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surface provokes an increase of the

contact area. Moscatelli, Bianchi, et al.

show with psychophysical experiments

that this increase in contact area provides
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looming in vision. Their results show that

the change in contact area provides a

novel proprioceptive cue.
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SUMMARY

Humans, many animals, and certain robotic hands
have deformable fingertip pads [1, 2]. Deformable
pads have the advantage of conforming to the ob-
jects that are being touched, ensuring a stable grasp
for a large range of forces and shapes. Pad deforma-
tions changewith finger displacements during touch.
Pushing a finger against an external surface typically
provokes an increase of the gross contact area [3],
potentially providing a relative motion cue, a situa-
tion comparable to looming in vision [4]. The rate of
increase of the area of contact also depends on the
compliance of the object [5]. Because objects nor-
mally do not suddenly change compliance, partici-
pants may interpret an artificially induced variation
in compliance, which coincides with a change in
the gross contact area, as a change in finger
displacement, and consequently they may misesti-
mate their finger’s position relative to the touched
object. To test this, we asked participants to
compare the perceived displacements of their finger
while contacting an object varying pseudo-randomly
in compliance from trial to trial. Results indicate a
bias in the perception of finger displacement induced
by the change in compliance, hence in contact area,
indicating that participants interpreted the altered
cutaneous input as a cue to proprioception. This sit-
uation highlights the capacity of the brain to take
advantage of knowledge of the mechanical proper-
ties of the body and of the external environment.

RESULTS

The size of the image that an object projects on the retina,

referred to as the retinal size of the object, changes with the dis-

tance of the object to the observer. In order to use the retinal size
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as a depth cue, observers assume heuristically that two other-

wise identical objects in the visual scene, such as two identical

columns in a colonnade, have the same physical size [4]. A viola-

tion of this assumption produces a misestimate in the perceived

depth. For instance, the baroque architect Borromini scaled the

physical size of the columns in the colonnade of Galleria Spada

to produce an illusory sensation of depth [6]. Similarly, a progres-

sive increase in the retinal size of an object produces the sensa-

tion of the object approaching the observer, a phenomenon

known as visual looming [7–9]. In this study, we investigated

whether an analog of looming exists in the sense of touch and

whether the tactile system can be deceived, similarly to vision,

by altering unbeknownst to the observer some of the object

properties that are usually assumed to remain stable.

The formation of contact between the skin of the fingertip and

an external object produces a progressive recruitment of

strained tissue that evokes characteristic neural responses

[10–12]. Thus, in principle, an observer could infer the relative

displacement of the finger from this change in the area of con-

tact, because a larger area corresponds to a greater finger

displacement from initial contact (Figure 1). The rate of change

of the area of contact also depends on the compliance of the ob-

ject that the observer can estimate by combining multisensory

cues and prior knowledge [5, 13]. Compliance is usually a stable

property of each specific object. If the compliance of a given ob-

ject would suddenly change between two sequential tactual in-

teractions, an observer might attribute the resulting change in

the contact area to a difference in the finger indentation. This

occurrence should result in a misestimate of the relative finger

displacement. Therefore, by modifying the compliance of an ob-

ject in a controlled manner, we can quantitatively assess the

contribution of the change in gross contact area as a cue to rela-

tive finger displacement.

Each trial consisted of a reference and a comparison stimulus

randomly presented in two sequential time intervals. In each in-

terval, the elastic surface of the apparatus (Figure 2) was lifted

to come in contact with the participant’s index finger and

to passively move it up and down. Participants reported in which

of the two intervals the extent of the angular displacement of the

finger (i.e., the angleg in Figure 2B)wasgreater. In eachof the two
May 9, 2016 ª 2016 The Authors. Published by Elsevier Ltd. 1159
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Figure 1. The Change in Contact Area

(A) The area of contact between the skin and the silicon increases as the finger

moves toward the bottom edge of the object.

(B) The increase in the area recorded from the camera of the softness display

for a surface compliance comparable with the silicon. The expanding contact

area can be seen as successive frames of a movie of a looming stimulus.

