
Underspecified Interpretations in a
Curry-typed Representation Language

CHRIS FOX, Department of Computer Science, University of Essex, Wivenhoe
Park, Colchester, CO4 3SQ, UK.
E-mail: foxcj@essex.ac.uk

SHALOM LAPPIN, Department of Computer Science, King’s College London,
Strand, London WC2R 2LS, UK.
E-mail: lappin@dcs.kcl.ac.uk

Abstract
In previous work we have developed Property Theory with Curry Typing (���� ), an intensional first-order logic for natural
language semantics. ���� permits fine-grained specifications of meaning. It also supports polymorphic types and separation
types.1 We develop an intensional number theory within ���� in order to represent proportional generalized quantifiers like
‘most’, and we suggest a dynamic type-theoretic approach to anaphora and ellipsis resolution. Here we extend the type system
to include product types, and use these to define a permutation function that generates underspecified scope representations
within ���� . We indicate how filters can be added to encode constraints on possible scope readings. Our account offers
several important advantages over other current theories of underspecification.

Keywords: Underspecified semantics, intentional semantics, Curry-typing, unresolved scope/readings, property theory, un-

typed lambda calculus.

1 Introduction

In a series of recent papers [10, 14, 15, 11, 12] and a forthcoming monograph [13] we present a
new model for the computational semantics of natural language, Property Theory with Curry Typing
(���� ). This theory allows us to express fine-grained distinctions of meaning. It also supports a
unified dynamic treatment of anaphora and ellipsis.

In this paper we will show that by extending the type system of ���� to include product types,
���� provides us with the resources for generating underspecified semantic representations within
the representation language, rather than through meta-language devices, as in most current treat-
ments of underspecification [21, 2, 1, 5]. ���� encodes a property theory within a language of
terms (an untyped �-calculus). We add dynamic Curry typing [7] and use a first-order logic to
specify the truth-conditions of the propositional subpart of the term language. The resulting system
gives us a language of semantic representation in which intensions (meanings) are characterized in-
dependently of modality and possible worlds. This feature of the framework permits fine-grained
distinctions of meaning that cannot be captured by Montague semantics [19] or most of its succes-
sors.

Our semantic representation language is first-order, rather than higher-order; we achieve the sort
of expressive power previously limited to higher-order theories within a formally more constrained
system. This provides an effective procedure for modelling inference in natural language.

1Separation types yield a form of subtype.
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We extend ���� in a straightforward way to express underspecified scope representations as
terms within the representation language. The expressive power of the language permits the formu-
lation of restrictions on scope readings that cannot be captured in other theories of underspecification
which rely on special purpose extra-linguistic operations and a weak system for constraint specifi-
cation.

2 ���� : syntax

2.1 Syntax of the basic system

The core language of ���� consists of the following sub-languages,where � ranges over a set of
variables, � ranges over a set of constants, � is a basic type, and ���� characterizes the type of
propositions:

(1) Terms � ��� � � � � � � � � ����� � ����

(logical constants) � ��� �� � �� � �� � �� � �� � �� � �� � ��� � ���� � �� .

(2) Types � ��� � � ���� � �� �� �� � � � �� 	 � � 	�
 � ��
�

where � ranges over types excluding those of the form ��
� .

(3) Wff 	 ��� � � �	 � �	� � 	�� � �	� � 	�� � �	� � 	�� � �	� � 	��
� ���	� � ���	� � ���	� � ���	�

(atomic wff) � ��� � �� � � � 	 � � � ��� � � ��.

���� is a first-order logic in which types and propositions are terms over which we can quantify.
This allows rich expressiveness whilst restricting the system to first-order resources [13, Chapter 9].

The language of terms is the untyped �-calculus, enriched with logical constants. It is used to
representthe interpretations of natural language expressions. It has no internal logic. With an
appropriate proof theory, the simple language of types together with the language of terms can be
combined to produce a Curry-typed �-calculus.

The syntactic rules of ���� given here are quite relaxed, and allow syntactic expressions that
have no intuitively meaningful interpretation. This does not undermine the usefulness of the system.
The rules give a minimal characterisation of the syntax, and the proof theory and model theory
characterize the proper subset of well-formed ���� terms that we take to represent meaningful
expressions.

In a separation type �� 	 � � 	�
 	� is a term representable fragment of a wff, where term
representability is defined recursively, as in [13]. This restriction on separation types avoids semantic
paradoxes of type membership which could otherwise be generated in the specification of these
types.

