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Abstract

We present Property Theory with Curry Typing (PTCT), an inten-
sional first-order logic for natural language semantics. PTCT permits
fine-grained specifications of meaning. It also supports polymorphic types
and separation types.1 We develop an intensional number theory within
PTCT in order to represent proportional generalized quantifiers like most.
We use the type system and our treatment of generalized quantifiers in
natural language to construct a type-theoretic approach to pronominal
anaphora that avoids some of the difficulties that undermine previous
type-theoretic analyses of this phenomenon.

1 Introduction

Much work in formal and computational semantics has been based on two as-
sumptions. First, higher-order logic and type theory are necessary to achieve

∗Earlier versions of the ideas discussed in this paper were presented at LACL2001 (Le
Crosic), Seventh International Workshop on Natural Language Understanding and Logic Pro-
gramming 2002 (Copenhagen), Seventh Symposium for Logic and Language 2002 (Pécs), Sens
du Représentation 2003 (Montreal), Fields Workshop on Mathematical Linguistics 2003 (Ot-
tawa), Logical Foundations of Computational Linguistics Workshop at LICS 2003 (Ottawa),
Recent Advances in Natural Language Processing 2003 (Borovets), the Cognitive Science
Colloquium, University of Osnabrück (2003), the Artificial Intelligence Colloquium of the
Computer Science Department, Harvard University (2004), and the Human Communication
Research Centre Colloquium of the University of Edinburgh (2004). We are grateful to the
participants of these forums for helpful discussion. We would also like to thank Peter Aczel,
Paul Gilmore, Graham Katz, Kai-Uwe Kühnberger, Michael Kolhasen, Jim Lambek, Tom
Maibaum, Gerald Penn, Ian Pratt, Michael Rabin, Dana Scott, Phil Scott, Ray Turner, and
Yoad Winter for helpful advice on a number of significant formal issues. We are particularly
indebted to Robert Schubert for careful, detailed and constructive comments on our proposed
proof and model theories. This paper developed out of joint work with Carl Pollard on the
formal foundations of intensional semantics. He has played an important role in shaping our
ideas on general issues of intensionality and type theory, and we would like to thank him for
his contribution to our work. Needless to say, we bear sole responsibility for any errors that
may remain in the paper. The research of the second author has been supported by grant
number AN/2687/APN from the Arts and Humanities Research Board of the UK, and grant
number RES-000-23-0065 from the Economic and Social Research Council of the UK.

1Separation types yield a form of subtype.
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the expressive power required to represent the semantic properties of natural
language. Second, intensions can best be characterized as functions from possi-
ble worlds (or situations) to extensions. We propose a logic that dispenses with
both these assumptions and argue that it offers a more appropriate framework
for formally representing the semantics of natural language. Property Theory
with Curry Typing (PTCT) is a first-order system that incorporates flexible
Curry typing. It is radically intensional in that its model theory takes inten-
sions (represented as expressions in a term language) as primary rather than as
defined in terms of extensions.

Let us briefly consider each of the two assumptions in turn. Montague’s [43]
IL is developed within an intensional version of Church’s [13] Simple Theory
of Types (SST) employing the typed λ-calculus with intension and extension
forming operators, and modal operators. Gallin [21] simplifies this system by
replacing the intensional and extensional operators with the basic type s. Bar-
wise and Cooper [4] invoke a set theoretic counterpart of SST to develop an
account of generalized quantifiers in natural language, and this framework is
applied by, among others Keenan and Satavi [31], Keenan and Westerst̊ahl [32],
and Lappin [35]. Cooper [14] uses a version of the typed λ-calculus to con-
struct a situation theoretic treatment of generalized quantifiers. Groenendijk
and Stokhof [24] integrate their dynamic logic [25] into a variant of Montague’s
IL in order to represent certain kinds of discourse anaphora. The main reason
for employing higher-order type systems is that they contain functional types,
which are required to provide adequate semantic representations for several
syntactic categories. A unified treatment of NPs is possible if they are assigned
the type of generalized quantifier (functions from properties to propositions,
or truth-values). Adjectival and adverbial modifiers correspond to functions
from properties to properties (or sets). Sentential modifiers are interpreted as
functions from propositions to propositions (truth-values).

Through its use of Curry typing PTCT contains the full range of functional
types. Moreover, it allows for limited (non-iterated) polymorphism, so that it
captures the fact that certain natural language expressions, like coordination,
correspond to functional types that apply to a variety of distinct argument types.
However, quantification in the language of well-formed formulas in PTCT is first-
order. Quantification over functional entities and types is expressed through
quantification over terms, which are elements of the domain. The model theory
is an extension of a standard extensional model for the untyped λ-calculus,
with the additional expressive power of Curry types added through a distinct
component of the language of terms. The logic remains first-order in its formal
power.

The view that characterizes intensions as functions from possible worlds
(situations) to extensions has been influential at least since Carnap [8]. Mon-
tague [43] gives it detailed formal expression. As has been frequently noted, this
treatment of intensions yields a theory of meaning that is not sufficiently fine-
grained. It entails that logically equivalent expressions are cointensional and so
intersubstitutable in all contexts, including the complements of propositional
attitude predicates. However, such substitutions do not always hold. So, for
example, the sentences in 1 are logically equivalent, but the non-equivalence of
the sentences in 2 shows that those in 1 are not cointensional.

(1) (a) Every prime number is divisible only by itself and 1.
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⇔
(b) If A ⊆ B and B ⊆ A, then A = B.

(2) (a) John believes that every prime number is divisible only by itself and
1.

(b) John believes that if A ⊆ B and B ⊆ A, then A = B.

