S�.
For other pairs of information sets {T, T�}, cr(T) is greater than cr(T�)
for some values of r and smaller for other values of r. In this case, there
is no fact of the matter whether one or the other information set is

a

a+( � a)( � r)n

Pmax*(R
�,…,Rn

�)

Pmax(R
�,…,Rn

�)

b({R,...,Rn})

bmax({R,...,Rn})
= P*(R,..., Rn)

Pmax*(R
�,…,Rn

�)
=

=
a0 + (1�a0)(1 � r)n

�
n

i=

ai(�r)i
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more coherent. We will see that this distinction squares with our will-
ingness to make intuitive judgements about the relative coherence of
information sets.

Formally, consider two information sets S = {R,...,Rm} and S� =
{R�,...,Rn�} and let P be the joint probability distribution for R1,...,Rm
and P� the joint probability distribution for R1�,..., Rn�. We calculate the
weight vectors <a,...,am> for P and <a�,...,an�> for P� and construct
the following difference function: 

() fr(S, S�) = cr(S) – cr(S�)

fr(S, S�) has the same sign for all values of r ranging over the open inter-
val (, ) if and only if the measure cr(S) is always greater than or is
always smaller than the measure cr(S�) for no matter what value of r in
this interval. We define a coherence relation:

() For two information sets S and S�, S o S� if and only if fr(S, S�) �  for
all values of r �(, ). 

‘o’ denotes the binary relation of being more coherent than or equally
coherent as, defined over information sets. This procedure induces a
quasi-ordering over a set of information sets.

If the information sets S and S� are of equal size, then it is also possi-
ble to determine whether there exists a coherence ordering over these
sets directly from the weight vectors <a,...,an> and <a�,...,an�>. One
needs to evaluate the conditions under which the sign of the difference
function is positive for all values of r � (, ). We have shown in
Appendix A that: 

() ai�/ai � max(, a�/a) �i = ,..., n – 

is a necessary and sufficient condition for S o S� for n =  and
is a sufficient condition for S o S� for n > . 

This is the more parsimonious statement of the condition. However, it
is easier to interpret this condition when stated as a disjunction:   

() (i) a�� a!ai�� ai, �i = ,..., n – , or,

(ii) a�� a!ai�/ai � a�/a, �i = ,..., n – , 

is a necessary and sufficient condition for S o S� for n =  and
is a sufficient condition for S o S� for n > .



614 Luc Bovens and Stephan Hartmann

It is easy to see that () and () are equivalent.10 

We interpret condition (). For n = , consider the probability distri-
bution for S = {R, R} represented by the diagram in Figure . There
are precisely two ways to decrease the coherence in moving from infor-
mation sets S to S�.11 First, by shrinking the overlapping area between
R and R (a�� a) and by expanding the non-overlapping area (a��
a); and second, by expanding the overlapping area (a�� a), while
expanding the non-overlapping area to a greater degree (a�/a� a�/
a). The example of a corpse in Tokyo in the next section is meant to
show that these conditions are intuitively plausible. 

10 Assume (). Either max(, a�/a) =  or max(, a�/a) = a�/a. In the former case, it fol-
lows from the inequality in () that a�� a and ai�� ai, � i = ,…,n–. In the latter case, it fol-
lows from the inequality in () that a�� a and ai�/ai � a�/a, �i = ,…,n– . Hence, ()
follows. Assume (). Suppose (i) holds. From the first conjoint in (i), max(, a�/a) =  and
hence from the second conjoint in (i), ai�/ai � max(, a�/a) �i = ,…,n–. Suppose (ii) holds.
From the first conjoint in (ii), max(, a�/a) = a�/a and hence from the second conjoint in (ii),
ai�/ai � max(, a�/a) �i = ,…,n–. Hence, () follows. 

11 We introduce the convention that ‘decreasing’ stands for decreasing or not increasing, ‘shrink-

a0 a1 a1

a2

R R

Figure  A diagram for the probability distribution for information pairs

R R

R

a
a a

aa

a

aa

Figure  A diagram for the probability distribution for information triplets
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For n > , consider the probability space for S = {R,…, Rn} in Figure .
() indicates two ways to decrease the coherence in moving from S to
S�: first, by shrinking the area in which there is complete overlap
between R,…,Rn (a�� a) and by expanding all the areas in which
there is no complete overlap (ai�� ai, �i = ,…, n – ); and second, by
expanding the area in which there is complete overlap (a�� a) and by
expanding all the non-overlapping areas to a greater degree (ai�/ai�
a�/a, �i = ,..., n – ). This is a sufficient but not a necessary condition
for n > . The example of BonJour’s ravens in the next section shows
that it may be possible to order two information sets on grounds of our
general method in () though not on grounds of the sufficient condi-
tion in ().

