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1. Introduction

There is a long philosophical tradition of addressing questions in phi-

losophy of science and epistemology by means of the tools of Bayesian

probability theory (see Earman (1992) and Howson and Urbach (1993)).

In the late '70s, an axiomatic approach to conditional independence was

developed within a Bayesian framework. This approach in conjunction

with developments in graph theory are the two pillars of the theory

of Bayesian Networks, which is a theory of probabilistic reasoning in

arti�cial intelligence. The theory has been very successful over the last

two decades and has found a wide array of applications ranging from

medical diagnosis to safety systems for hazardous industries.

Aside from some excellent work in the theory of causation (see Pearl

(2000) and Spirtes et al. (2001)), philosophers have been sadly ab-

sent in reaping the fruits from these new developments in arti�cial

intelligence. This is unfortunate, since there are some long-standing

questions in philosophy of science and epistemology in which the route

to progress has been blocked by a type of complexity that is precisely

the type of complexity that Bayesian Networks are designed to deal

with: questions in which there are multiple variables in play and the

conditional independences between these variables can be clearly iden-

ti�ed. Integrating Bayesian Networks into philosophical research leads

to theoretical advances on long-standing questions in philosophy and

has a potential for practical applications.

In the remainder of this contribution we will give a short introduction

into the theory of Bayesian Networks (Sec. 2). We will then study one

of the applications of Bayesian Networks in philosophy in more detail

(Sec. 3) and �nally discuss further possible applications and open

problems (Sec. 4).

2. Bayesian Networks in Artificial Intelligence

Bayesian Networks are a powerful tool to deal with probability dis-

tributions over a large class of variables if certain (conditional) inde-

pendence relations between these variables are known. A probability
1
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distribution over n variables contains 2n entries. The number of entries

will grow exponentially with the number of propositional variables. A

Bayesian Network organizes these variables into a Directed Acyclical

Graph (DAG), which encodes a range of (conditional) independences.

A DAG is a set of nodes and a set of arrows between the nodes under the

constraint that one does not run into a cycle by following the direction

of the arrows. Each node represents a propositional variable. Consider

a node at the tail of an arrow and a node at the head of an arrow. We

say that the node at the tail is the parent node of the node at the head

and that the node at the head is the child node of the node at the tail.

There is a certain heuristic that governs the construction of the graph:

there is an arrow between two nodes i� the variable in the parent node

has a direct in
uence on the variable in the child node. From DAG

to Bayesian Network, one more step is required. A Bayesian network

contains a probability distribution for the variable in each root node

(i.e. in each unparented node), and a probability distribution for the

variable in each child node, conditional on any combination of values

of the variables in their parent nodes. When implemented on a com-

puter, a Bayesian network performs complex probabilistic calculations

with one keystroke (see Cowell et al. (1999), Neapolitan (1990), and

Pearl (1988)).

3. An Example: Confirmation with an Unreliable

Instrument

In philosophy of science, and more speci�cally in con�rmation theory,

there is a common idealization that the evidence in favor of a hypothe-

sis is gathered by fully reliable instruments. What happens if we relax

this idealization and permit that the evidence may have come from less

than fully reliable instruments, as is common in scienti�c experimen-

tation? Bayesian Networks proof to be useful to study situations like

this. Consider a very simple scenario. Let there be a hypothesis, a

(test) consequence of the hypothesis, a LTFR instrument and a report

from the LTFR instrument to the e�ect that the consequence holds

or not. To model this scenario, we need four propositional variables

(written in italic script) and their values (written in roman script):

(1) HY P can take on two values: HYP, i.e. the hypothesis is true

and HYP, i.e. the hypothesis is false;

(2) CON can take on two values: CON, i.e. the consequence holds

and CON, i.e. the consequence does not hold;

(3) REL can take on two values: REL, i.e. the instrument is reli-

able and REL, i.e. the instrument is not reliable;
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(4) REP can take on two values: REP, i.e. there is a positive

report, or, in other words, a report to the e�ect that the con-

sequence holds and REP, i.e. there is a negative report, or, in

other words, a report to the e�ect that the consequence does

not hold.

A probability distribution over these variables contains 24 entries.

To represent the information in a more parsimonious format, we con-

struct a Bayesian Network. Following our heursitics, we can construct a

Bayesian Network forthe case at hand. Whether the consequence holds

is directly in
uenced by and only by whether the hypothesis is true or

not; whether there is a report to the e�ect that the consequence holds

is directly in
uenced by and only by whether the consequence holds

or not and by whether the instrument is reliable or not. Hence, we

construct the basic graph in �gure 1 in which the node with the vari-

able HY P is a parent node to the node with the variable CON and

the nodes with the variables CON and REL are in turn parent nodes

to the node with the variable REP . We stipulate prior probability

distributions for the variables in the root nodes of the graph

(1) P (HYP) = h; P(REL) = r;

with 0 < h; r < 1, and conditional probability distributions for the

variables in the other nodes given any combination of values of the

variables in their respective parent nodes. Consider the node with

the variable CON which is a child node to the node with the vari-

able HY P . We take a broad view of what constitutes a consequence,

that is, we do not require that the truth of the hypothesis is either

a necessary or a suÆcient condition for the truth of the consequence.