The values of bound type variables is limited to non-polymorphic types in order to avoid impred-
icative type membership statements.2

The first-order language of wffs is used to formulate type judgements for terms, and truth condi-
tions for those terms judged to be in ����.

It is important to distinguish between the notion of a proposition itself (in the language of wff),
and that of a term that representsa proposition (in the language of terms). ���� will be a true wff
whenever the proposition represented by the term � is true, and a false wff whenever the proposition
represented by � is false. The representation of a proposition � (	 ����) is distinct from its truth

2Earlier presentations of ���� avoid impredicative types by using polymorphic kinds— rather than polymorphic types
— where type variables range over types, but not over kinds. The simplification adopted here, of restricting the type variables
directly, was suggested to us by Ray Turner.
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conditions (����). The identity criteria for propositions, taken as terms, are those of the �-calculus
with �, , and � reduction.

We note that if � �	 ����, then ���� will be false. We enforce a strictly bivalent Boolean evaluation
in the proof theory and model theory presented elsewhere [16, 13]. However, in principle it is possi-
ble to modify this semantics. For example, we could take the truth value of ���� to be undefined when
� �	 ����, while preserving Boolean negation (with the ‘law of excluded middle’) for propositions.
This would complicate our semantics, and we do not pursue this issue here.

2.2 Rules and axioms for����

The rules and axioms governing the logical behaviour of ���� can be summarized as follows. The
rules for the basic connectives of the wff have standard classical first-order behaviour. The axioms
for identity of terms �� are those of �, , and � reduction in the untyped �-calculus. The rules for
typing �-terms are the rules/axioms of the Curry-typed calculus, augmented with rules governing
those terms that represent propositions (����). Additional rules for the language of wffs govern the
truth conditions of terms in ����, which represent propositions. Finally, the rules for equivalence
��� specify it as the relation of extensional equivalence.

We illustrate some of these rules as they apply to conjunction, as it appears in the language of
terms ( �� ), of type judgements, and of wff ( � ).

(4) The basic connectives of the wff

	 �

	 � �
� �

	 � �
	 � �

	 � �

�
� �




(5) Typing rules for �-terms

� 	 ���� � �� 	 ����� �� �� ��� 	 ����


(6) Truth conditions for Propositions

� 	 ���� � �� 	 ����� ���� �� ���� �� � ����


We have encoded the proof theory of ���� in a tableau system, which we present in [13, Chapter
5], together with proofs of soundness and completeness. A slightly earlier version of the proof theory
appears in [16].

2.3 Equivalence and identity

There are two equivalence relations in this theory, intensional identity and extensional equivalence.
� ��� � states that the terms �� � are extensionally equivalent in type � . In the case where two terms
�� � are propositions (�� � 	 ����), then � ������ � corresponds to � � �. In the case where two
predicates of � are extensionally equivalent � ����������� � then �� � each hold of all and only the
same elements of � . Therefore ���� 	 � � ������� �������.

� �� � states that two terms are intensionally identical in type � . The proof system for ���� per-
mits us to derive � �� � � � ��� � for all types inhabited by �, (�), but not � ��� � � � �� �.
Therefore, two expressions (terms) can be provably equivalent but intensionally distinct. We have
achieved this result without recourse to modal notions.
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The fact that we can distinguish between equivalence and intensionality permits us to sustain
differences in meaning in natural language that are not available to other intensional logics. The
precise definition of equivalence and identity are given by our proof and model theories [13, Chapter
5]. See Fox and Lappin [16] for a slightly earlier version of these theories.

3 Underspecified representations

3.1 Adding product types to����

We extend the type system of ���� to include product types � � � , which have elements of the
form �� ��. We add the type � � � , and a tableau rule corresponding to the following axiom.

(7) PROD: �� �� 	 �� � � �� � 	 � � � 	 � .

Unlike monomorphic lists, the �-tuples that instantiate product types allow us to express polymor-
phic relations.

The appropriate notions of pairs and projections required for product types are �-definable.

(8) �� �� ���� �����������.

(9) ��� ���� �����������.

(10) �	
 ���� �����������.