If we wish to determine the relative coherence of two information
sets S and S� of unequal size, there is no short cut. We need to follow
our general method in () and examine the sign of fr(S, S�) for all val-
ues of r � (, ). The example of Tweety in the next section will provide
an illustration of the procedure to judge the relative coherence of infor-
mation sets of unequal size.

. A corpse in Tokyo, BonJour’s ravens and Tweety 

Does our analysis yield the correct results for some intuitively obvious
cases? We consider a comparison (i) of two information pairs, (ii) of
two information triples and (iii) of two information sets of unequal size
and show how our method yields intuitively plausible results. In chap-
ter two of Bayesian Epistemology (), we also show how Lewis’s crite-
rion for identifying coherent information sets (, p. ) and the
coherence measures suggested by Shogenji (), Olsson (, p. )
and Fitelson () yield counter-intuitive results. 

i. Information pairs
Suppose that we are trying to locate a corpse from a murder somewhere
in Tokyo. We draw a grid of  squares over the map of the city and
consider it equally probable that the corpse lies somewhere within each
square. We interview two partially and equally reliable witnesses. Sup-
pose witness  reports that the corpse is somewhere in squares  to 

and witness  reports that the corpse is somewhere in squares  to .

ing’ for shrinking or not expanding, and ‘expanding’ for expanding or not shrinking. This conven-
tion permits us to state the conditions in () in a more parsimonious manner and is analogous to
the micro-economic convention to let ‘preferring’ stand for weak preference, that is, for preferring
or being indifferent between in ordinary language.
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Call this situation � and include this information in the information set
S�. For this information set, a

� = . and a
� = ..

Let us now consider a different situation in which the reports from
the two sources overlap far less. In this alternate situation—call it 	—
witness  reports squares  to  and witness  reports squares  to .
This information is contained in S	. Compared to the information in
S�, the overlapping area shrinks to a

	= . and the non-overlapping
area expands to a

	 = .. On condition ()(i), S	 is less coherent than
S�, since a

	 = .�a
�=. and a

	 = .� a
� = .. 

In a third situation 
, witness  reports squares  to  and witness 
reports squares  to . S
 contains this information. Compared to the
information in S�, the overlapping area expands to a


 = . and the
non-overlapping area expands to a


 = .. On condition ()(ii), S
 is
less coherent than S�, since a


 = .�a
� = . and a


 / a
� = �. =

a

/a

�. 
Now let us consider a pair of situations in which no ordering of the

information sets is possible. We are considering information pairs, that
is, n = , and so conditions () and () provide equivalent necessary
and sufficient conditions to order two information pairs, if there exists
an ordering. In situation �, witness  reports squares  to  and wit-
ness  reports squares  to . So a

� = . and a
� = .. In situation �,

witness  reports squares  to  and witness  reports squares  to .
So a

� = . and a
� = .. Is the information set in situation � more or

less coherent than in situation �? It is more convenient here to invoke
condition (). Notice that a

�/ a
� = . is not greater than or equal to

. = max(, a
�/a

�), nor is a
�/a

�l . greater than or equal to  =
max(, a

�/a
�). Hence neither S� o S� nor S� o S� hold true. 

This quasi-ordering squares with our intuitive judgements. Without
having done any empirical research, we conjecture that most experi-
mental subjects would indeed rank the information set in situation � to
be more coherent than the information sets in either situations 	 or 
.
Furthermore, we also conjecture that if one were to impose sufficient
pressure on the subjects to judge which of the information sets in situa-
tions � and � is more coherent, we would be left with a split vote. 

We have reached these results by applying the special conditions in
() and () for comparing information sets. The same results can be
obtained by using the general method in (). Write down the differ-
ence functions as follows for each comparison (that is, let i = � and j =
	, let i = � and j = 
, and let i = � and j = � in turn):
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() fr(Si, S j) = cr(Si) – cr(S j) = 

 As we can see in Figure , the functions fr(S�, S	) and fr(S�, S
) are pos-
itive for all values of r�(, )—so S� is more coherent than S	 and S
.
But fr(S�, S�) is positive for some values and negative for other values of
r  �(, )—so there is no coherence ordering over S� and S�.