(C andD) Amore-compliant object is associated with a higher rate of change of

the area of contact.
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Figure 2. Experimental Setup and Protocol

(A) The setup included the lift, the softness display FYD-2, and the angle

encoder. The FYD-2 modified the compliance of an elastic contact surface by

adjusting its stretching state. A rotational spring produced a linear increase of

the force exerted by the finger on the surface through the lifting phase of the

stimulus. (Adapted with permission from Moscatelli, Bianchi, et al., Euro-

haptics Conference 2014, Paris.)

(B) In each interval, the elastic surface (in red in the figure) was lifted to contact

the participant’s index finger and to passively move it up and down. The angle

of the metacarpo-phalangeal joint, g, was measured from the angle encoder

and used to control the movement of the lift.
intervals and before the elastic surface contacted the finger,

we modified its compliance by means of a computer-controlled

device that adjusted the stretch of the surface [14, 15]. The exper-

imental apparatus also ensured that the actual finger displace-

ments and interaction forces were uncorrelated with the surface

compliance (Supplemental Experimental Procedures). The par-

ticipants were not informed that the compliance could change

between the two intervals. In two different blocks, the surface

was either ‘‘softer’’ or ‘‘stiffer’’ in the comparison than in the refer-

ence, thus leading, for equal finger displacements, to a ‘‘larger’’

or ‘‘smaller’’ contact area in the comparison, respectively (Fig-

ure 3A). The order of the blocks (subsequently named ‘‘large

versus small’’ condition) was counterbalanced across partici-

pants. The testing procedures were approved by the Ethical

Committee of the University of Pisa, in accordance with the

guidelines of theDeclaration ofHelsinki for research involving hu-

man subjects. Informed written consent was obtained from all

participants involved in the study.

We considered three possible hypotheses: (1) participants

were not sensitive to the change in the area of contact; (2) partic-

ipants were sensitive to the change in the area of contact and

attributed it to the change in compliance of the object; or (3) par-

ticipants were sensitive to the change in the area of contact and

attribute it, mostly or entirely, to the indentation of the finger,

hence to its relative displacement. If hypotheses 1 or 2 were

true, the change in the area of contact should not have affected

the perceived finger displacement. In contrast, hypothesis 3

would predict a perceptual bias. To test these hypotheses, we

fit the binary responses of each participant with two psychomet-

ric functions, one for the large and one for the small condition

(Figure 3B). In order to quantify perceptual biases, we computed
1160 Current Biology 26, 1159–1163, May 9, 2016
the point of subjective equality (PSE) from each psychometric

function corresponding to the stimulus value yielding a response

probability of 0.5. If participants used the change of the contact

area as a cue for the finger displacement, as in hypothesis 3, the

PSEs would be significantly different between the two experi-

mental conditions, with PSElarge < PSEsmall. We analyzed the

data of all participants (n = 11) using a paired t test and confirmed

the result with a generalized linear mixed model (GLMM) [16].

Overall, the value of thePSElarge wassignificantly lower than the

PSEsmall (paired t test; t10 = 4.47;p=0.001), in accordancewithhy-

pothesis 3 (Figure 3C). The mean of the difference was 2.2�, cor-
responding to 18% of the reference stimulus (12�). The GLMM

confirmed the result of the t test. Accordingly, the95%confidence

interval (CI) of the difference in PSEs did not include zero (95%CI

of the difference ranging from 1.5� to 2.7�). The PSE was signifi-

cantly lower than the reference stimulus in the large condition

(PSElarge = 10:7�;95%CI : 10:1� � 11:3�) and significantly higher

in the small condition (PSEsmall = 12:7�;95%CI : 12:2� � 13:2�).
The GLMM fit is illustrated in Figure S1 and shows that the effect

sign was consistent across participants. In summary, a more-

compliant surface produced a greater expansion of the area of
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Figure 3. Results

(A) The area of contact between the fingertip and the surface changes with the displacement of the finger and the compliance of the surface (results from

a representative participant). The tonality of gray of each curve, from black to light gray, stands for the compliance of the surface. In (A)–(C), the dashed line

indicates the extent of the finger displacement in the reference stimulus, g0 =12�.
(B) The psychometric functions and the responses of a representative participant in the two experimental conditions. The horizontal bars indicate the PSE ± the

SE (PSElarge = 9.7� ± 0.5�; PSEsmall = 12.8� ± 0.6�).
(C) The PSE ± 95% confidence interval in the two experimental conditions (n = 11).