Rather, a consequence is to be understood as follows: the probability

of the consequence given that the hypothesis is true is greater than the

probability of the consequence given that the hypothesis is false:

(2) P (CONjHYP) = p > q = P(CONjHYP):

Consider the node with the variable REP , which is a child node to

the nodes with the variables CON and REL. How can we model the

workings of an unreliable instrument? Let us make an idealization: We

suppose that we do not know whether the instrument is reliable or not,

but if it is reliable, then it is fully reliable and if it is not reliable, then

it is fully unreliable. Let a fully reliable instrument be an instrument

that provides maximal information: it is an instrument that says of
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P(HYP)=h

P(REP | CON, REL)=1

P(REP | CON, REL)=0

P(REP | CON, REL)=a

P(REP | CON, REL)=a

P(REL)=rP(CON | HYP)=p

P(CON | HYP)=q

REL

REP

HYP

CON

Figure 1. Bayesian Network for the con�rmation of a

hypothesis with an unreliable instrument.

what is that it is, and of what is not that it is not:

(3) P (REPjREL;CON) = 1 and P(REPjREL;CON) = 0:

Let a fully unreliable instrument be an instrument that provides mini-

mal information: it is an instrument that is no better than a random-

izer:

(4) P (REPjREL;CON) = P(REPjREL;CON) = a

with 0 < a < 1 where a is called the randomization parameter.

We can now construct the Bayesian Network by adding the proba-

bility values to the graph in �gure 1. What's so great about Bayesian

Networks? A central theorem in the theory of Bayesian Networks states

that a joint probability distribution over any combination of values of

the variables in the Network is equal to the product of the probabili-

ties and conditional probabilities for these values as expressed in the

Network. For example, suppose we are interested in the joint probabil-

ity of HY P;CON;REP and REL. We can read the joint probability
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directly o� of �gure 1:

P (HYP;CON;REP;REL) = P (HYP)P(REL)P(CONjHYP)P(REPjCON;REL)

= h(1� r)(1� p)a

Standard probability calculus teaches us how to construct marginal

distributions out of joint distributions and subsequently conditional

distributions out of marginal distributions. When implemented on a

computer, Bayesian Networks provide a direct answer to such queries.

We are interested in the probability of the hypothesis given that there

is a report from a LTFR instrument that the consequence holds. This

probability is

P
�(HYP) = P(HYPjREP) =

P(HYP;REP)

P(REP)
:(5)

For ease of representation, we will abbreviate �x := 1�x for all variables
x.

P
�(HYP) := P (HYPjREP) =

h(pr + a�r)

hr(p� q) + qr + a�r
(6)

We measure the degree of con�rmation that the hypothesis receives

from a positive report by the di�erence:

C(H) := P
�(HYP)� P (HYP) =

h�h(p� q)r

hr(p� q) + qr + a�r
(7)

4. Further Applications and Open Problems

We know now how to model the degree of con�rmation that a hy-

pothesis receives from a single positive report concerning a single con-

sequence of the hypothesis by means of a single LTFR instrument.

This basic model can function as a paradigm to model complex strate-

gies to improve the degree of con�rmation that can be obtained from

LTFR instruments. We can raise the following questions: What is the

impact of repeating the experiment many times over? Of repeating

the experiment with di�erent instruments? Of developing a theoret-

ical underpinning that boosts the reliability of the instrument? Of

calibrating the instrument? These are the sort of questions that can

be fruitfully modeled by means of Bayesian Networks. Careful math-

ematical analysis of these models yields surprising results about, say,

the variety-of-evidence thesis, the Duhem-Quine thesis and about cal-

ibration procedures. For details see Bovens and Hartmann (2001a).

Future problems to be addressed in this direction concern the inclu-

sion of an arbitrary number of consequences and reports, as well as a

more realistic modeling of the reliability of test instruments. All this
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can be done in the context of Bayesiann Networks in an intuitive and

computationally powerful way.

Bayesian Network also have a variety of applications in other parts

of philosophy. In epistemology, for example, foundational questions

have not been addressed suÆciently within a probabilistic framework.

There is the sceptical challenge dating back to Descartes? Meditations

that we cannot trust our senses and that our empirical knowledge has

no justi�cation. The coherentist answer is that even though the pro-

cesses by means of which we gather information about the world may

be less than fully reliable, the very fact that the scienti�c story �ts

together, i.e. has an internal coherence, provides justi�cation that the

story is true. But how are we to understand the claim that our in-

formation gathering processes are less than fully reliable? How are we

to understand the claim that a story is internally coherent? There

are many open questions about these central notions in coherentism.

Within the framework of Bayesian Networks, multiple notions of less-

than-full reliability can be modeled (see Bovens and Olsson (2000))

and a probabilistic measure of coherence, which has been a long-time

dream of coherentists, can be developed (see Bovens and Hartmann

(2001b)). With a clear understanding of these central notions in hand,

the coherentist answer to the Cartesian sceptic can be assessed.

This theoretical work on reliability and coherence has practical ap-

plications in the theory of belief change. How does a cognitive system

(a person or an expert system) update its beliefs when it receives new

information as its input? Under what conditions does it add this new

item of information to its previous beliefs? Under what conditions does

it discard some of its previous beliefs? On the standard approach, new

information is added to the belief set until an inconsistency appears.

It is more realistic to let belief change be determined by two factors,

viz. how reliable are our information sources and how well does the

new information cohere with what we already believe. These factors

can be directly modeled by Bayesian Networks. Such modeling yields

novel theoretical insights about belief change and carries a promise of

applications to information management in expert systems (for details

see Bovens and Hartmann (2000)).
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