Figure   The difference functions for a corpse in Tokyo
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i (�r)+a2
i (�r) a0

j+ a1
j ( �r)+a2
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ii. Information triples
We return to BonJour’s challenge. There is the more coherent set, S =
{R

 = [All ravens are black], R
 = [This bird is a raven], R

 = [This bird is
black]}, and the less coherent set, S� = {R� = [This chair is brown],
R�= [Electrons are negatively charged], R� = [Today is Thursday]}.
The challenge is to give an account of the fact that S is more coherent
than S�. Let us apply our analysis to this challenge.

What is essential in S is that R!R
 � R, so that P(R|R,R) = . But

to construct a joint probability distribution, we need to make some
additional assumptions. Let us make assumptions that could plausibly
describe the degrees of confidence of an amateur ornithologist who is
sampling a population of birds: 

(i) There are four species of birds in the population of interest,
ravens being one of them. There is an equal chance of picking a
bird from each species: P(R) = ¼.

(ii) The variables R1 and R2, whose values are the propositions R
and ¬R, and R and ¬R, respectively, are probabilistically in-
dependent: learning no more than that a raven was (or was not)
picked teaches us nothing at all about whether all ravens are
black.

(iii) We have prior knowledge that birds of the same species often
have the same colour and black may be an appropriate colour
for a raven. Let us set P(R) = ¼.

(iv) There is a one in four chance that a black bird has been picked
amongst the non-ravens, whether all ravens are black or not,
that is, P(R|¬R, ¬R) = P(R|R, ¬R) = ¼. Since we know that
birds of a single species often share the same colour, there is
only a chance of ¹⁄₁₀ that the bird that was picked happens to be
black, given that it is a raven and that it is not the case that all
ravens are black, that is, P(R|¬R, R) = ¹⁄₁₀.



Solving the Riddle of Coherence 619

These assumptions permit us to construct the joint probability distri-
bution over the variables R1, R2, R3 and to specify the weight vector
<a,…,a> (see Figure ).12 

What is essential in information set S� is that the propositional varia-
bles are probabilistically independent—for example, learning some-
thing about electrons presumably does not teach us anything about
what day it is today or about the colour of a chair. Let us suppose that
the marginal probabilities of each proposition are P(R�) = P(R�) =
P(R�) = /. We construct the joint probability distribution for R1�,
R2�, R3� and specify the weight vector <a�,…,a�> in Figure .13 

12 Since R1 and R2 are probabilistically independent, P(R1, R2, R3) = P(R1) P(R2)P(R3|R1, R2)
for all values of R1, R2, R3. The numerical values in Figure  can be directly calculated.

1 3  Since R1� ,  R2�  and R3�  are probabilist ical ly independent,  P(R1� ,  R2� ,  R3�)  =
P(R1�)P(R2�)P(R3�) for all values of R1�, R2�, R3�. The numerical values in Figure  can be directly
calculated. 

/ /

/
/ /

//

R R

R 

a=  /

a= /

a= /

a = /

Figure  A diagram for the probability distribution for the set of dependent
propositions in BonJour’s ravens

R� R�

R�

/

/

/ /

//

a0�=/

a1�=/

a2�=/

a3�=/

Figure  A diagram for the probability distribution for the set of independent
propositions in BonJour’s ravens

/ /
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The information triples do not pass the sufficient condition for the
determination of the direction of the coherence ordering in ().14 So
we need to appeal to our general method and construct the difference
function:

() fravens = fr(S, S�) = 

We have plotted fravens in Figure . This function is positive for all val-
ues of r�(, ). Hence we may conclude that S is more coherent than
S�, which is precisely the intuition that BonJour wanted to account
for.15

iii. Information sets of unequal size
Finally, we consider a comparison between an information pair and an
information triple. The following example is inspired by the paradig-
matic example of non-monotonic reasoning about Tweety the penguin.
We are not interested in non-monotonic reasoning here, but merely in
the question of the coherence of information sets. Suppose that we
come to learn from independent sources that someone’s pet Tweety is a
bird (B) and that Tweety cannot fly, that is, that Tweety is a ground-
dweller (G). Considering what we know about pets, {B, G} is highly
incoherent information. Aside from the occasional penguin, there are
no ground-dwelling birds that qualify as pets, and aside from the occa-
sional bat, there are no flying non-birds that qualify as pets. Later, we
receive the new item of information that Tweety is a penguin (P). Our
extended information set S� = {B, G, P} seems to be much more coher-
ent than S = {B, G}. So let us see whether our analysis bears out this
intuition. We construct a joint probability distribution for B, G and P

