Indefinites as Epsilon Terms: A Labelled Deduction Account *

Wilfried Meyer Viol Rodger Kibble
Department of Computing Department of Linguistics
Imperial College School of Oriental and African Studies
University of London University of London
email: wm3@doc.ic.ac.uk email: rodger@semantics.soas.ac.uk
Ruth Kempson Dov Gabbay
Department of Linguistics Department of Computing
School of Oriental and African Studies Imperial College
University of London University of London
email: kempson@mailbox.ulcc.ac.uk email: dg@doc.ic.ac.uk
Abstract

This paper gives an account of indefinites as epsilon terms within a model of
utterance processing as a task of labelled deduction, in which partially specified inputs
are progressively resolved during the interpretation process. The formal tools used are
labelled deduction (Gabbay forthcoming), the epsilon calculus (Meyer-Viol 1995), and
a tree-logic (LOFT - Blackburn & Meyer-Viol 1994) which characterises the structure
as it is incrementally built. The system has been partly implemented in SWI-Prolog as
part of a longer-term project and the model is a state transition system which defines
the steps which license movement from state to state.

1 Introduction

It is a well known problem of on-line parsing that quantified NPs, in particular indefinites,
may be interpreted as giving rise to logical forms in which they have a scope very different
from that indicated by the surface sequence of expressions in which they occur (a problem
which cannot be reduced to positing referential uses of indefinites cf. Farkas 1981, Abusch
1994). Various computational and formal systems have tackled this ambiguity problem,
either, as is familiar, by positing processes of restructuring or storage (Montague 1974,
Cooper 1983, May 1985, Morrill 1994, Pereira 1990), or by building underspecified struc-
tures including unscoped or partially scoped representations of quantified NPs (Alshawi &
Crouch 1992, Reyle 1993, Pereira & Pollack 1991). In all of these cases, there is implicit
recognition that the determination of scope choice is not incremental, but can only be

*This research was supported by the UK Engineering and Physical Sciences Research Council under
grant reference GR/K67397, “A Labelled Deductive System for Natural Language Understanding”

defined once the total structure is complete. In this paper we propose that the interpre-
tation of indefinite NPs involves an anaphoric-like dependency, in which the indefinite is
lexically projected as involving a dependent name for which the anchor of the dependency
has to be chosen on-line. The dependency is represented by an indexing on the name,
the index indicating the expression to which the dependent element is to be anchored.The
anchor dictates the mode of combination of the parts and the construction of the resulting
dependent term.

The account is set within a model of utterance interpretation as a structure-building
operation assigning logical forms to a sentence through a mixed process of labelled type
deduction and other operations. This model is part of a general programme developing a
deductive framework for natural language understanding (cf. Gabbay & Kempson 1992,
Finger et al 1996, Kempson et al forthcoming). The formal tools we use are labelled deduc-
tion to define type deduction and other mixed modes of inference (Gabbay forthcoming),
the epsilon calculus as the selected logical language (Meyer-Viol 1995), and the modal tree
logic LOFT for modelling the architecture within which the setting out of premises for
type deduction takes place (Blackburn & Meyer-Viol 1994). Utterance processing is taken
to be a goal-driven inferential task, in which the goal is to establish a logical formula of
type t using information as incrementally provided on a left-right basis by a given input
string.

Within this system, all NPs project onto formulas labelled with type e, with epsilon
and tau terms for quantified NPs of existential and universal force respectively. Context
dependence is reconstructed as a syntactic choice defined over the configurations built
up during the interpretation process allowing content to be initially underspecified. All
determiners lexically define such partial specifications of content, projecting specialised
metavariables which are resolved in various ways. Anaphora resolution, for example, is
assumed to involve an initial metavariable which is associated with a very free choice mech-
anism, restricted only by a locality constraint precluding representations which are too
local to the point in the structure in which the metavariable is itself projected. Indefinites,
on the other hand, project a metavariable corresponding to an incomplete epsilon term;
a choice mechanism selects as the anchoring index some other representation projected
in the interpretation process; and the elimination rules then progressively compute the
formula in which the effect of this choice of anchoring is made explicit.