Most attempts to construct fine-grained intensional theories have followed
one of two approaches. The first involves positing impossible worlds or situa-
tions in which at least some some classically valid formulas do not hold. This
enlargement of the set of worlds/situations permits distinctions to be made be-
tween expressions that are equivalent across the set of possible worlds/situations.
Variants of this view are presented by Barwise and Etchemendy [5], Barwise [3],
Muskens [44], and Gregory [23]. On the second approach, a hyperintensional
model theory is constructed which appears to permit distinctions among logi-
cally equivalent expressions. However, a proof theory is not explicitly specified.
As a result it is not clear how the system prevents intensional identity from col-
lapsing into logical equivalence. This difficulty arises with the theories proposed
by Thomason [52], Cresswell [15], Landman [33], and Larson and Segal [39].2

There are exceptions, such as Bealer [6], Turner [53, 55] and Zalta [58]. No-
table among these, at least in the context of the present discussion, is Bealer [6],
who proposes a first-order logic with an abstraction operator that forms names
of intensional entities. Its model theory posits a domain of intensions (prop-
erties, propositions, etc.), and its proof theory (on one version) is designed to
prevent the reduction of intensional identity to logical equivalence. Possible
worlds or situations play no role in the theory. Bealer’s logic does not contain
types beyond those of classical first-order logic. Due to the absence of functional
types it cannot express the full range of generalized quantifiers and modifiers
that appear in natural language. It is also unable to handle polymorphism.
Therefore, it lacks the expressive power required for an adequate framework for
NL semantic representation.3

As in Bealer’s logic, our model theory for PTCT takes intensions to be basic
entities rather than functions from possible worlds (situations) to extensions.
Our proof theory prevents the reduction of provable equivalence to identity,
and intensions are represented independently of modality. However, PTCT sup-
ports functional types and (limited) polymorphism, and so it has the required
expressive power. Fine-grained intensionality is achieved in a first-order system
that does not require (im)possible worlds but is rich enough to sustain func-
tional, separation, dependent, and comprehension types.4 We prove that the
basic PTCT logic (without number theory) is sound and complete.

2Fox and Lappin [19] and Lappin and Pollard [38] discuss these approaches in detail. They
also show that Lappin and Pollard’s [37] attempt to construct a hyperintensional semantics
on the basis of a system that uses a free topos for its model theory leads to radical intensional
collapse.

3There are additional formal problems with Bealer’s logic. His model theory seems to
permit the generation of semantic paradoxes. Moreover, the iterated use of his abstraction
operator to generate singular terms constructed out of predicates that apply to property
terms creates terms whose denotations seem to be computable only through the application
of functions to intensions, where these functions are themselves elements of the domain of the
model. This result runs counter to Bealer’s claim to have constructed a model theory in which
functions are excluded from any domain. We discuss these issues in Fox and Lappin [19].

4The Church-typed, higher-order, intensional logic FIL, presented in Fox, Lappin and Pol-
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In Section 11 we exhibit the expressive power of flexible Curry typing in
PTCT by defining an intensional number theory, which we employ to specify
the cardinality of properties. We then characterize generalized quantifiers as
cardinality relations between properties. Finally, in Section 12, we combine
our representation of generalized quantifiers with our treatment of separation
and dependent types to present a unified treatment of pronominal anaphora
that handles discourse anaphora relations dealt with by theories of dynamic
semantics.

2 PTCT: A Curry-Typed Theory

There are various ways in which we can view PTCT. In terms of its presenta-
tion, it can be regarded as a development of Property Theory (PT) [55]. The
differences being that PTCT has a fully-fledged language of types, whereas PT
typically mimics types using properties. The addition of types requires changes
to the syntax of the language, and the axioms, in order to give the appropriate
behaviour to expressions in which types appear.

These additions mean that we can represent quantified propositions that
explicitly restrict the domain of quantification. For example, if we wish to
represent the sentence

John believe everything that Mary believes.

then the quantifier representing “everything” can be restricted to range only over
propositions. In PT, such restrictions can only be expressed in the language of
wffs.

There are other differences. PT has a universal type. It has been argued
that this is appropriate for dealing with certain phenomena such as conjunc-
tions, gerunds and infinitives [10, 11]. However, it could be argued that such an
approach is unduly permissive, in that it imposes no constraints on the relevant
types of the arguments and conjuncts. As we shall see, PTCT can deal with
most salient examples using polymorphic types. This allows us to impose lin-
guistically motivated constraints on the types of the arguments and conjuncts.

A further difference is that unlike PT, PTCT does not permit self-application.
This constraint is imposed to prevent paradoxes, that would otherwise follow
from the nature of the type system (in particular, from having a type corre-
sponding to propositions that can appear in terms within the theory).5

The presentation of PTCT differs from Higher-Order Logic, in that PTCT
can be seen to adopt a meta-theoretic characterisation of a semantic theory.
Basic derivations are presented as axioms in a meta-theory. To convey the basic
idea, an inference of the form:

a, b ` c

lard [20] also allows for fine-grained intensionality independently of (im)possible worlds. How-
ever, it does not have separation, dependent, or comprehension types or polymorphism.

5If a system both has an impredicative notion of proposition, and allows terms involving
self application to form propositions, then it will be inconsistent. PT allows self-application,
but has a predicative notion of proposition. With PTCT, because the type that corresponds
to propositions can appear within the terms of PTCT, its characterisation of propositions is
impredicative, so self-application is not permitted.
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is presented as something like the axiom

T(a) ∧ T(b) → T(c)

where ∧ and → are meta-level connectives, and T(a) is a meta-theoretic propo-
sition that asserts that the object level proposition a is true.

Formulating a logic by way of a meta-theory is not novel. See for example
Turner [55], Smith [49]. Some of the differences with the Property Theory of
Turner [55] have already been discussed. Smith [49] indicates how Martin-Löf’s
Type Theory (MLTT) can be interpreted in a Frege structure [1]. Although
Smith internalises a “universe” of types, such types are precisely the small types
of the Frege structure, which can be internalised in PT, thus the limitations of
the typing are exactly those of PT, with the additional difference that Smith
is capturing an intuitionistic theory rather than a classical one. Note that
Turner [55] subsumes Smith [49].

The meta-theory for PTCT is first-order in character. By giving it an ap-
propriate model, it makes clear that PTCT is a first-order equivalent language.6

Another departure from more conventional approaches lies in the nature of
the types. Broadly speaking, types can be either Church-style or Curry-style.
As already discussed, unlike most typed logics that have been applied in natural
language semantics, PTCT adopts Curry typing for flexibility.

Conceptually, there is fairly close relationship between the underlying logic
captured by the meta-theory of PTCT, and Turner’s IHOL [56].

3 PTCT: Syntax of the basic theory

The core language of PTCT consists of the following sub-languages:

(3) Terms t ::= x | c | l | T | λx(t) | (t)t
(logical constants) l ::= ∼̂ | ∧̂ | ∨̂ | →̂ | ↔̂ | ∀̂ | ∃̂ | =̂T | ∼̂=T | ε

(4) Types T ::= B | Prop | T =⇒ T ′

(5) Wff ϕ ::= α | ∼ϕ | (ϕ ∧ ϕ′) | (ϕ ∨ ϕ′) | (ϕ → ϕ′) | (ϕ ↔ ϕ′) | (∀xϕ) |
(∃xϕ)
(atomic wff) α ::= (t =T s) | t ∈ T | t ∼=T s | Truet

The language of terms is the untyped λ-calculus, enriched with constants c,
and logical constants l. Types T are also terms.7 The presence of constants
c allows us to introduce additional λ-calculus terms in subsequent discussions
without always being obliged to give an encoding of the new notion in pure
(i.e. constant-free) λ-calculus.