14 Clearly the condition fails for S�o S, but it also fails for S o S�, since a�/a l . <  = max(,
.) = max(, a�/a). 

15 It is not always the case that an information triple in which one of the propositions is entailed
by the two other propositions is more coherent than an information triple in which the proposi-
tions are probabilistically independent. For instance, suppose that R and R are extremely inco-
herent propositions, that is, the truth of R makes R extremely implausible and vice versa, and
that R is an extremely implausible proposition which in conjunction with R entails R. Then it
can be shown that this set of propositions is not a more coherent set than a set of probabilistically
independent propositions. This is not unwelcome, since entailments by themselves should not
warrant coherence. Certainly, {R, R, R} should not be a coherent set when R and R are incon-
sistent and R

 contradicts our background knowledge, although R!R � R. A judgement to the
effect that S is more coherent than S� depends both on logical relationships and background
knowledge. 

a0 + a1 (1�r) + a2 (1�r) + a3 (1�r) a0�+ a1� (1�r) + a2� (1�r) + a3� (1�r)

a0+ (1�a0) (1�r) a0�+ (1�a0� ) (1�r)

�
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together with the marginalized probability distributions for B and G in
Figure . 

Since the information sets are of unequal size, we need to appeal to our
general method in () and construct the difference function:

() ftweety= fr(S�, S) = 

B G
B G

P

. . .

.

. .

.
 

.

a0=.; a1=.; a2=. a0�=.; a1�=; a2�=.; a3�=.

Figure  A diagram for the probability distribution for Tweety before 
and after extension with [Tweety is a penguin]

 . . . . 
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.

.

.

.

.
ftweety

fravens

Figure  The difference functions for BonJour’s ravens and Tweety

a0+ (1�a0) (1�r)a0�+ (1�a0� ) (1�r)

a0�+ a1� (1�r) + a2� (1�r) + a3� (1�r) a0+ a1(1�r) + a2(1�r) 
�
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We have plotted ftweety in Figure . This function is positive for all val-
ues of r� (, ). We may conclude that S� is more coherent than S,
which is precisely the intuition that we wanted to account for.

One might object that on our analysis, the coherence of an informa-
tion set is dependent on how we partition the information. Consider
the information set S� = {B, G, P}. Suppose that we partition the infor-
mation as follows: S
 = {B!G, P}. Since given the background infor-
mation B!G and P are equivalent propositions, it is easy to show that
S
 is a more coherent set than S�. But how is this possible, since the con-
junction of the propositions in S� entails the conjunction of the propo-
sitions in S
 and vice versa? Note that not only our procedure to
construct a coherence quasi-ordering but any existing probabilistic
coherence measure is subject to this objection. 

In response, we claim that the coherence of an information set is sub-
ject to how the information is partitioned and information sets with
conjunctions of propositions that are equivalent may display different
degrees of coherence. If a small percentage of men are unmarried and a
small percentage of unmarried people are men in the population, then
reports that the culprit is a man and that the culprit is unmarried bring
a certain tension to the story. How can that be, we ask ourselves? Aren’t
most men married and aren’t most unmarried people women? The
story does not seem to fit together. But if we hear straightaway that the
culprit is a bachelor, then this tension is lost. The information that the
culprit is a bachelor may be unexpected, since there are so few bach-
elors. But reporting that the culprit is a bachelor brings no tension to
the story. Or consider the following example. There are small settle-
ments of Karaits in Eastern Poland and Lithuania. Though this has
been the subject of much controversy, let the Karaits be descendants of
East Asian Turkic tribes who accept the (religious) authority of (and
only of) the Torah. Suppose that we are told that the culprit was Lithua-
nian, was a descendant of East Asian Turkic tribes, and accepts the
authority of the Torah. Once again, we would be struck by how poorly
this information fits together even if we know of Lithuanian Karaits.
We are puzzled because of the negative relevance relations between the
propositions in question. But if we are told that the culprit is a Karait, is
a member of a Lithuanian minority and accepts the authority of the
Torah, then we may find this unexpected, but we cannot object that the
information does not fit together. 
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7. Discussion