See also Figures S1–S3.
contact, which was in turn associated with a greater perceived

angular displacement of the finger.

In experiment 1, the difference in compliance between the two

conditions generated small differences in finger kinematics. The

initial movement of the lift (Figure 2) produced an increase in the

contact area, i.e., an indentation of the finger in the compliant

surface, without any finger or joint movement. Because of the

difference in compliance, the duration of this indentation phase,

hence the finger motion onset, differed between the two exper-

imental conditions. We performed a second experiment (exper-

iment 2a) to ascertain that this difference had a negligible impact

on the perceptual bias of finger displacement. Participants wore

a rigid thimble covering the pad of their index finger that con-

tacted the device. Apart from the use of the thimble, the appa-

ratus and the task were the same as in experiment 1. As in the

first experiment, the more- and the less-compliant conditions

(subsequently termed ‘‘soft versus stiff’’ condition) differed in

terms of finger kinematics, duration of the indentation phase,

the temporal evolution of the load on the finger pad (the stiff con-

dition was associated with a steeper increase of the load), and

possibly other cues such as duration of uncontrolled vibrations

in the apparatus. The soft and the stiff conditions, however,

were identical in terms of change in gross contact area. An

absence of perceptual bias, estimated from the difference

in PSE, would imply that the effect in the first experiment was

primarily due to a change in contact area and not due to any of

the other differences between the two conditions. In experiment

2b with covered fingertip, the PSEs were not significantly

different between the soft and the stiff conditions (mean of the

difference = 0.03�; t10 = 0.05; p = 0.96). Likewise, the 95%

CI of the difference in PSEs included zero (95% CI ranging

from �0.8� to 0.3�), indicating the importance of the contact

area spread as a cue to proprioception. The GLMM fit is illus-

trated in Figure S2.We further analyzed the PSEs of experiments

1 and 2a together using a 2 3 2 nested ANOVA with factors

experiment (1 versus 2a) and stimulus type (more versus less

compliant). The interaction between the two factors was statisti-
cally significant (F1 = 12:71; p= 0:018), confirming the different

effect of stimulus type in the two experiments. In an additional

control experiment (experiment 2b), we reproduced the delays

of the motion onset observed in experiment 1 by controlling

the movement of a rigid platform lifting the participants’ bare

fingertip. Experiment 2b confirmed that the delay of the motion

onset did not produce any significant perceptual bias (Supple-

mental Experimental Procedures).

Our results imply that observers were sensitive to a change

in the area of contact. Hence, if we informed the participants

that the compliance could change across trials, they should

have been able to discriminate the difference in compliance

based on the change in the area of contact. To verify this hypoth-

esis, we conducted a third experiment (Supplemental Experi-

mental Procedures) where the finger was immobilized andwhere

participants were instructed to discriminate the differences in

compliance of the surface based on the differences in the area

of contact. In accordance with previous studies [5, 17–19], par-

ticipants were able to discriminate the stimuli. That is, the slope

parameter of the GLMM, which reflected discriminability for

compliance, was significantly different from zero (slope = 1.36;

p < 0.001). The just noticeable difference (JND) was equal to

0.49 mm N�1 (95% CI ranging from 0.33 to 0.96 mm N�1).

In summary, we provided evidence that observers were sensi-

tive to the change of the area of contact with an external surface

and used it as a cue to the relative motion of the finger, i.e., as a

cue for proprioception. The change in contact area is qualita-

tively different from other displacement cues because it provides

information that is expressible in units of surface and not in units

of length. This observation raises the question about the integra-

tion of this newly described cue with other proprioceptive cues.

Landy et al. proposed a model for the integration of qualitatively

different cues in vision, known as ‘‘modified weak fusion’’ [20].