We write ��� ��� 
 
 
 � ��� for ��� ��� 
 
 
 ���� 
 
 
�, and ������
 
 
 �� for ��������
 
 
 ��� 
 
 
�.
We specify that for any �-tuple ��� 
 
 
 � ��� 	 �� � 
 
 
 ��, the last element of the �-tuple, ��, is a
designated object, like � or �. This condition insures that it is possible to recognize the end of a
�-tuple and so compute its arity. The designated element of a �-tuple plays the same role as the
empty list does in the tail of every list. It renders the elements of product types equivalent to weak
lists with elements of (possibly) distinct types. As in the case of lists, we generally suppress this
final designated element when representing a �-tuple.

3.2 Generalized quantifiers as arity-reducing functions

Generalized quantifiers (GQs) represent noun phrases. We follow Keenan [17] and van Eijck [22] in
taking a GQ to be an arity reduction operator that applies to a relation � to yield either a proposition or
a relation �� that is produced by effectively saturating one of �’s argument with the GQ. 3 On this view,
applying the GQ corresponding to ‘every student’ (���� ���
�	� � or ��������
�	�� � �����)
to the binary relation ������������� ��� gives the one-place relation ������� ���
�	��

���
��������� ����. Through -reduction this gives ���������
�	� ���� � �������� ����, which is
the property of loving every student.

GQs are of type �� �� ����� �� ����, which we write ���	�� for clarity (where � is
typically �). Core propositional relations, such as verbs, are of type � � �� 
 
 
 �� �� �� ����.
Slightly modifying van Eijck’s Haskell-based treatment of GQs [22], we define an operator � to
‘lift’ quantifiers to the appropriate level to combine with a relation.

(11) � 	 ���	�� �� ��� �� � � �� � �.

3In Keenan’s presentation, some generalised quantifiers can bind more that one of �’s arguments, and so reduce its arity
by more than 1. These GQ are formed from constituent quantifiers that exhibit relations of mutual dependence. Due to these
relations, the GQ which they yield cannot be reduced to a simple functional composition of one quantifier with another. An
example of such a GQ is �every student�a different book� in ‘Every student read a different book.’.
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(12) � 	 ���	�� � � 	 �� �� ������ ��� � ��.

(13) � 	 ���	�� � � 	 �� �� � � � �� �	 ������ ��� � ��������.

Now we can compose representations of � quantifiers with a relation � using �� ����� 
 
 


������ 
 
 
�.

3.3 Indexed permutations of GQ scope sequences

Natural language is ambiguous with respect to the scoping of quantifiers, modifiers, conjunction,
and negation. Many of these scopings are purely semantic in nature. So, for example the following
sentence allows two alternative scope readings.

(14) Every man loves a woman.

(15) �����	����� �������	���� � ��������� ����.

(16) �������	���� � �����	����� ��������� ����.

We want our theory to produce ‘underspecified’ representations that subsume all the various read-
ings, and from which the different readings can be generated. We can express computable functions
in ����, and so we can incorporate the machinery of underspecified semantics directly into the
representation language.

We specify a family of functions ����� ����� � (where � � �) that generate all �	 indexed permu-
tation products of a �-ary indexed product term � �� 
 
 
 � ��� as part of the procedure for generating
the set of possible scope readings of a sentence. ����� ����� � uses a standard algorithm for map-
ping a sequence �� 
 
 
 � �� into the indexed sequence of its permutations. We define this algorithm
recursively as follows.4

DEFINITION 3.1 (Permutation algorithm)
Base case If � � �, then there is no permutation and the index of the product is �.

Recursive case
(1) If � � �, then the � � �	 permutation products of �� 
 
 
 � � � �� and their indices have been

generated.
(2) The �	 permutation products of �� 
 
 
 � �� are obtained by first appending the new element �

to each �� 
 
 
 � ���� permutation product, and then moving it successively left through every
possible position in each of these products.

(3) Assign a group index � to all the permutation products of �� 
 
 
 � �� in which � occupies the
�th position (where � is the rightmost position and k is the leftmost position of a product).

(4) If � is the index of a �� 
 
 
 � � � �� permutation product, then the index � of the �� 
 
 
 � ��
permutation product obtained from it is � � ��
�� � ��	� 
 �.