Equal reliability
We have built into our model the assumption that the sources are
equally reliable, that is, that all sources have the same true positive rate
p and the same false positive rate q. This seems like an unreasonably
strong assumption, since when we are gathering information in the
actual world, we typically trust some sources less and some sources
more. But our assessment of the relative coherence of information sets
has nothing to do with how much we actually trust our information
sources. As a matter of fact, we may assess the coherence of an infor-
mation set without having any clue whatsoever who the sources are of
the items in this information set or what their degrees of reliability are.
An assessment of coherence requires a certain metric that features
hypothetical sources with certain idealized characteristics. These hypo-
thetical sources are not epistemically perfect, as is usually the case in
idealizations. Rather, they are characterized by idealized imper-
fections—their partial reliability. Furthermore, our idealized sources
possess the same degree of internal reliability and the same degree of
external reliability. By internal reliability we mean that the sources for
each item within an information set are equally reliable, and by exter-
nal reliability we mean that the sources for each information set are
equally reliable. 

To see why the same degree of internal reliability is required in our
model, consider the following two information sets. Set S contains two
equivalent propositions R and R and a third proposition R that is
highly negatively relevant with respect to R and R. Set S� contains three
propositions R�, R� and R� and every two propositions in S� are just
short of being equivalent. One can specify the contents of such informa-
tion sets such as to make S� intuitively more coherent than S. Our for-
mal analysis will agree with this intuition. Now suppose that it turns out
that the actual—that is, the non-idealized—information sources for
R, R�, R and R� are quite reliable and for R and R� are close to fully
unreliable. We assign certain values to the reliability parameters to
reflect this situation and calculate the proportional confidence boosts
that actually result for both information sets. Plausible values can be
picked for the relevant parameters so that the proportional confidence
boost for S actually exceeds the proportional confidence boost for S�.
This comes about because the actual information sources bring virtually
nothing to the propositions R and R� and because R and R are indeed
equivalent (and hence maximally coherent), whereas R� and R� are



624 Luc Bovens and Stephan Hartmann

short of being equivalent (and hence less than maximally coherent). But
what we want is an assessment of the relative coherence of {R, R, R}
and {R�, R�, R�} and not of the relative coherence of {R, R} and {R�,
R�}. The appeal to ideal agents with the same degree of internal reliabil-
ity in our metric is warranted by the fact that we want to compare the
degree of coherence of complete information sets and not of some
proper subsets of them. We present a numerical example in Appendix B.

Second, to see why the same degree of external reliability is required in
our model, consider some information set S which is not maximally
coherent, but clearly more coherent than an information set S�. Our
examples in section  will do for this purpose. It is always possible to
pick two values r and r� so that cr�(S�) > cr(S). To obtain such a result, we
need only pick a value of r� in the neighbourhood of  or  and pick a less
extreme value for r, since it is clear from () that for r� approaching  or
, cr�(S�) approaches . This is why coherence needs to be assessed relative
to idealized sources that are taken to have the same degree of external
reliability.

Indeterminacy
Our analysis has some curious repercussions for the indeterminacy of
comparative judgements of coherence. Consider the much-debated
problem among Bayesians of how to set the prior probabilities. We have
chosen examples in which shared background knowledge (or igno-
rance) imposes constraints on what prior joint probability distribu-
tions are reasonable.16 In the case of the corpse in Tokyo, one could well
imagine coming to the table with no prior knowledge whatsoever about
where an object is located in a grid with equal-sized squares. Then it
seems reasonable to assume a uniform distribution over the squares in
the grid. In the case of BonJour’s ravens we modelled a certain lack of
ornithological knowledge and let the joint probability distribution
respect the logical entailment relation between the propositions in
question. In the case of Tweety, one could make use of frequency infor-

16 Note that this is no more than a framework of presentation. Our approach is actually neutral
when it comes to interpretations of probability. Following Gillies () and Suppes (, Ch. )
we favour a pluralistic view of interpretations of probability. The notion used in a certain context
depends on the application in question. But, if one believes, as a more zealous personalist, that
only the Kolmogorov axioms and Bayesian updating impose constraints on what constitute rea-
sonable degrees of confidence, then there will be less room for rational argument and for intersub-
jective agreement about the relative coherence of information sets. Or, if one believes, as an
objectivist, that joint probability distributions can only be meaningful when there is the requisite
objective ground, then there will be less occasion for comparative coherence judgements. None of
this affects our project. The methodology for the assessment of the coherence of information sets
remains the same, no matter what interpretation of probability one embraces. 
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mation about some population of pets that constitutes the appropriate
reference class. 