The language of types contains the basic type of individuals B, propositions
Prop, and general function space types T =⇒ T ′.

6This is somewhat akin to giving a Henkin general model for a logic that is expressed in
higher-order terms [27].

7It is possible to consider reformulating the theory using a typed lambda-calculus with
abstraction of the form λx : T (t). Separation types, which are introduced later, could then
be treated directly as sugar for a typed λ-abstract.

In the case of the untyped calculus used here, it is reasonable to consider adding untyped
λ-identity as an atomic wff (t =λ t), rather than adding the usual α, β, η rules as substitution
rules in the tableau rules for the system.
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The language of wffs is a first-order language together with type judgements
t ∈ T , typed identity =T (intensional equality) and equivalence ∼=T (extensional
equality), and truth judgments Truet. In principle at least, the latter can apply
to all terms t, but it only makes sense to apply it to terms that are intended to
represent propositions (that is, t ∈ Prop). To do otherwise would be to entertain
a category mistake.

The language of terms is used to represent the interpretations of natural
language expressions. It has no internal logic. By this, we mean that it is
not possible to perform inferences directly with term representations of propo-
sitions. Inferences are concerned with establishing relationships between the
truth conditions of propositions and terms representing propositions. In the
case of PTCT, such relationships are expressed in the language of wffs, which
acts as a meta-language for the language of terms.

With an appropriate proof theory, the simple language of types together with
the language of terms can be combined to produce a Curry-typed λ-calculus.
The first-order language of wffs is used to formulate type judgements for terms,
and truth conditions for those terms judged to be in Prop.

It is important to distinguish between the notion of a proposition itself (in
the language of wff), and that of a term that represents a proposition (in the
language of terms). True(t) will be a true wff whenever the proposition repre-
sented by the term t is true, and a false wff whenever the proposition represented
by t is false. The representation of a proposition t (∈ Prop) is distinct from its
truth conditions (True(t)).

Later, in Section 7, we will consider some extensions to the theory.

4 A Proof Theory for PTCT

We construct a tableau proof theory for PTCT.8 Its rules can be broken down
into the following kinds.

• The basic connectives of the wff: These have the standard classical first-
order behaviour.

• Identity of terms (=T ): These are the usual rules of the untyped λ-calculus
with α, β and η reduction, with the constraint that the related terms are
known to be of the same type.

• Typing of λ-terms: These are essentially the rules of the Curry-typed cal-
culus, augmented with rules governing those terms that represent propo-
sitions (Prop).

• Truth conditions for Propositions: Additional rules for the language of
wffs that govern the truth conditions of terms in Prop (which represent
propositions).

• Equivalence (∼=T ): The theory has an internal notion of extensional equiv-
alence which is given the expected behaviour.

8For an introduction to tableau proof procedures for first-order logic with identity see
Jeffrey [28], based on work by Beth [7] and Smullyan [50]. Fitting [17] presents an implemented
tableau theorem prover for first-order logic with identity, and he discusses its complexity
properties.
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Below we present the tableau rules for PTCT. The symbol * indicates that
the corresponding proposition has been used, and does not need to be considered
again.

4.1 General Rule Forms

There are four general kinds of rules, A, B, C, and D, as follows.

A-Rule

A*

A1

A2

B-Rule

B*

vv
vv

vv
v

HH
HH

HH
H

B1 B2

C(d)-Rule

C

C[d/x]

where d occurs on the path
(or is the only constant
occurring in the path)

D(d)-Rule

D

D[d/x]

where d does not occur
previously on the path

In addition, there are also closure rules which indicate when a branch is
closed due to some contradiction. Partly due to the typing system, and partly to
simplify the proof of completeness, additional closure rules are given in addition
to the usual rule that states a path is closed if it contains the formulae A and
∼A for any proposition A. Rules that require two premises are represented as
single premise rules with a side-condition.

The specific rules for Wffs (the core classical logic, λ-equivalence, equivalence
and identity), Types and Propositions are detailed next.

4.2 Rules for Wffs

4.2.1 Classical Rules

The following rules are standard, as we adopt the usual rules for the core logic
of wff.

A-Rules

Conjunction

(ϕ ∧ ψ)∗

ϕ
ψ

Bi-implication

(ϕ↔ ψ)∗

(ϕ→ ψ)
(ψ → ϕ)

Disjunction′

∼(ϕ ∨ ψ)∗

∼ϕ
∼ψ

Implication′

∼(ϕ→ ψ)∗

ϕ
∼ψ
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Double Negation

∼∼ϕ∗

ϕ

B-Rules

Disjunction

(ϕ ∨ ψ)∗

vv
vv

vv
v

HH
HH

HH
H

ϕ ψ

Conjunction′

∼(ϕ ∧ ψ)∗

vv
vv

vv
v

HH
HH

HH
H

∼ϕ ∼ψ
Implication

(ϕ→ ψ)∗

vv
vv

vv
v

HH
HH

HH
H

∼ϕ ψ

Bi-implication′

∼(ϕ↔ ψ)∗

vv
vv

vv
v

HH
HH

HH
H

∼(ϕ→ ψ) ∼(ψ → ϕ)

C-Rules

∀ Quantification

∀x.ϕ

ϕ[k/x]

∃ Quantification′

∼∃x.ϕ

∼ϕ[d/x]

D-Rules

∃ Quantification

∃x.ϕ

ϕ[d/x]

∀ Quantification′

∼∀x.ϕ

∼ϕ[d/x]

⊥-Rules Path closure can be derived under the following circumstances.

Contradiction (1)
ϕ closes a branch if ∼ϕ

Contradiction (2)
∼ϕ closes a branch if ϕ

Now that we have the standard rules in place, we can consider the rules for
substituting λ-equivalent terms, and, subsequently, the rules that govern the
PTCT notions of equivalence and identity.

4.2.2 λ Rules

These rules implement the usual α, β, and η rules of the λ-calculus as substitu-
tion rules.
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A-Rules

β-reduction

. . . (λu.t)(a) . . .

. . . t[a/u] . . .

η-reduction

. . . λu.(tu) . . .