2 The e-calculus: overview and applications

The e-calculus gives us a quantifier free language which has all the expressivity of a first-
order language (plus some more). It gives us a way to represent all noun phrases as entities
of type e. Instead of quantified formulas the e-calculus uses quantified terms to achieve
the same purpose. These terms are constructed with variable binding term operators
(Costa 1980), each such operator v corresponding to a quantifier. The building principle
of these terms is: whenever ¢ is a formula of the language, then va¢ is a term in which
all occurrences of x free in ¢ are bound by the operator vz. In this paper we will use only
two such operators: epsilon €, and tau 7. These give rise to e-terms and 7-terms

e The term ex¢ denotes some arbitrary d in the domain which has the property ¢, if
there are any such objects, and an arbitrary d tout court if there are no such objects.
Given this choice of d, it is evident that ¢lex¢/x] is true precisely if Jz¢ is. So we
have the equivalence Jz¢ & ¢lexd/z]

e We interpret the term 72¢ as shorthand for ez—¢, i.e. it denotes an arbitrary object
d s.t. d does not have the property ¢ if there is such an object, otherwise an arbitrary
d tout court. The following equivalence holds: Vz¢ <> ¢[ra¢/z]

Variable binding term operators can be introduced for all (generalized) quantifiers. For
instance, in “most men walk” the term ¢ = mostz(man(z) — walk(z)) would denote a
walking man if indeed most men walk and some arbitrary non-walker otherwise. So walk(a)
holds exactly iff most men walk. ' And in “No man walks” the term b = 7z(man(z) —
—walk(z)) would give the right denotation. That is, man(b) — —walk (b) holds iff no man
walks.

In the quantified formula Q)z¢, the binding structure of the variable z in the matrix ¢ is
completely described by the triple (¢, z, ¢), where ¢ denotes the mode of quantification of
x and ¢ denotes the scope of that quantification. In the calculus with variable binding
term operators this description is substituted, as it were, for z thus eliminating the need
for the quantifier.

In the e-calculus quantifier scope interactions are exhibited as term dependencies. For
example, the two readings of Fvery nurse visils a palient translate as follows into the
quantifier free calculus.

Narrow Scope Object Nu(b) — (Vis(b,as) A Pat(ap)) where
1. ay = ex(Vis(y, z) A Pat(z))
2. b=r1y(Nu(y) = (Vis(y,ay) A Pat(ay)))
3. ap = ex(Vis(b, z) A Pat(z))
Here the patient is construed as a term depending on the subject of ‘visits’ i.e. ‘every

nurse’. This dependence is reflected in the fact that the 7-term for nurse (b) occurs
inside the final representation of patient (as)

Wide Scope Object (Nu(b) = (Vis(by, a)) A Pat(a)) where
1. a = exPat(x)

2. by = ty(Nu(y) — Vis(y,z))
3. by = Ty(Nu(y) — Vis(y, ex Pat(z))

' As it stands the use of the implication sign might be confusing, though note that we do get the right
interpretation. In general, but not in this paper, we are considering to let operators like most bind variables
in pairs of formulas. 'Most men’, would start its life as (i, z, Men(z)) without a semantic interpretation
and get its definitive shape pz(Men(z), Walk(z)) by some rule like the one for 7-terms presented in this
paper.

In this case, the patient does not depend on anything. In fact, in this calculus
ex Pat(x) occurs inside the representation of the term for every nurse.

In the narrow scope reading the term derived from a patient, ex(Vis(y, z) A Pat(z))
has the variable y free, i.e. the value of of the term ex(Vis(y,z) A Pat(z)) covaries with
or depends on the value of y according to the extension of the visit relation (seen as a set
of ordered pairs). In the wide scope reading where the patient is the same for each nurse
the term a = ex Pat(z) is independent, i.e. contains no free variables 2.

Construction of the Terms

The parsing process is essentially a two stage affair (although in practice the stages may be
interleaved, as in the current prototype implementation). In the first stage a ‘parse tree’
is constructed in which the leaves are decorated with functions and arguments to these
functions. The second phase of the parse then consists in iteratively applying functions to
arguments among sister nodes and depositing the result on the mother node.

After the first phase of the parse, quantified noun phrases in the string have resulted
in leaves on which the quantificational mode of the NP is specified (indefinite, universal,
etc.), the restrictor and scope information, couched in terms of dependence. These pieces
of information suffice for the second stage of the parsing process to algorithmically compute
the definitive shape of the quantified terms.