But often we find ourselves in situations without such reasonable
constraints. What are we to do then? For instance, what is the probabil-
ity that the butler was the murderer (B), given that the murder was
committed with a kitchen knife (K), that the butler was having an affair
with the victim’s wife (A), and that the murderer was wearing a butler’s
jacket (J)? Certainly the prior joint probability distributions over the
propositional variables B, K, A, and J may reasonably vary widely for
different Bayesian agents and there is little that we can point to in order
to adjudicate in this matter. But to say that there is room for legitimate
disagreement among Bayesian agents is not to say that anything goes.
Certainly we will want the joint probability distributions to respect,
among others things, the feature that P(B|K, A, J) > P(B). Sometimes
there are enough rational constraints on degrees of confidence to war-
rant agreement in comparative coherence judgements over information
sets. And sometimes there are not. It is perfectly possible for two
rational agents to have degrees of confidence that are so different that
they are unable to reach agreement about comparative coherence
judgements. This is one kind of indeterminacy. Rational argument can-
not always bring sufficient precision to degrees of confidence to yield
agreement on judgements of coherence.

But what our analysis shows is that this is not the only kind of inde-
terminacy. Two rational agents may have the same subjective joint
probability distribution over the relevant propositional variables and
still be unable to make a comparative judgement about two informa-
tion sets. This is so for situations � and � in the case of the corpse in
Tokyo. Although there is no question about what constitutes the proper
joint probability distributions that are associated with the information
sets in question, no comparative coherence judgment about S� and S� is
possible. This is so because the proportional confidence boost for S�

exceeds the proportional confidence boost for S� for some intervals of
the reliability parameter, and vice versa for other intervals. If coherence
is to be measured by the proportional confidence boost and if it is to be
independent of the reliability of the witnesses, then there will not exist a
coherence ordering for some pairs of information sets.   

In short, indeterminacy about coherence may come about because
rationality does not sufficiently constrain the relevant degrees of confi-
dence. In this case, it is our epistemic predicament with respect to the
content of the information set that is to blame. However, even when the
probabilistic features of a pair of information sets are fully transparent,
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it may still fail to be the case that one information set is more coherent
than (or equally coherent as) the other. Prima facie judgements can be
made on both sides, but no judgement tout court is warranted. In this
case, indeterminacy is not due to our epistemic predicament, but
rather, to the probabilistic features of the information sets. 

The coherence theory of justification
How does our analysis affect the coherence theory of justification? The
coherence theory is meant to be a response to Cartesian scepticism. The
Cartesian sceptic claims that we are not justified in believing the story
about the world that we have come by from various sources (our senses,
witnesses, and so on), since we have no reason to believe that these
processes are reliable. There are many variants of the coherence theory
of justification. We are interested in versions that hinge on the claim
that it is the very coherence of the story of the world that gives us a rea-
son to believe that the story is likely to be true. Can the construction of
a coherence quasi-ordering support this claim? 

Consider the following analogy. Suppose that we establish that the
more a person reads, the more cultured she is, ceteris paribus. We con-
clude from this that if we meet with a very well-read person, then we
have a reason to believe that she is cultured. It may not be sufficient rea-
son, but it is a reason nonetheless. Now suppose that we also establish
that sometimes no comparison can be made between the amount of
reading two people do, since reading comes in many shapes and col-
ours. We can only establish a quasi-ordering over a set of persons
according to how well-read they are. This does not stand in the way of
our conclusion. 

It follows directly from () and () that 

() P*(R, R,…,Rn) = cr({R,…,Rn}).