For our treatment of underspecification, an argument of ����� �����
�

needs to take a �-ary prod-
uct of scope taking elements (in the order in which they appear in the surface syntax) and a �-ary
relation representing the core proposition as its arguments. The scope taking elements and the core
representation can be combined into a single product, e.g. as a pair consisting of the �-tuples of quan-
tifiers as its first element and the core relation as its second. The permutation function ����� ����� �
produces the �	-ary product of scoped readings. When a �-tuple of quantifiers is permuted, the �-
operators that bind the quantified argument positions in the core relation are effectively permuted in
the same order as the quantifiers in the �-tuple. This correspondence is necessary to preserve the

4See Cambell [3] for a recent version of this procedure.
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connection between each GQ and its argument position in the core relation across scope permuta-
tions.

A scope reading is generated by applying the elements of the �-tuple of quantifiers in sequence to
the core proposition, reducing its arity with each such operation until a proposition results. The �th
scope reading is identified by projecting the �th element of the indexed product of propositions that is
the output by our ����� ����� � function. Below we describe a function that performs this projection
of a specified scope reading. It is important to recognize that in an implementation of ���� it is not
necessary to compute the full �	-ary product of permutations that provides (one of the) arguments
for this function. Therefore, the ���� term consisting of the application of ����� ����� � to an
input pair of a �-tuple of GQs and a core relation provides an underspecified representation of the
sentence corresponding to this term. We can give a uniform type to these representations by defining
arbitrary arity product types to cover the type of the �-tuple of GQs that is the first element in the
pair to which ����� ������ applies and the �	-tuple which is its value.

Consider the example ‘Every man loves a woman’, with the GQs interpreting the subject and
object NPs, the core relation, and the ���� term expressing the underspecified representation of
the sentence given, respectively, as follows.

(17) �� � �� ��������	���� �� � ����.

(18) �� � ������������	���� �� �����.

(19) �� 
������� .

(20) ����� ���������� ���� �� 
�����
�� ��.

The permutations of the quantifiers and the core representation that we produce are

(21) ��� ���� �� 
�����
�� ���� ���� � �
�����

�� ��.

Applying relation reduction to computing the final propositions gives us a product containing the
two readings.5

(22) ����� ���������� ���� �� 
�����
�� ��� �

��������	���� �� ����������	���� �� ��������� �����
����������	���� �� ��������	���� �� ��������� �����


To obtain resolved scope readings from an underspecified representation, we define a family of
functions ������� �����

�
��� that compute the �th permutation of a �-ary product of propositions.

Specifically, a function of this kind returns the �th proposition in the product of scope readings that
����� �����

�
gives as its value. We extend the type system to include the type ��� of natural

numbers. We can then define ������� ����� �’s type as

������ 
 
 
 ������� � ���� ����

where ��� � �. To ensure that the function is total, we can define ������� ����� ���� so that
it projects the �� �� ��th term, for example. A detailed proposal for the inclusion of natural
numbers into ���� is provided in [13, Chapter 6].

5To simplify the exposition, the syntactic distinction between intensional term representations of propositions and exten-
sional wffs is dropped in some of the following examples.
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3.4 An alternative perspective

Note that we can define an operation ����	�� ���� that directly computes the �th permutation of a
�-ary product. Given an integer �, its type will be

��� 
 
 
������ � 
 
 
����� ���� � 
 
 
 �� � ������ �����


Using this approach, once we have supplied ����	�� ���� with � quantifiers and a �-ary relation,
and abstract �, the result can be taken to be an underspecified representation that denotes a (partial)
function from integers to propositions. If we make the function complete, then we can define the
type of these representations as

���� ����


As before, one way in which the function can be made complete is if ����	��
�
��� selects the ��

�� ��th permutation.

3.5 Polymorphism in core relations and generalized quantifiers

Consider the following sentences.

(23) Every art dealer introduced a critic to two artists.

(24) Someone believes everything that Mary believes.

(25) The algorithm assigns an integer to each theorem in the logic.

In these examples ‘introduced’ denotes a relation among three (basic) individuals, ‘believes’ a re-
lation between an individual and a proposition, and ‘assigns’ a relation that holds among an abstract
individual (an algorithm), a number, and a proposition. To avoid proliferating ����� ����� � func-
tions to match each of the possible types of the core relation and its GQ arguments, it is necessary to
represent these arguments as polymorphic, and to allow for a polymorphic relational type. By using
product types rather than monomorphic lists as the basis for computing scope permutations we are
able to do this. �-tuples can be specified for elements of distinct types.