. . . t . . .

u not free in t

C-Rules

α-reduction

. . . λx.t . . .

. . . λd.t[d/x] . . .

d not free in t

4.2.3 Equivalence and Identity Rules

These rules are intended to give the appropriate logical behaviour to statements
of equivalence in the language of wffs.

A-Rules

Substitution

ϕ

ϕ[t/s]

t =T s or s =T t

Identity

t ∈ T

t =T t

Equivalence (1)—reflexivity

t ∈ T

t ∼=T t

Equivalence (2)—symmetry

t ∼=T s

s ∼=T t

t, s ∈ T

Equivalence (3)—transitivity

t ∼=T s

t ∼=T u

t, s, u ∈ T ; s ∼=T u

Equivalence (4)—in Prop

t ∼=Prop s

Truet↔ Trues

Equivalence′ (5)—in Prop

∼(t ∼=Prop s)

∼(Truet↔ Trues)
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C-Rules

Co-extensionality (1)

s ∼=(S=⇒T ) t

s(d) ∼=T t(d)

d ∈ S;
t, s ∈ (S =⇒ T )

D-Rules

Co-extensionality′ (2)

∼(s ∼=(S=⇒T ) t)

∼(s(d) ∼=T t(d)), d ∈ S

t, s ∈
(S =⇒
T )

⊥-Rules Path closure can be derived under the following circumstances.

Equivalence within a Type
t ∼=T t′ closes a branch if t 6∈ T

Identity within a Type
(t =T t′) closes a branch if t 6∈ T

4.3 Type Inference Rules

These rules govern the inference of type membership of terms in the language
of wffs.

A-Rules

General Function Spaces (1)

t ∈ (S =⇒ T )

∀x(x ∈ S → tx ∈ T )

General Function Spaces (2)

t 6∈ (S =⇒ T )

∃x(x ∈ S ∧ tx 6∈ T )

Negated Propositions

∼ t 6∈ Prop

t 6∈ Prop

Universal Propositions

(∀̂xεS.t) 6∈ Prop

(λx.t) 6∈ (S =⇒ Prop)

Existential Propositions

(∃̂xεS.t) 6∈ Prop

(λx.t) 6∈ (S =⇒ Prop)

Equivalence

t ∈ T

(t ∼̂=T t′) ∈ Prop

t′ ∈ T

Identity

t ∈ T

(t =̂T t′) ∈ Prop

t′ ∈ T
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B-Rules

Conjunctive Propositions

(t ∧̂ t′) 6∈ Prop

vv
vv

vv
v

HH
HH

HH
H

t 6∈ Prop t′ 6∈ Prop

Disjunctive Propositions

(t ∨̂ t′) 6∈ Prop

vv
vv

vv
v

HH
HH

HH
H

t 6∈ Prop t′ 6∈ Prop

Implicative Propositions

(t →̂ t′) 6∈ Prop

vv
vv

vv
v

HH
HH

HH
H

t 6∈ Prop t′ 6∈ Prop

Bi-implicative Propositions

(t ↔̂ t′) 6∈ Prop

vv
vv

vv
v

HH
HH

HH
H

t 6∈ Prop t′ 6∈ Prop

⊥-Rules

True Propositions
Trues closes a branch if s 6∈ Prop

4.4 Truth Rules

A-Rules

Negation
True(∼̂ s)∗

∼ Trues

s ∈ Prop

Conjunction
True(s ∧̂ t)∗

Trues ∧ Truet

s, t ∈ Prop

Disjunction
True(s ∨̂ t)∗

Trues ∨ Truet

s, t ∈ Prop

Implication
True(s →̂ t)∗

Trues→ Truet

s, t ∈ Prop

Bi-implication
True(s ↔̂ t)∗

Trues↔ Truet

s, t ∈ Prop

∀ Quantification
True(∀̂xεS.t)∗

∀x(x ∈ S → Truet)

(λx.t) ∈
(S =⇒
Prop)

∃ Quantification
True(∃̂xεS.t)∗

∃x(x ∈ S ∧ Truet)

(λx.t) ∈
(S =⇒
Prop)

Equivalence
True(s ∼̂=T t)∗

(s ∼=T t)

s, t ∈ T

Identity
True(s =̂T t)∗

(s =T t)

s, t ∈ T

Negation′

∼ True(∼̂ s)∗

Trues

s ∈ Prop
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Conjunction′

∼ True(s ∧̂ t)∗

∼(Trues ∧ Truet)

s, t ∈ Prop

Disjunction′

∼ True(s ∨̂ t)∗

∼(Trues ∨ Truet)

s, t ∈ Prop

Implication′

∼ True(s →̂ t)∗

∼(Trues→ Truet)

s, t ∈ Prop

Bi-implication′

∼ True(s ↔̂ t)∗

∼(Trues↔ Truet)

s, t ∈ Prop

∀ Quantification′

∼ True(∀̂xεS.t)∗

∼∀x(x ∈ S → Truet)

(λx.t) ∈
(S =⇒
Prop)

∃ Quantification′

∼ True(∃̂xεS.t)∗

∼∃x(x ∈ S ∧ Truet)

(λx.t) ∈
(S =⇒
Prop)

Equivalence′

∼ True(s ∼̂=T t)∗

∼(s ∼=T t)

s, t ∈ T

Identity′

∼ True(s =̂T t)∗

∼(s =T t)

s, t ∈ T

5 Example Proof

In Figure 1, we give an example of a proof using this tableau system. The
example we use is intended to represent some agent’s beliefs about another
agent’s beliefs. Specifically, we show that

bel′e(∀̂xεProp.(bel′d(x) →̂ ϕ)) ∈ Prop

follows from
bel′e∈ (Prop =⇒ Prop)
bel′d∈ (Prop =⇒ Prop)
ϕ ∈ Prop

using the tableau rules given above.
Such proofs of sentences concerning a term’s type are important, as we need

to be able to show that a term represents a proposition before we can reason
with its truth conditions.