Suppose that the measure cr is greater for an information set S than S�
for any value of r. Then S is more coherent than S�. It follows from ()
that the more coherent a particular information set is, the more likely
its content is to be true, ceteris paribus, in which the ceteris paribus
clause covers the expectance of the information a and the reliability of
the sources r.17 As in our reasoning about well-read persons, we con-
clude from this that, if the story of the world is a very coherent infor-

17 The posterior probability that the content of an information set is true is also a function of its
size n. We take the size of the information set to be part of its identity conditions and hence this
factor does not need to be included in the ceteris paribus conditions.    

a0 

a0+ (1�a0) (1�r)n
×
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mation set, then we have a reason to believe that its content is likely to
be true. Again, it may not be sufficient reason, but it is a reason none-
theless. And similarly, the fact that we can only establish a coherence
quasi-ordering over information sets does not stand in the way of this
conclusion. 

Our claim that the more coherent an information set is, the more
likely its content is to be true ceteris paribus rests on the assumptions
that there is independence between the sources and that we know them
to be partially reliable. These assumptions can be relaxed to a certain
extent.18 Our analysis permits us to claim that the coherence of the
story about the world provides some reason to believe that the story is
true, relative to the assumptions, but not that it provides sufficient rea-
son. We leave it as an open question whether this is a sufficiently strong
claim and whether these are defensible assumptions for the coherence
theory of justification to make in providing a successful answer to the
Cartesian sceptic. 

Coherence and theory choice in science
Where does our analysis leave the claim in philosophy of science that
coherence plays a role in theory choice?   One can represent a scientific
theory T by a set of propositions {T,…,Tm}. Let the Tis be assump-
tions, scientific laws, specifications of parameters, and so on. It is not
plausible to claim that each proposition is independently tested, that is,
that each Ti screens off the evidence Ei for this proposition from all
other propositions in the theory and all other evidence. The constitu-
tive propositions of a theory are tested in unison. They are arranged
into models that combine various propositions in the theory. Different
models typically share some of their contents, that is, some proposi-
tions in T may play a role in multiple models. It is more plausible to
claim that each model Mi is being supported by some set of evidence Ei
and that each Mi screens off the evidence Ei in support of the model
from the other models in the theory and from other evidence. This is
what it means for the models to be supported by independent evidence.
There are complex probabilistic relations between the various models
in the theory. 

Formally, let each Mi for i = ,…, n combine the relevant proposi-
tions of a theory T that are necessary to account for the independent

18 In chapter three of Bayesian Epistemology, we show that our analysis remains unaffected when
we construct the degree of reliability of the sources as an endogenous variable and Bovens and
Olsson () contains a discussion of alternative models of partial reliability in connection with
the coherence theory of justification. 



628 Luc Bovens and Stephan Hartmann

evidence Ei for i = ,…, n. A theory T can be represented as the union of
these Mis.19 Let Mi be the variable which ranges over the value Mi stat-
ing that all propositions in the model are true and the value ¬Mi stating
that at least one proposition in the model is false. In Bayesian confirma-
tion theory, Ei is evidence for Mi if and only if the likelihood ratio

() xi = .

Hence, Ei stands to Mi in the same way as REPRi stands to Ri in our
framework. Let us suppose that all the likelihood ratios xi equal x. We
can construct a probability measure P for the constituent models of a
theory T and identify the weight vector <a,…,an>. As in (),

() P*(M,…,Mn) = cr({M,…,Mn}).

Suppose that we are faced with two contending theories. The models
within each theory are supported by independent items of evidence.
Note that the first factor in () approximates  when the evidence is
strong (xl) as well as for large information sets (large n). So, if (i) the
evidence for each model is equally strong, as expressed by a single
parameter x, and, (ii) either the evidence for each model is relatively
strong (xl), or, each theory can be represented by a sufficiently large
set of models (large n), then a higher degree of confidence is warranted
for the theory that is represented by the more coherent set of models.
Of course, we should not forget the caveat that indeterminacy springs
from two sources. First, there may be substantial disagreement about
the prior joint probability distribution over the variables M1,…,Mn,
and second, even in the absence of such disagreement, no comparative
coherence judgement may be possible between both theories, repre-
sented by their respective constitutive models. But even in the face of
our assumptions and the caveats concerning indeterminacy, this is cer-
tainly not a trivial result about the role of coherence in theory choice
within the framework of Bayesian confirmation theory.20

University of Colorado at Boulder luc bovens
Department of Philosophy - CB 232
Boulder, CO 80309, USA

19 This account of what a scientific theory is contains elements of both the syntactic view and
the semantic view. Scientific theories are characterized by the set of their models, as on the seman-
tic view, and these models (as well as the evidence for the models) are expressed as sets of proposi-
tions, as on the syntactic view. 