In the first stage of parsing “every nurse visits a patient” the noun phrases ‘a patient’
and ‘every nurse’ end up as an ‘unscoped’ proto e-terms (¢, z, Pat(z)) and (7,2, Nu(z))
respectively. At this point the terms are not given a semantics as they stand, but the
parse tree contains enough information to algorithmically compute the eventual shape of
the terms which do get an interpretation. The reason for this delay of interpretation is
that restrictors of the terms may have to be extended in the course of the computation
(“a patient who smiles,....”), or that the restrictor of the term still has to ‘recombine’ with
the nuclear scope: terms starting their life as, for instance, (7, z, ¢(z)), (‘no’, z, ¢(z)) or
(‘most’, z, ¢(x)) have to be restructured so as to incorporate the nuclear scope. For in-
stance, in processing the sentence “every nurse visits a patient’ the proto term (7, z, Nu(z))
is not interpreted as the term 72 Nu(z) but if the dependence information states a depen-
dence of ‘a patient’ on ‘every nurse’ (i.e., narrow scope object), then the term giving ‘a
patient’ its definitive semantic shape is constructed by the following Narrow Scope rule.

Definition 1 (Narrow Scope Object) Suppose ¢ free of A, and L some sequence, pos-
sibly empty, of lambda v’s.

1. dAzLolz/y] + ey = L(oley(d A ¥) [yl A dley(o A ¥)/y))
2. AzLglz/y] + Tty = L(@[(ty(¥ — 8))/y] = ¢lry(¥ — ¢)/y])

*Note that the restrictor ¢(x) of an epsilon term ex¢(x) may represent both the natural language
content, of the quantified NP — the common noun ‘patient’ in “a patient” — and the scope of that NP in

the entire clause. Within the confines of these proceedings we cannot elaborate on these complications.

That is, we use function application “with a twist”: in applying we ‘recombine’ the re-
strictor and nuclear scope. Here we derive the object narrow scope reading of our example
sentence

1. Visit 4+ a Patient:

MudyVis(y,u) + exPat(z)) = Ay(Vis(y,ay) A Pat(ay))?

2. Visit a Patient + every Nurse
Ay(Vis(y, ay) A Pat(ay)) + TyNu(y) = Nu(b) — (Vis(b,as) A Pat(ap))
where

(a) ay = ex(Vis(y, z) A Pat(z))
(b) b=r1y(Nu(y) = (Vis(y,ay) A Pat(ay)))
(¢) ap = ex(Vis(b,z) A Pat(z))

If parsing “every nurse visits a patient” results in the proto term (¢, zPat(z)) with the
information that there is no dependence (or, alternatively, a dependence on the time index/
world of evaluation *) then the Wide Scope application rule is called for.

Definition 2 (Wide Scope Object) Suppose ¢ free of A, and L some sequence, possi-
bly empty, of lambda v’s. Let X (z,x) be the smallest subformula of x containing all free
occurrences in y of the variable z.

1. AzLo[z/y] + eyyp = L(oleyd/y] A Yley/y])

2. XLz /y] + Ty = L[/ X (y, 8)])
where & = ¥[(Ty(¢ — X (y, ¢))/y] = X(y, 9)[Ty(¢ = X (y,8))/y]

1. Visit 4+ a Patient:

MudvVis(v,u) + exPat(z) = Ay(Vis(y,a) A Pat(a))®

2. Visit a Patient + every Nurse
Ay(Vis(y, a) A Pat(a)) + TyNu(y) = (Nu(b) = (Vis(bg,a)) A Pat(a))
where

(a) @ = exPat(z)
(b) X(y, Ay(Vis(y, a) A Pat(a))) = Vis(y, a)

®This is equivalent to Ay(Iz(Vis(y, z) A Pat(z)))

*There is an unresolved issue here concerning whether the world should be represented in a (two-sorted)
object language or whether the world labels the formula; cf Finger & Gabbay 1993).

®This derives Av(JzPat(z) A Vis(v, ez Pat(z)))).