6 Intensional Identity v. Extensional Equivalence

There are two equality notions in PTCT. t ∼=T s states that the terms t, s are
extensionally equivalent in type T . Extensional equivalence is represented in
the language of terms by t ∼̂=T s. t =T s states that two terms are intensionally
identical. The rules for intensional identity are essentially those of the λαβη-
calculus. It is represented in the language of terms by t =̂T s. It is necessary

12



1
2
3
4

bel′e ∈ (Prop =⇒ Prop)
bel′d ∈ (Prop =⇒ Prop)

ϕ ∈ Prop

bel′e(∀̂xεProp.(bel′d(x) →̂ ϕ)) 6∈ Prop

5 ∀x(x ∈ Prop → bel′e(x) ∈ Prop)

6 (∀̂xεProp.(bel′d(x) →̂ ϕ)) ∈ Prop → bel′e(∀̂xεProp.(bel′d(x) →̂ ϕ)) ∈ Prop

iiiiiiii
\\\\\\\\\\\\\\\\\\\\\

7 (∀̂xεProp.(bel′d(x) →̂ ϕ)) 6∈ Prop bel′e(∀̂xεProp.(bel′d(x) →̂ ϕ)) ∈ Prop

8 λx(bel′d(x) →̂ ϕ) 6∈ (Prop =⇒ Prop)

9 ∃y(y ∈ Prop ∧ λx(bel′d(x) →̂ ϕ)(y) 6∈ Prop)

10 ∃y(y ∈ Prop ∧ (bel′d(y) →̂ ϕ) 6∈ Prop)

11 a ∈ Prop ∧ (bel′d(a) →̂ ϕ) 6∈ Prop

12 a ∈ Prop

13 (bel′d(a) →̂ ϕ) 6∈ Prop

iiiiiiii
UUUUUUUU

14 bel′d(a) 6∈ Prop ϕ 6∈ Prop

15 a ∈ Prop → bel′d(a) ∈ Prop

iiiiiiii
UUUUUUUU

16 a 6∈ Prop bel′d(a) ∈ Prop

Lines 1,2,3 are premises. 4 is the negated conclusion. 5 follows from 1 (General
Function Spaces). The RHS of 6 contradicts 4. 9 uses Negated General Function
Spaces. 10 uses β-reduction. The RHS of 14 contradicts 3. 15 is an instantiation
of 5. RHS of 16 contradicts 14. LHS of 16 contradicts 12.

Figure 1: Example Proof
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to type the intensional identity predicate in order to avoid paradoxes when we
introduce comprehension types.

The rules governing equivalence and identity are such that we are able to
derive t =T s→ t ∼=T s for all types inhabited by t (s), but not t ∼=T s→ t =T

s. As a result, PTCT can sustain fine-grained intensional distinctions among
provably equivalent propositions. Therefore, we avoid the reduction of logically
equivalent expressions to the same intension, a reduction which holds in classical
intensional semantics, without invoking impossible worlds. Moreover, we do so
within a first-order system that uses a flexible Curry typing system rather than
a higher-order logic with Church typing.

7 Extending the Type System

What we have presented so far is a highly intensional formal logic with a simple
type system, expressed in a Curry-style. Whilst this type system may be suffi-
cient to deal with core issues in natural language semantics, there may be cases
where a richer type system is more appropriate. Here we consider some possible
extensions that are motivated by the concerns of natural language semantics.

7.1 A Universal Type

One possible extension that we could consider is to add a universal type ∆ to
the types, and rules corresponding to the following axiom.

(6) UT: x ∈ ∆ ↔ x = x

A reason for adopting such an extension is that it would make it possible to
apply Chierchia’s analysis of nominalisation [9] directly within PTCT. To be
more specific, phrases such as “is fun” can take nouns, gerunds and infinitives
as arguments, as in:

Tennis is fun.
Playing tennis is fun.
To play tennis is fun.

The last two sentences are examples of nominalisation; the gerund and infinitive
forms allow verbs to play the role of nouns. Chierchia accounts for this by argu-
ing that such phrases should be represented by functions that take arguments
of any type and yield a proposition, that is, the data can be accounted for if we
have the type ∆ =⇒ Prop. This requires that the theory has a universal type
∆.9

As Chierchia observes, the universal type also allows for an analysis of nat-
ural language conjunction. Conjunctions such as “and” and “or” are not re-
stricted to conjoining phrases of any particular category. We can capture this
type generality of conjunction by giving it the type ∆ =⇒ (∆ =⇒ ∆).

Unfortunately this extension is inconsistent in PTCT if Prop is a type, as
it is in our proposed formulation. To see this, consider the term rr, where
r = λx.∃̂yε(∆ =⇒ Prop)(x =̂∆=⇒Prop y ∧̂ ∼̂xy).

9According to Chierchia, this approach also allows us to account for apparent cases of
self-predication, as in “fun is fun.”
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Although Chierchia’s solution for dealing with gerunds and infinitives is not
available to us in PTCT, there are other consistent extensions that we can adopt.
One of these, a restricted polymorphism (Section 7.4), provides an alternative
means of addressing the nominalisation examples, and a more precise way of
handling the typing of natural language conjunction.

First, we turn to several other types, one of which we will exploit extensively
in an analysis of natural language anaphora (Section 12).

7.2 Separation Types

Separation types are a variety of subtype. They are expressed in the form
{x ∈ T : ϕ}, for some T and ϕ. An element is of this type if it is a term of
type T for which the proposition ϕ is true when the term is substituted for x
in ϕ. The reason that we consider separation types here is that they will be
exploited in Section 12, which adopts a proposal for the semantic representation
of quantifiers suggested by Lappin [34], and Lappin and Francez [36].

To add separation types to PTCT, we add {x ∈ T : ϕ′} to the types, and a
tableau rule that implements the following axiom.

(7) SP: z ∈ {x ∈ T.ϕ′} ↔ (z ∈ T ∧ ϕ′[z/x])

That is:

Separation Types

z ∈ {x ∈ T.ϕ′}*

z ∈ T
ϕ′[z/x]

Negated Separation Types

z 6∈ {x ∈ T.ϕ′}*

vv
vv

vv
v

HH
HH

HH
H

z 6∈ T ∼ϕ′[z/x]

where 6∈ has
its usual
intended
meaning

Note that there is an issue here concerning the nature of ϕ. To ensure the
theory is first-order, this type needs to be term representable, so ϕ′ must be
term representable. To this end, we can define a term representable fragment of
the language of wffs. First, we introduce syntactic sugar for typed quantification
in the wffs.

(8) (a) ∀Txϕ =def ∀x(x ∈ T → ϕ)

(b) ∃Txϕ =def ∃x(x ∈ T ∧ ϕ)

Wffs with these typed quantifiers, and no free-floating type judgements will
then have direct intensional analogues—that is, term representations—which
will always be propositions. We can define representable wffs by ϕ′:

(9) ϕ′ ::= α′ | (∼ϕ′) | (ϕ′ ∧ ψ′) | (ϕ′ ∨ ψ′) | (ϕ′ → ψ′) | (ϕ′ ↔ ψ′) | (∀Txϕ
′) |

(∃Txϕ) | Truet
(atomic representable wffs) α′ ::= (t =T s) | t ∼=T s

The term representations of representable wffs dα′e are given by the following.