P(Ei|¬Mi)

P(Ei|Mi)
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a0
a0+ (1�a0)xn ×
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Appendix

A. Proof of Equation (21)

We use the abbreviations  and  := 1 – r.

Let

S is more coherent than or equally coherent as S� if and only if

�0 :=cr(S) – cr(S�)�, �r � (, ),

Since the denominators of cr(S) and cr(S�) are greater than  for r�(, ),
it suffices for our purposes to study when

Let Di := a0ai� – a0�ai , �i := ai� – ai. (A.)

Note that since  ai = ai�= 1 ,

Using (A.) and (A.) one obtains

Using the formulae in (A.) we get Dn = – �0 – Di and
�n  = �0 – �i; so we obtain after some algebraic manipulations:

a0 := 1 –a0 r

cr(S)= a0+ a0r n
 

� ni=ai r
i

, cr(S�)
 
=

 a0�+a0�r n

�
n
i= ai�r i

� = �air
i �ai�r

i ��.
i= i=

nn

�
n
i= �

n
i=

�
n

i=

Di= a0 – a0� = – �0 , �
n

i=
�i = 0 , D0 =0. (A.)

�=�
n

i=

(a0 ai �r
i+ai �r

n+i – a0ai�r
n+i – a0  �ai r i – ai rn+i + a0�air

n+i)

�
n

i=

[�ir
n+Di( – r n)]r i=

=�rn+�nr n+Dn (rn –r n)+ � [�ir
n + Di( – r n)]r i.

i=

n� 

� i=
n – 

� i=
n – 

�=�(r i  – r n)[�ir
n+Di( – r n)] 

n-

i=
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Since  for i �n and r �(, ), a sufficient (and, for n=, also
necessary) condition for S being more coherent than or equally coher-
ent as S� is

� �i=,…, n– and �r �(, ). (A.)

Let =: � � (, ) and fi(�) = �i � + Di( – �)�i = ,…, n – . Since
fi(�)� and is monotonic over the range (, ),

Di= f i(�)� and �i = f i(�)� �i=,…, n–.

Hence, (A.) has the solution

Di�!�i� �i=,…, n–.

We replace Di and �i by the expressions given in (A.) and obtain:

ai�/ai�a�/a!ai�/ai�  �i=,…, n–.

Hence, S is more coherent than or equally coherent as S� if (for n=: if
and only if)

ai�/ai�max(, a�/a) �i=,…, n–.

B. Numerical Example

For S, let the joint probability distribution be P(R, R, R) =.,
P(¬R, ¬R, R) =. and P(¬R, ¬R, ¬R) = .. For S�, let the joint
probability distribution be P(R�, R�, R�)=., P(¬R�, ¬R�, R�)=
P(¬R�, R�, ¬R�) =  P(R�, ¬R�, ¬R�) = . and P(¬R�, ¬R�,
¬R�) = . .  Then �a0,…,a3� =� . , , . , .�  and �a0� ,…,a3��
= � .,,.,.�. From condition (), S� is more than or equally
coherent as S. Now suppose that our information sources for R, R,
R� and R� are highly reliable, say p = . and q = ., whereas our
information sources for R and R�are highly unreliable, say p*=.

and q* = .. Then we can use () to calculate the posterior joint
probability that the information in S and S�, respectively, is true and
the posterior joint probability that the information in S and S�,
respectively, would have been true had the information been maxi-
mally coherent:

P*(R, R, R) = 

Pmax*(R, R, R) = 

r i –r n�

�ir
n+Di(–r n)

r n

lim
�Ä

lim
�~

.ppp*
.ppp* .qqp*+.qqq*

.ppp*
.ppp*+ .qqq*
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P*(R�, R�, R�) = 

Pmax*(R�, R�, R�) = 

Notice that the normalized confidence boost measure is greater for S
than for S� for these assignments of reliability, although, as we have
shown above, S� is more coherent than or equally coherent as S.

.ppp*
.ppp*+.pqq*+ .qpq*+ .qqq*

.ppp*
.ppp*+ .qqq*

P*(R, R, R)

Pmax*(R, R, R)
= .�. =

P*(R�, R�, R�)

Pmax*(R�, R�, R�)