() bz =Ty(Nu(y) = Vis(y,z))

This semantic notion of dependency can be conceptually separated from the syntactic
notion of scope (see e.g. Farkas , forthcoming). We make use of the notion of dependency
in the way scope relations are determined as a by-product of the sequential parsing process.
As was mentioned above quantified NPs are interpreted initially as unscoped ‘proto-terms’
but there is the option to fix dependencies on variables so as to place constraints on the
eventual scope relations. For instance in the above sentence processing every nurse results
in the proto-term (7, y, Nu(y)). At the point where patient is encountered there are two
options:

2. (a) (e, z, Pat(z))
(b) (e @, dep(y), Pat(z))

Option (2a) triggers the combination rule resulting in the wide scope reading for the
indefinite in (1) and option (2b) triggers the rule which results in the narrow scope reading.
If we express the dependency of the variable z in (2a) on the world /temporal index directly
in the representation language, then indefinites can be given a unitary characterisation as
(e,z,dep(y), Pat(z)) with y to be chosen much like an anaphoric choice. Like anaphoric
resolution this choice is primarily on-line but to account for (marked) cases where scope
does not correspond to left-right order we need to allow dependency on a meta-variable
which is instantiated later: In the first parsing stage of “A nurse visits every patient” ‘A
nurse’ starts its life as the proto term

(e, z, dep(u), Nu(z)).

At the end of that stage, the dependence has been resolved to

(e, z, dep(a), Nu(z)).

where a = (7, z, Pat(z)). The second stage of the parse then uses the dependence infor-
mation to construct the semantic representation as below definition 1.

In choosing the source of dependence in these terms there are several options. We may
choose the constructed term (if already in its definitive shape), or we may choose the vari-
able associated with it (if we are dealing with a quantified NP). An altogether different
possibility is to make a proto term dependent on the location in the tree where the anchor
is located, or even on the identifier of the task it is associated with. All these options are
currently being explored. In the implementation described below we initially select a task
identifier as the anchor, which is eventually replaced by the term which is constructed
when that task is satisfied.

3 Construction algorithm and implementation

The interpretation process is formalised in a LDS framework in which type-logical formu-
lae as labels guide the parser in the goal-directed process of constructing labelled formulas

or declarative units (DUs). The goal of the parser is the deductive task show(t) (derive
a formula of type t); this is achieved by generating a succession of subtasks show(e),
show(e—t) etc. In this section we define declarative units and task states and describe
the rules which license transitions between states, with some remarks concerning imple-
mentation considerations.

3.1 Declarative Units

The formula of a declarative unit is the side representing the content of the words supplied
in the course of a parse. In the fragment used in this paper a formula is either a term of
type e or a lambda-expression. The labels annotate this content with linguistic features
and control information. These include:

(i) the logical types expressed as type-logical formulas: e, ¢ are types and for any
types @, b; ¢« — b is a type.

(i) Tree node identifiers: these identifiers and other properties of the nodes are
described by LOFT (Logic of Finite Trees), a logic for a propositional modal
language which allows nodes of a tree to be defined in terms of the relations
that hold between them. (Blackburn & Meyer-Viol 1994). In the system
described in this paper we only employ the modality (d) or "down”: (d)P
holds at tree-node ¢ iff P holds at a daughter of «.

(iii) Features specifying other syntactic information such as Case, +Q for question-
hood etc.

Declarative units are represented as finite sets of formulas {Laby (1), ..., Lab,(l,), Form(¢)}.
Each such set is called a DU-formula.

3.2 Task States

A Task state is a description of the state of a task. The four feature dimensions of a task
state are

Goal (G) Values on this dimension are the semantic types in the label set Ty.

Tree Node (TN) This feature fixes the location of the task in question within a tree
structure.

Discrepancy (TODO) Values are (finite sequences of) DU-formulas. This dimension
tells us what has to be found/constructed before the goal object can be constructed.

Result (DONE) Values are lists, sequences, of DU-formulas. These values will be (par-
tial) declarative units.