(10) (a) d∼ ae = ∼̂dae
(b) da ∧ be = dae ∧̂ dbe
(c) da ∨ be = dae ∨̂ dbe
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(d) da→ be = dae →̂ dbe
(e) da↔ be = dae ↔̂ dbe
(f) da ∼=T be = a ∼̂=T b

(g) da =T be = a =̂T b

(h) dTruete = t

(i) d∀Tx.ae = ∀̂xεT dae

(j) d∃Tx.ae = ∃̂xεT dae

Now we can express separation types as {x ∈ S.ϕ′}, which can be taken to
be sugar for {xεS.dϕ′e}.

The following theorem is an immediate consequence of the recursive defini-
tion of representable wffs and their term representations.

Theorem 1 (Representability) dϕ′e ∈ Prop for all representable wffs ϕ′,
and furthermore Truedϕ′e ↔ ϕ′.

7.3 Comprehension Types

For completeness, we can consider comprehension types. These are types defined
in terms of a proposition. They are usually written in the form {x : ϕ}. Elements
are of this type if the proposition ϕ is true when the element is substituted for
x in ϕ .

Usually comprehension can be derived from SP and UT. We are forgoing
UT to avoid paradoxes (Section 7.1), so we have to define comprehension inde-
pendently. The same arguments apply as for SP concerning representability

We add the type {x : ϕ′} and a tableau rule corresponding to the following
axiom.

(11) COMP: z ∈ {x : ϕ} ↔ ϕ[z/x]

The effect of this axiom can be achieved by the following tableau rules.

Comprehension Types

z ∈ {x : ϕ′}*

ϕ′[z/x]

Negated Comprehension Types

z 6∈ {x : ϕ′}*

∼ϕ′[z/x]

where 6∈ has its
usual intended
meaning

Given that COMP = SP + UT, where UT is the Universal Type ∆ = {x :
x =̂ x}, we would derive a paradox if = was not typed. This is because in
PTCT Prop is a type. So rr, where r = λx.∃̂y ∈ (∆ =⇒ Prop)[x =̂ y ∧̂ ∼̂xy]
produces a paradoxical propositional. Our use of a typed intensional identity
predicate filters out the paradox because it must be possible to prove that the
two expressions for which =T is asserted are of type T independently of the
identity assertion. s =T t iff s, t ∈ T and s = t.
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7.4 Polymorphic Types

As we have observed, natural language exhibits flexibility in the categories to
which different syntactic elements can belong. Chierchia’s examples of nominal-
isation, and natural language conjunction, discussed in Section 7.1, exemplify
this phenomena.

In formal systems, this kind of behavour is often characterised as polymor-
phism. Here we introduce polymorphism, formalise a particular form of poly-
morphism in PTCT, and indicate how it can address at least some of the data
for which a universal type has been proposed.

There are many varieties of polymorphism, including schematic polymor-
phism, implicit polymorphism, explicit polymorphism, and impredicative poly-
morphism.

Schematic polymorphism is a syntatic device whereby a meta-theoretic sym-
bol is used to abbreviate a range of types. Such symbols are, effectively, syn-
tactic sugar for a disjunction of expressions in which the schematic types are
consistently replaced by ground types.

The other forms of polymorphism are genuine extensions to the type system,
and require the addition of type variables. In the case of implicit polymorphism,
the type variables are universally quantified. It is this kind of polymorphism
that we shall formulate here.

With explicit polymorphism, relations and functions in effect contain type
variables that can be instantied by arguments. It might be that this is actu-
ally a more appropriate form of polymorphism for theories of natural language
semantics.

Impredicative polymorphism is a particularly powerful device, which is dis-
cussed below. It appears that this power is neither required, nor appropriate,
for natural language semantics.

To add implicit polymorphic types to PTCT, we enrich the language of types
to include type variables X, and the wffs to include quantification over types
∀Xϕ,∃Xϕ. We add following tableau rules.

Universal Type-Quantification

∀X.ϕ

ϕ[K/X]

where K is a type that
occurs on the path (or is
the only type occuring in
the path)

Existential Type-Quantification

∃X.ϕ*

ϕ[K/X]

where type K does not
occur on the path
(suggests we need Type
equivalence)

Negated Type-Quantification

∼QX.ϕ*

Q′X.∼ϕ

where Q′ is the dual of
Q

We add ΠX.T to the language of types, governed by the tableau rule corre-
sponding to the following axiom:

(12) PM: f ∈ ΠX.T ↔ ∀X(f ∈ T )

The effect of this axiom can be achieved by the following tableau rules.
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Polymorphic Types

f ∈ ΠX.T*

∀X(f ∈ T )

Negated Polymorphic Types

f 6∈ ΠX.T*

∃X(f 6∈ T )

where 6∈ has its usual
intended meaning

Polymorphic types permit us to accommodate the fact that natural language
expressions like coordination and certain verbs can can apply as functions to
arguments of different types. In particular, we can account for the data given
in Section 7.1. In the case of the nominalisation data of Chierchia [9]

Tennis is fun.
Playing tennis is fun.
To play tennis is fun.

we can argue that “is fun” is of type ΠX.X =⇒ Prop. Conjunctions such as
“and,” which can combine categories of any type to give an expression of the
same type, can be given the type ΠX.X =⇒ (X =⇒ X).10

Note that PM is impredicative, ie. the type quantification ranges over the
types that are being defined. Impredicativity greatly increases the power of the
language, which is problematic if we wish to sustain a recursively enumerable
theory. It can also lead to paradoxes under certain conditions. To avoid these
difficulties, we adopt a restricted form of polymorphism.

(13) PM′: f ∈ ΠX.T ↔ ∀X(f ∈ T ) whereX ranges only over non-polymorphic
types.

This constraint limits quantification over types to type variables that take
non-polymorphic types as values. Therefore, we rule out iterated type polymor-
phism in which functional polymorphic types apply to polymorphic arguments.
This weak version of polymporphism seems entirely adequate to express the
instances of multiple type assignment that occur in natural languages [57]. The
tableau rules do not need to be changed to incorporate PM′, provided that only
non-polymorphic types are substituted for type variables in the rules for type
quantification.