The internal polymorphism of GQs is a somewhat more complex issue. We have been assuming
that there is some way of encoding polymorphism in the type of the quantifiers representing noun
phrases, so we have quantifiers with the types �� �� ����� �� ���� and ����� �� ����� ��
����, for example. Usually the type of the determiner function is fixed independently of the common
noun property to which it applies. However, we could allow the type of the common noun property
argument of a quantifier to determine the type of the quantifier. As it stands, this option is not
directly expressible in ����, which adopts implicit polymorphism. In future work we will consider
extending our type system to allow for explicit or parametric polymorphic typing in order to allow
for this kind of type dependency. The type of a determiner would then be ! �� ����, where ! is
understood as a meta-variable for some property type. The determiner’s representation would require
a type parameter, or constraint, that forces ! to be instantiated by the same type �" �� ����� as
the common noun property with which it combines.

3.6 Constraints on scope readings

There are various kinds of constraints that limit the set of possible scope readings for a particular
sentence to a proper subset of the set of �	 orderings of the � scope taking elements which appear
in it. A common condition on relative scope is the strong preference for wide scope assignment to
certain quantifiers by virtue of their lexical semantic properties, like ‘a certain# �’.
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A second kind of condition depends upon the syntactic domain in which a GQ appears. So, for
example, a quantified NP within a relative clause cannot take scope over a quantified NP in which
the relative clause is embedded. The following two examples illustrate these constraints.

The strongly preferred reading of (26) is the one on which ‘a certain book’ takes wide scope
relative to ‘every critic’.

(26) Every critic reviewed a certain book.

In (27) ‘every assignment’ can only take narrow scope relative to ‘a student who completed every
assignment’.

(27) A student who completed every assignment came first in the class.

Scope constraints of these kinds can be formulated as filters on the �	-tuple of permutations

�	����������� 
 
 
 � 
�	���

���������� that ����� �����
�

generates for an argument pair

�	����������. Each such filter is a Boolean property function that imposes a condition on the
elements of the �	-tuple.6

Let 
	�������� be a variable ranging over pairs in which ��$��� is a �-tuple and ��� is
a �-ary relation. We take  ������ to be a ���� property that is true of all and only GQs
that represent ‘a certain# �’, and is false of anything else. As the �-tuples are indexed, there is
a one-to-one correspondence between the elements of a �-tuple and their respective indices. Let
�	��� ����������
	���� � �� if �� is a member of 
	��� and the distinguished term % oth-
erwise. � and & are variables ranging over integers (they are of the type ���). We can specify the
lexical scope constraint illustrated in (26) as the filter in (28).

(28) �
	��������� ������������&����� ��������	��� ����������
	����� ��

��  ��������	��� ��������&�
	����� ��
& ' ����


This condition requires that no element of a �	-tuple of scope readings contains a �-tuple of GQs
in which the index of a  ������ GQ is higher than that of a non- ������ GQ (and so outscoped
by it). Notice that we have only quantified over integers (elements of the type ���) in this filter.
We have taken advantage of the isomorphism between �-tuples of integers and �-tuples of indexed
GQs to avoid quantifying over GQ expressions. Therefore, we have remained within the first-order
expressive resources of ���� .

In order to formulate the condition illustrated in (27) we must introduce syntactic relations. Let
����� ��������� ��� hold iff the NP corresponding to �� appears in a relative clause contained in
the NP corresponding to ��. We can formulate the constraint as in (29).

(29) �
	��������� �����������&���������� ����������� ���(������ ��$����
�	��� ��������&�
	�����

�� & ' ����


This filter prevents a GQ that interprets an NP in a relative clause from having scope over a GQ
that interprets an NP in which the relative clause is embedded.

6See van Eijck [22] for examples of filters on lists specified as Boolean functions on the elements of a list.
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4 Comparison with other theories

4.1 Storage

Cooper [4] and Pereira [20] define a procedure of quantifier storage. In the course of computing the
compositional interpretation of a clause, the rules of semantic derivation apply storage to a quantified
NP by substituting a variable for the GQ interpretation of the NP and adding the GQ to the storage
set. A GQ is stored as the first element of a pair whose second element is the variable that is left in
its argument position. The representation produced for the clause consists of the core propositional
relation and a set of stored GQ pairs. When a GQ is discharged from storage, it is applied to the
core relation, binding the variable in its original position. As the elements of the storage set are
unordered, they can be discharged in any sequence, where each sequence yields a possible scope
reading. So, for example, when storage is applied to the subject and object GQs in (30), the resulting
representation (using a version of Pereira’s notation [20]) is (31).