We will represent a task state either graphically by

show G

TN |

TODO: &
DONE: g

or as the string {T'N(n), Goal(G), TODO(a), DONE(j3)}

In the rules given below, tasks are identifed by the tree node identifier T'N since there
is a one-to-one correspondence between tasks and nodes. In the prototype implementa-
tion of this system task states are recorded in the Prolog database as unit clauses of the
form task(Tn, show(Goal), ToDo, Done) where ToDo and Done are lists. This not only
simplifies the programming task of accessing and updating task states but according to
the particular Prolog implementation may allow fast direct access to any task state via
the mechanism of indexing clauses for a predicate by their first argument (see e.g. Shieber
et al 1994). We can distinguish three kinds of task states:

Task Declaration Nothing has yet been achieved with respect to the goal G:
{Goal(G),Tn(TN),ToDo(G), Done(0)}

Tasks in Progress In the middle of a task: {Goal(G), Tn(T'N),ToDo(f3), Done(a)}
If things are set up right, then a8 = G by some rule of combination.
Satisfied Task {Goal(G),Tn(TN),ToDo((), Done(a)}

Soundness of the deductive system amounts to the fact that the goal G can be
computed, derived, from « in case ToDo is empty.

3.3 Parse States and Dynamics: The Basic Transition Rules

A parse state consists of a pair : a bookkeeping device which gives a value for the parsing
pointer identifying the current task and the string counter which represents the location
of the current word in the input string; and a sequence S of task states (to avoid cluttering
the definitions, we generally omit details of the bookkeeping device in what follows). The
dynamics of the parse process consists of reaching a final parse state or Goal State starting
from a begin state, the Aziom State:

(1) AXIOM: {Goal(t),Tn(TN),Todo(Ty(t)), Done(})}

(2) GOAL : ({Goal(t),Tn(TN),Todo(D), Done(Ty(t),...)} . D)
where Elements of D are task states with fully specified DU formulas.

As was stated in section 2, the parsing process consists of two conceptually sepa-
rate phases, namely constructing a function-argument tree (in the process recognising a

grammatical sentence) and iteratively applying functions to arguments to derive a logi-
cal form. In our system the ”structure-building” rules which construct the initial parse
tree are Introduction, Subordination and Scanning, while the ”interpretive” rules are
Completion and Elimination. These rules are defined below.

The symbols X,Y,Z,.. will range over individual DU-formulas, the symbols «, 3,... will
range over (possibly empty) sequences of such formulas, D, D’,... will range over (possibly
empty) sequences of tasks, and wi, witq,... will range over words.

(3) SCANNING For some string position s and tree node i:

(DATn(), Goal(X), TODO(U,), Done(a)}.D’)
(DATn(), Goal(X), TODO(B), Done(a,Y)}.D")

if LEX(wgy1) =Y, UeY ;set s:=s+1

The side condition specifies that Y is the lexical entry retrieved for the current word in
the string, with type-specification U. This rule licenses the introduction of material from
the lexicon as long as it satisfies the conditions specified in TODQO. These conditions are

established by the rule of INTRODUCTION.
(4) INTRODUCTION

(DATn(i), Goal(X), TODO(Z,3), Done(a)}.D")
(DATn(i), Goal(X), TODO({(d)Yy, ..., (d)Y,,), Done(a)}.D’)

where Yg,....Y, = Z

The relation = stands for some mode of combination; in the current system we employ
Modus Ponens over the type system, restricted to combinations of the types which occur
in the grammar of the language being parsed (namely t plus the types of lexical items).

This rule licenses the introduction of a set of new subgoals as long as there is some
mode of combination reducing the subgoals to the original one. Introduction itself sets up
the need for a rule transferring the requirement on the daughter to a TODO at which the
requirement has to be met:

(5) SUBORDINATION
(DATn(i), Goal(X), TODO(((d)Ty(z)),), Done(a)}.D’)

) (p
(DATn(i), Goal(X), TODO(((d)Ty(z)),), Done(a)}.D'.
{T'n(k), Goal(z), TODO(Ty(z))), Done(D)})

where k stands in the daughter relation to ¢

Subordination is one of a pair of rules which license the transition from a task to be
carried out on a daughter to the creation of a task corresponding to that daughter. Like
Introduction, it relies on a converse rule, COMPLETION, which defines the transition
back to the mother:

(6) COMPLETION

(DATn(i), Goal(X), TODO(((d)Y,3), Done(a)}.D'.
{T'n(k), Goal(Y), TODO((), Done(Uy,...,U,)}.D")
(DATn(i), Goal(X), TODO((f), Done(a,{d)(Uy,...,U,)}.D'".
{Tn(k), Goal(Y), TODO((), Done(Uy,...,U,}.D")