Even predicative, implicit polymorphism may not be a perfect match for nat-
ural language polymorphism. Explicit polymorphism may be more appropriate
if we wish to deal elegantly with the fact that generalised quantifiers appear to
be able to range over different types. It seems natural to say that the noun-
phrase “every belief” ranges over propositions, whereas “every book” ranges
over individuals. The type of the determiner “every” is then determined by the
type of its argument (“book,” and “belief” in these examples). This kind of
constraint is expressible with explicit polymorphic types. The determiner “ev-
ery” would then have an argument position that can be filled in by the type of
the noun with which it combines. We leave amending PTCT to include implicit
polymorphic types as an exercise for the interested reader.

7.5 Product Types

Product types of the form S ⊗ T are useful if we wish to allow terms to accepts
more then one argument at a time. Elements of such a type are pairs of terms,

10This does not immediately account for Chierchia’s example of apparent self-predication
“Fun is fun.” Nor does it deal with alledged cases of cross-categorial conjunction [22, 48].
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where the first element of the pair is in S, and the second is in T . This type
is different in kind from the other types presented so far in that it imposes a
structural constraint on its elements: they must be pairs. λ-calculus allows us
to define the required notions of pairs and terms.

〈x, y〉 =def λz(z(x)(y))
fst =def λp(pλxy(x))
snd =def λp(pλxy(y))

Pairs can be nested, and product type formation can be iterated. This allows
arbitrary finite product types to be defined.

We use product types in our treatment of ellipsis and our account of semantic
underspecification [19].

To incorporate product types in PTCT, we add the type S⊗T , and a tableau
rule corresponding to the following axiom.

(14) PROD: 〈x, y〉 ∈ (S ⊗ T ) ↔ x ∈ S ∧ y ∈ T

The effect of this axiom can be achieved by the following tableau rules.

Product Types

〈x, y〉 ∈ (S ⊗ T )*

x ∈ S
y ∈ T

Negated Product Types

〈x, y〉 6∈ (S ⊗ T )*

vv
vv

vv
v

HH
HH

HH
H

x 6∈ S y 6∈ T

where 6∈ has
its usual
intended
meaning

For completeness, it may be appropriate to consider adding curry and un-
curry operators to the language. We do not exploit such operators.

7.6 Final Syntax

Adopting the extensions discussed above, which are constrained to prevent the
generation of paradoxes, we arrive at the following syntax for PTCT..

(15) (logical constants) l ::= ∼̂ | ∧̂ | ∨̂ | →̂ | ↔̂ | ∀̂ | ∃̂ | =̂T | ∼̂=T | ε
(terms) t ::= x | c | l | T | λx(t) | (t)t
(Types) T ::= B | Prop | T =⇒ S | X | {x ∈ T.ϕ′} | {x.ϕ′}
| ΠX.T | S ⊗ T
(atomic wff) α ::= (t =T s) | t ∈ K | t ∼=T s | Truet
(wff) ϕ ::= α | ∼ϕ | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ) | (ϕ↔ ψ)

| (∀xϕ) | (∃xϕ) | (∀Xϕ) | (∃Xϕ)

where ϕ′ is as defined in Section 7.2, and type variables X are intended to range
only over non-polymorphic types.

8 A Model Theory for PTCT

In order to give a model for PTCT, we first need a model of the untyped λ-
calculus, which will provide the model for PTCT’s language of terms. For
convenience and simplicity we adopt Meyer’s model [42] (readers are free to
substitute their favourite models of the untyped λ-calculus).
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8.1 Models of the (Extensional) λ-Calculus

Definition 1 (General Functional Models) A functional model is a struc-
ture of the form D = 〈D, [D → D],Φ,Ψ〉 where

(1) D is a non-empty set,

(2) [D → D] is some class of functions from D to D,

(3) Φ : D → [D → D],

(4) Ψ : [D → D] → D,

(5) Ψ(Φ(d)) = d for all d ∈ D

We can interpret the calculus using the following.

(16) [[x]]g = g(x)
[[λx.t]]g = Ψ(λd.[[t]]g[d/x])
[[ts]]g = Φ([[t]]g)[[s]]g

where g is an assignment function from variables to elements of D. This inter-
pretation exploits the fact that Φ maps every element of D into a corresponding
function from D to D, and Ψ maps functions from D to D into elements of D.

Note that we require functions of the form λd.[[t]]g[d/x] to be in the class
[D → D] to ensure that the interpretation is well defined. Here we are just
following Meyer [42].

In the case where we permit constant terms, then we add the clause

(17) [[c]]g = i(c)

where i assigns elements of D to constants.

Theorem 2 If t = s in the extensional untyped λ-calculus (with ξ and η), then
[[t]]g = [[s]]g for each assignment g.

Proof: By induction on the derivations. 2

A model M of PTCT is constructed on the basis of a simple extensional
model of the untyped λ-calculus [42, 2, 56], with additional structure added to
capture the type rules and the relation between the sublanguages of PTCT.

Definition 2 (Model of PTCT) A model of PTCT is M = 〈D,T,P,B,B, T ′, T 〉,
where

(1) D is a model of the λ-calculus

(2) T : D → {0, 1} models the truth predicate True

(3) P ⊂ D models the class of propositions

(4) B ⊂ D models the class of basic individuals

(5) B(B) is a set of sets whose elements partition B into equivalence classes
of individuals

(6) T ′ ⊂ T models the class of non-polymorphic types
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(7) T ⊂ D models the class of types

with sufficient structural constraints on T, P and T ′ to validate the tableau rules
of PTCT.

In the following, we give the structural constraints required to sustain the
proof theory given above.

8.2 Types

Types can be interpreted as subsets of D. To ensure that polymorphic types are
predicative (i.e. to avoid an implicit circularity in their definition), quantification
is only over non-polymorphic types.

To give a first-order account of type quantification, we consider the interpre-
tation of term representations of types. We take types in PTCT to denote terms
in T ⊂ D. If type T in PTCT denotes an individual S ∈ T , the underlying type
(or set of individuals) will be denoted by ES.

The types in the model, and the interpretation of PTCT’s types are specified
by the following rules.