(30) Most students read two articles.

(31) ����� ���
�	���� ��� ��� ���������� ��
 � ���
���� ��.

The two possible orders for discharging the quantifiers from storage give the scope readings in
(32) and (33).

(32) ���� ���
�	������
��� ������������
���
���� ����.

(33) ��� ������������
���� ���
�	������
���
���� ����.

Storage provides an elegant and straightforward way of generating underspecified scope repre-
sentations for a sentence. However, there are (at least) three difficulties with this approach. First,
storage is an additional mechanism defined outside of the semantic representation language as such.
The expressions that it produces are not themselves part of this language (a typed �-calculus) but
stages in the derivation of well-formed terms of the representation language. While storage is easily
implemented in a declarative fashion, as in [20] and [1], it remains an essentially procedural device
that is added to a compositional semantic theory as a means of obtaining scope ambiguity without
attaching alternative scope readings to distinct syntactic structures, as in [19].

By contrast, in our account underspecified representations are themselves terms of ���� , the
representation language. Therefore, this issue does not arise.

It is worth pointing out that we are able to represent ‘higher order’ quantifiers like ‘most’ in
���� without compromising the first order nature of the theory. This involves constructing a recur-
sive definition of cardinality for separation types and properties [13, Chapters 6 and 9].

Second, as the storage set is unordered, it is not obvious how to project a particular scope reading
without computing all �	 readings from the set. This problem is partially solved when storage is
actually implemented, as the storage set becomes an ordered list. However, in order to allow for the
projection of a specified scope reading without constructing all permutations of a list �, it is necessary
to develop additional procedures for representing the �	 list ) of �’s permutations, and projecting the
�th element of ) without actually computing all the elements of ). While this is possible, these
procedures have to be defined as additional mechanisms outside of the representation language (say
a typed �-calculus).

This problem does not arise on our approach. Underspecified representations consist in the appli-
cation of a scope permutation function to an indexed �-tuple, which yields a term of ���� . The
�	-tuple that is the value of the function at an argument need not be fully computed to project a
specified scope reading. A projection function can identify the �th element of this product without
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computing other scope readings. Moreover, it is possible to construct underspecified representations
using ����� ������ without evaluating the arguments of this function when they first appear. In
the course of building representations of the discourse, filters can be applied to the ����� ����� �

function, progressively reducing the search space of possible scope readings. Product types, permu-
tation functions on �-tuples, and projection functions on indexed �-tuples are all defined within the
resources of ���� .

Finally, because storage is a mechanism constructed outside of the representation language, it is
necessary to specify an additional constraint language for stating the Boolean conditions required to
restrict the set of possible scope readings derived from the storage set. 7

Again, this problem does not arise on our treatment of underspecification. The filters that ex-
press constraints on scope readings are �-terms of ���� , and so the resources required for the
formulation of these constraints are available within the representation language.

4.2 Holes, plugs, and glue languages

Bos [2] and Blackburn and Bos [1] develop a constraint-based system for underspecified represen-
tation for first-order logic that they refer to as Predicate Logic Unplugged(PLU). This system is a
generalization of the hole semanticsapproach to underspecification which Reyle [21] first developed
within the framework of Underspecified Discourse Representation Theory. Copestake et al.’s Min-
imal Recursion Semantics [5] is an application of hole semantics within a typed feature structure
grammar (HPSG).

An underspecified representation of a quantified first-order formula in PLU is an ordered tripe
)*�+���. )* is a set of labels for formulas and of holes, which are (essentially) metavariables
that take formulas as values. + is a set of labelled formulas, which may contain holes for subformu-
las. � is a set of scope constraints expressed as partial order relations on labels and holes. The PLU
representation of (34) is (35).

(34) Every student wrote a program.

(35) ���� ��� ��� ,�� ,�� ,�
�
��� � ������
�	�

����� ,��� �� � ����������
���� � ,��� �� � �����

���� ��
�
��� � ,�� �� � ,�� �� � ,�� �� � ,�
�


The partial ordering constraints in (35) define a bounded lattice with , � as �, the propositional
core of the formula, �� as �, and �� and �� as midpoints of the lattice between � and �. As �� and
�� are not ordered with respect to each other, either formula can be substituted for the hole in the
other formula. �� must be substituted last in the remaining hole. If �� is taken as the value of ,�, �� is
substituted for ,�, and then �� is substituted for ,�, the result is a wide scope reading of the universal
quantifier, as in (36). Alternatively, if �� is taken as the value of ,�, �� is assigned to ,�, and �� to ,�,
we obtain (37).