COMPLETION then feeds ELIMINATION, the rule twinned with INTRODUCTION:
(7) ELIMINATION

(DATn(2), Goal(X), TODO(B), Done(a, (d)Yy,...,{d)Y,)}.D’)
(DATn(i), Goal(X), TODO(B), Done(w, Z)}.D')

where Yy,...,Y, = Z

This rule effects the converse of Introduction, so that type specifications of subtasks are
progressively derived.The rule schema Yy, ..., Y, = Z is realised by a generalised Modus
Ponens, where type-deduction is combined with the variant of function application de-
scribed in section 2:

(8) (d)(Ty(a) A Form(¢)) A{d)(Ty(a — b) A Form(2))
Ty(b) A Form(v(¢))

The above rules between them define the state space of the parser, and various options are
available for traversing that space. In the prototype program we have chosen to interleave
the structure-building and interpretive rules, with a simple recursive definition shown
below, whereby the rules are invoked in turn until the goalstate predicate succeeds.
(This predicate attempts to call the task predicate with the goal show(t), empty ToDo
and with ty(t) as an element of Done). The order in which rules are applied is dictated in

part by efficiency considerations. For instance, the Scanning rule is always called to check
whether the type of the current word in the string matches the current task specification
before invoking Introduction and Subordination to generate new tasks; this minimizes
unwanted backtracking.

parse:-goalstate.
parse:-eliminate,parse.
parse:—-complete,parse.
parse:-scan,parse.
parse:-subord,parse.
parse:-intro,parse.
parse:-backtrack,parse.

This inference regime results in a top-down parsing strategy, with backtracking over the
Introduction rule until a task specification is generated which results in successful ap-
plication of Scanning. An alternative approach would be to combine top-down and
bottom-up techniques by making Introduction sensitive to the type(s) defined for the
current word in the lexicon.

3.4 Example

As an illustration we exhibit a sequence of snapshots of the parsing of Fvery nurse visits
a patient.

Parse state 1: Axiom state task(1, show(t), [ty(t)], [1).

Parse state iz All words in the input string have been consumed. As a result of the
interleaved inference regime Elimination and Completion have applied to the type e
tasks.

show t show e
1] 2]
TODO: (d)Ty(e —) TODO: §
DONE: (d)(T'y(e), Form(r, z, Nu)) DONE: T'y(e), Form(r, z, Nu)
show e — ¢

El

TODO: Ty(e — 1)

DONE:

(dY(Form(AudvVis(v,u)), Tyle = (e = 1)))
(d)(T'y(e), Form(e, y, dep(z), Pat))

show ¢ = (e = 1) Tow o
ﬂ ﬂ

TODO: 0
DONE: Ty(e = (e = 1)
Form(AulvVis(v, u))

TODO: 0
DONE: Ty(e), Form(e, y, dep(x), Pat)

Parse state i+2: The rules of Elimination and Completion apply to tasks 1 and 3,

applying the specialised A-reduction rule given in section 2.
show t show e — ¢
1] El
TODO: TODO:
DONE: (d)(Ty(e), Form(r, =, Nu)) DONE: Ty(e — t),
(d)(Ty(e = t), Form(Av(Vis(v,az) A Pat(az))) Form(Av(Vis(v,az) A Pat(ag)))

where a; = ey, (Vis(v, yz) A Pat(ys))
Parse state k: The final step in deriving a formula of type t is application of Elimination
to the top-level task Tn(1), again invoking the A-reduction rule:

show t
1]

TODO: 0
DONE: Ty(t), Form(Nu(b) — (Vis(b,as) A Pa(ap)))

—_

where:
(i) a(z) = ey(Vis(z, y) A Pat(y))
(i) b=r7z(Nu(z) — (Vis(z,az) A Pa(ag)))

(i) ay = ey(Vis(b,y) A Pai(y))

4 Conclusion

This LDS-NL model relates to categorial analyses manipulating labelled type deduction
(eg Morrill 1994, Oehrle 1995, Joshi & Kulick 1995), though it is unlike these in addressing
issues of underspecificity, and in its explicitly procedural perspective. It is close to semantic
accounts of underspecificity (Alshawi & Crouch 1992, Reyle 1993, Farkas forthcoming),
though unlike these formalisms, the process of resolving dependencies is assumed to be
an on-line choice which is simultaneously context-dependent and nevertheless syntactic.
So a semantics is defined only for the output of this process, not for the underspecified
lexical input. The model is similar to the Candide system of Pereira & Pollack 1991
where the interpretation process divides into structure-building conditional interpretation
rules and interpretive discharge rules, except that in the Candide system it is the tree-
building operation which is deterministic, with decisions on quantifier scope and modifier
attachment postponed to the semantic-pragmatic discharge phase.