We applied a similar model to our results (Supplemental Exper-

imental Procedures and Figure S3). The model was based on a

two-step algorithm. The contact area cue was first calibrated

(or promoted) using auxiliary information (i.e., with auxiliary
Current Biology 26, 1159–1163, May 9, 2016 1161



proprioceptive cues conveying information expressed in units of

length). In the second step, the calibrated cue was combined

with the other cues to provide the fused estimate. Themodel pre-

dicted that the perceptual bias was proportional to the difference

in contact area (computed at the same angular displacement of

12�) between the reference and the comparison stimulus. Hence,

the model predicted a negative bias for the large condition and

positive bias for the small condition and a larger absolute value

of the bias in case of the large condition. The two predictions

were consistent with the results of the experiment 1. The weight

of the area-based cue in the fused estimate changed between

the two experimental conditions, in accordance with a robust

estimation hypothesis [20].

Visual and tactile looming are both ambiguous cues. In vision,

the retinal size of an object depends multiplicatively on its actual

size and on its proximity to the viewer. In touch, the tactile size of

a deformable object depends multiplicatively on its compliance

and on finger displacement. In touch, as in vision, the observer

can resolve these ambiguities by assuming object constancy,

i.e., by assuming that objects have a constant size [4], or a con-

stant compliance. A Bayesian model assuming an observer’s

prior belief that the compliance of a given object does not

change fits our behavioral data with the consequence that a

violation of the constancy assumption generates a perceptual

illusion. To use Palmer’s words [4], ‘‘constancy and illusion are

therefore opposite sides of the same perceptual coin.’’

DISCUSSION

Many mammals, birds, and other species have soft pads on the

volar side of their extremities. The soft pads rapidly conform to

external surfaces ensuring secure grips and stable interactions

with objects [1]. Soft fingers have been also used in robotic

hands to increase grasp stability [2, 21]. Besides having advan-

tages for grasping, the patterns of pad deformation (such as the

change in contact area and the deformation due to slip and roll

motion) also provide rich information to the tactile system [12].

The evolution of skin strain patterns during tactile slip provides

relative motion information similar to optic flow in vision [22]. Ob-

servers can reproduce displacement paths by integrating tactile

slip motion over time [23] and experience the shape of curved

objects from a rolling interaction of finger pads with an object

[24]. The evolution of the gross contact area provides information

about the softness of touched objects [5, 15, 17–19], a finding

which is confirmed by our third experiment.

Although the role of pad deformation in cutaneous touch is

well established, its contribution to proprioception is less clear.

In the present study, we demonstrated that a change in the con-

tact area provides a cue to finger displacement relative to an ob-

ject. According to classical studies in physiology, muscle spin-

dles, Golgi tendon organs, and receptors in the joints provide

crucial information on the static position and movement of our

limbs [25]. Information from cutaneous mechanoreceptors also

contributes to our sense of position [26–28]. Stretching the skin

around the proximal interphalangeal joint, i.e., around the sec-

ond knuckle, induced a vivid sensation of movement in anesthe-

tized fingers [29]. Furthermore, during the movement of the

elbow joint, skin stretch in a direction in line with muscle stretch

applied simultaneously with external vibrations increased the
1162 Current Biology 26, 1159–1163, May 9, 2016
perceived movement sensation [30]. The literature has largely

overlooked the role of finger pad deformation due to object inter-

action as a cue to relative motion. In the current study, changes

in the gross contact area produced during the indentation

of an elastic surface induced a sensation of relative finger mo-

tion. Recently, it was found that, when pushing with a finger

against a stiff, stationary object, microscopic fluctuations in the

counter-surface could elicit a sensation of finger displacement

[27]. These results provide converging evidence that an impor-

tant source of proprioceptive information comes from skin defor-

mation during interaction with external objects.

In the experiments presented here, the change in gross con-

tact area provided a motion cue that could be compared to

looming in vision. This effect, termed ‘‘tactile looming,’’ supports

the hypothesis that similar motion detection processes are im-

plemented in vision and touch [31]. In the two sensory systems,

a 2D sensory sheet (i.e., the retina or the skin) provides important

information about the relative motion of our own body with

respect to external objects. Moreover, previous studies showed

an analog of visual looming in audition [32, 33], which might sug-

gest a canonical computation of looming stimuli across different

senses.
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