(36) ������
�	������ �������������� � ��������� ����.

(37) �������������� � ������
�	������ ��������� ����.

These are the only two scope resolutions that satisfy the partial order conditions in (35).

7Keller [18] defines a type of storage that encodes relations of syntactic nesting within the stored GQ corresponding to an
NP that contains another quantified NP. Although these nested stores avoid certain problems of variable binding encountered
with Cooper storage, they do not, in themselves, impose constraints on possible scope readings of the sort that we have
discussed in the previous section. See Blackburn and Bos [1] for a discussion and an implementation of Keller stores.
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Hole semantics provides a more expressive and flexible system for constructing underspecified
representations than storage. It generalizes naturally to scope elements other than GQs, like nega-
tion and modifiers. It is possible to identify a particular scope reading that satisfies the constraints of
an underspecified hole semantic representation by imposing a particular order of substitution of la-
bels for holes in a schematic formula set. However, it does suffer from the first and third difficulties
which we raised against storage. Underspecified representations are constructed out of metavari-
ables, schematic formulas, and partial ordering statements in a metalanguage that is distinct from
the semantic representation language. The substitutions of labelled formulas for holes that generate
the well-formed formulas of the representation language which correspond to scope readings are
also metalinguistic operations added to the representation language.

More seriously Ebert [9] shows that PLU and other hole semantic systems are expressively in-
complete because their constraint languages do not permit the formulation of Boolean conditions on
scope like those given in (28) and (29). As in the case of storage, it is possible to add a constraint
language with sufficient expressive power required to state conditions of this kind. 8 But this requires
further enrichment and complication of the theory. As we have seen, these problems do not arise on
our account.

Dalrymple et al. [8], and Crouch and van Genabith [6] suggest a theory on which representations
of GQs and core relations are expressed as premisses in an underspecified semantic glue language.
These premisses are combined by the natural deduction rules of linear logic in order to yield a
formula that represents the scope reading of a sentence. The rules can apply to premisses in different
orders of derivation to generate alternative scope readings. Unlike PLU the glue language can be
higher-order. The formal properties of glue language semantics are different than hole semantics, but
it is closely related to this approach in the general view of underspecification that it adopts. It would
seem that in order achieve expressive completeness in the sense of [9], glue language semantics
must add a system for stating constraints on the linear logic proof theory which it employs to derive
specified interpretations.

4.3 Relation reduction

van Eijck develops an approach to underspecified representations, in the functional programming
language Haskell, which uses relation reduction and arbitrary arity relations [22]. This inspired our
approach, which we have developed in a more restrictive formal theory.

We give a fully general account and generalise van Eijck’s approach in certain respects. In partic-
ular, we introduce a function for selecting specific scope readings, and we make explicit the mech-
anisms for constraining scope readings using filters. Our approach to underspecification is also
polymorphic, which leaves open the possibility of dealing with core relations whose arguments are
of different types.

We developed ���� to have a rich system of types, broadly comparable to that of Haskell, but
within a language that we have shown to be of more restricted formal power.

5 Conclusions

We have presented a treatment of underspecified representation within ���� which uses product
types rather than lists to represent scope sequences. These types permit us to accommodate poly-
morphism in the core relation arguments.

8We are grateful to Ian Pratt-Hartman for helpful discussion of this point.
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We have characterized an underspecified representation as a ���� term in which a function
����� ������ applies to a pair containing an initial sequence of scope taking elements and a
core relation. It returns as its value an indexed �	-product of possible scope readings.
������� ����������� �����

�
�������� �� projects the �th scope reading in the �	-tuple of scope

readings ����� �������������.
We have formulated constraints on scope readings as filters on the �	-tuples that ����� ����� �

produces. These filters are ���� property terms which encode Boolean conditions and quantifica-
tion over the integers of indexed �-tuples.

Underspecified representations, the projection of a particular scope reading, and constraints on
possible scope readings are all specified by appropriately typed �-terms within the semantic repre-
sentation language, ����, rather than through operations on schematic metalinguistic objects.
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