The novelty of the present system lies in (a) the application of the epsilon calculus,
and (b) its analysis of wide scope effects as a phenomenon falling together with anaphora.
Its conceptual advantage over its competitors is that the indefinite is no longer seen as a
determiner which is exceptional in virtue of having term-like properties; and its idiosyn-
cratic freedom of scope choice follows directly from the anaphoric nature of the process
resolving its lexical underspecification. Aspects of the research that are currently being
developed are the precise nature of the relation between the concept of dependency im-
plicit in the indexing and that defined within the epsilon calculus, the expansion of the
system to incorporate dependencies on and between expressions denoting time, and the
application to a broader range of quantifiers.

References

Abusch, D, 1994. "The scope of indefinites’ Natural Language Semantics 2.2, 83-135.
Alshawi, H & Crouch, R, 1992, ‘Monotonic Semantic Interpretation’ in Proceedings ACL
Blackburn, S. & Meyer-Viol, W. 1994 'Linguistics, logic and finite trees’ Bulletin of Interest
Group in Pure and Applied Logics Vol.2. No.1, 3-29.

Cooper, R. 1983. Quantification and Syntactic Theory. Reidel.

da Costa, N.C.A. 1980. A Model-Theoretic Approach to Variable Binding Term Oper-
ators, in A.l. Aruda, R. Chuaqui, N.C.A. da Costa (eds.), Mathematical Logic in Latin
America, North Holland Publishing Company.

Farkas, D. 1981. Quantifier scope and syntactic islands. CLS 17, 59-66.

Farkas, D. forthcoming. Indexical Scope. in Sczabolsci, A. (ed.) Ways of Scope-Taking.
Finger, M. & Gabbay, D. 1993. Adding a temporal dimension to a logical system. Journal
of Logic, Language and Information 1, 203-33

Finger, M., Kibble, R., Kempson, R. & Gabbay, D. 1996. 'Parsing natural language using
LDS: A prototype’ . Submitted to Proceedings of WOLLIC ’96

Gabbay, D. 1990/fcmng. Labelled Deductive Systems. Oxford University Press.

Gabbay, D. & Kempson, R. 1992. 'Natural-language content: a proof-theoretic perspec-
tive’ Proceedings of 8th Amsterdam Semantics Colloguium. Amsterdam.

Joshi, A. & Kulick S. 1995. ’Partial proof trees as building blocks for a categorial gram-
mar’ in Morrill, G. & Oehrle, R. (eds.) Proceedings of the Formal Grammar Conference,
Barcelona July 1995.

Kempson. R. Meyer-Viol, W & Gabbay, D. forthcoming. ’Syntactic computation as
labelled deduction’. In Borsley, R. & Roberts, 1. (eds.) Syntactic Categories. Academic
Press.

May, R. 1985. Logical Form. MIT Press.

Meyer Viol, W, 1995. Instantial Logic. PhD dissertation, Universiteit Utrecht. Milward,
D. 1993. Dynamics. dependency grammar and incremental interpretation COLING 1j.
1095-9

Montague, R. 1974. Formal Philosophy, ed. R.Thomason. Yale University Press.
Morrill, G. 1994. Type-logical Grammar. Kluwer.

Pereira, F. 1990. Categorial semantics and scoping. Computational Linguistics 16, 1-10.
Pereira, F. & Pollack, M. 1991 ’Incremental interpretation’. Artificial Intelligence 50, 37-
82.

Reyle, U, 1993. ‘Dealing with Ambiguities by Underspecification’ , Journal of Semantics
10.

Shieber , S, Schabes, Y & FCN Pereira, 1994. Principles and Implementation of Deduc-
tive Parsing. Technical Report TR-11-94, Center for Research in Computing Technology,
Division of Applied Sciences, Harvard University.