(18) (a) For all t ∈ T , Et ⊂ D

(b) [[B]]g,τ ∈ T ′

(c) [[Prop]]g,τ ∈ T ′

(d) [[X]]g,τ = τ(X) ∈ T ′

(e) If [[S]]g,τ , [[U ]]g,τ ∈ T ′, then [[S =⇒ U ]]g,τ ∈ T ′

(f) If [[S]]g,τ ∈ T ′ and [[dϕ′e]]g,τ ∈ P then [[{x ∈ S.ϕ′]]g,τ ∈ T ′

(g) If [[dϕ′e]]g,τ ∈ Prop then [[{x.ϕ′}]]g,τ ∈ T ′

(h) If [[S]]g,τ ∈ T ′ then [[ΠX.S]]g,τ ∈ T
(i) If [[S]]g,τ , [[T ]]g,τ ∈ T ′ then [[S ⊗ T ]]g,τ ∈ T ′

(j) E [[B]]g,τ = B ⊆ D

(k) E [[Prop]]g,τ = P ⊆ D

(l) E [[S =⇒ U ]]g,τ = {d ∈ D : ∀e ∈ E [[S]]g,τ .(Φ(d))e ∈ E [[U ]]g,τ}
(m) E [[{x ∈ S.ϕ′}]]g,τ = {d ∈ E [[S]]g,τ .Mg[d/x],τ |= ϕ′}
(n) E [[{x.ϕ′}]]g,τ = {d ∈ D.Mg[d/x],τ |= ϕ′}
(o) E [[ΠX.S]]g,τ = {d ∈ D : ∀U ∈ T ′.d ∈ E [[S]]g,τ [U/X]}
(p) E [[S ⊗ T ]]g,τ = {d ∈ D : {d′ ∈ D : d ∈ E [[S]]g,τ and d′ ∈ E [[T ]]g,τ}}

Here, τ is an assignment from type variables to elements of T , and d·e is as
defined in Section 7.2, and Φ is as defined in the Meyer model of the untyped
λ-calculus (Section 8.1).

8.3 Propositions

The typing rules for Prop are supported by the following structural constraints
on models.

(19) (a) If [[t]]g,τ ∈ P, then [[∼̂ t]]g,τ ∈ P.
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(b) If [[t]]g,τ ∈ P and [[s]]g,τ ∈ P, then [[t ∧̂ s]]g,τ ∈ P.

(c) if [[t]]g,τ ∈ P and [[s]]g,τ ∈ P, then [[t ∨̂ s]]g,τ ∈ P.

(d) if [[t]]g,τ ∈ P, and [[s]]g,τ ∈ P, then [[t →̂ s]]g,τ ∈ P.

(e) if [[t]]g,τ ∈ P and [[s]]g,τ ∈ P then [[t ↔̂ s]]g,τ ∈ P.

(f) If [[S]]g,τ ∈ T , and [[t]]g[d/x],τ ∈ P for all d ∈ E [[S]]g,τ , then [[∀̂xεS.t]]g,τ ∈
P.

(g) If [[S]]g,τ ∈ T , and [[t]]g[d/x],τ ∈ P for all d ∈ E [[S]]g,τ , then [[∃̂xεS.t]]g,τ ∈
P.

(h) If [[S]]g,τ ∈ T , then [[t ∼̂=S s]]g,τ ∈ P iff [[s]]g,τ , [[t]]g,τ ∈ E [[S]]g,τ .

(i) If [[S]]g,τ ∈ T , then [[t =̂S s]]g,τ ∈ P iff [[s]]g,τ , [[t]]g,τ ∈ E [[S]]g,τ .

8.4 Truth

The rules for True are supported by the following conditions.

(20) (a) If [[t]]g,τ ∈ P, then T([[∼̂ t]]g,τ ) = 1 iff T([[t]]g,τ ) = 0.

(b) If [[t]]g,τ ∈ P and [[s]]g,τ ∈ P, then T([[t ∧̂ s]]g,τ ) = 1 iff T([[t]]g,τ ) = 1
and T([[s]]g,τ ) = 1.

(c) If [[t]]g,τ ∈ P and [[s]]g,τ ∈ P, then T([[t ∨̂ s]]g,τ ) = 1 iff either
T([[t]]g,τ ) = 1 or T([[s]]g,τ ) = 1.

(d) If [[t]]g,τ ∈ P and [[s]]g,τ ∈ P, then T([[t →̂ s]]g,τ ) = 1 iff either
T([[t]]g,τ ) = 0 or T([[s]]g,τ ) = 1.

(e) If [[t]]g,τ ∈ P and [[s]]g,τ ∈ P, then T([[t ↔̂ s]]g,τ ) = 1 iff [[t]]g,τ = [[s]]g,τ .

(f) If [[S]]g,τ ∈ T and [[t]]g[d/x],τ ∈ P for all d ∈ E [[S]]g,τ , then T([[∀̂xεS.t]]g,τ ) =
1 iff T([[t]]g[d/x],τ ) = 1 for all d ∈ E [[S]]g,τ .

(g) if [[S]]g,τ ∈ T and [[t]]g[d/x],τ ∈ P for all d ∈ E [[S]]g,τ , then T([[∃̂xεS.t]]g,τ ) =
1 iff T([[t]]g[d/x],τ ) = 1 for some d ∈ [[S]]g,τ .

(h) i. If [[t]]g,τ , [[s]]g,τ ∈ B then T([[t ∼̂=B s]]g,τ ) = 1 iff there is a set S
such that S ∈ B(B) and [[t]]g,τ , [[s]]g,τ ∈ S.

ii. If [[t]]g,τ , [[s]]g,τ ∈ P then T([[t ∼̂=Prop s]]g,τ ) = 1 iff T([[t]]g,τ ) =
T([[s]]g,τ ).

iii. If [[t]]g,τ , [[s]]g,τ ∈ [[S =⇒ U ]]g,τ , where [[S]]g,τ , [[U ]]g,τ ∈ T then
T([[t ∼̂=(S=⇒U) s]]g,τ ) = 1 iff T([[tx ∼̂=U sx]]g[d/x],τ ) = 1 for all
d ∈ E [[S]]g,τ .

(i) If [[t]]g,τ , [[s]]g,τ ∈ E [[S]]g,τ , then T([[t =̂S s]]g,τ ) = 1 iff [[t]]g,τ = [[s]]g,τ .

(j) If T([[t]]g,τ ) = 1 then [[t]]g,τ ∈ P.

Note that we give no rules for the extensional equivalence of elements of
comprehension types, separation types or polymorphic types.

8.5 Well-Formed Formulae

The language of wffs can now be given truth conditions. Some examples follow.
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(21) Mg,τ |= s =T t iff [[t]]g,τ , [[s]]g,τ ∈ E [[T ]]g,τ and [[t]]g,τ = [[s]]g,τ

Mg,τ |= s ∼=T t iff T([[s]]g,τ
∼̂=T [[t]]g,τ ) = 1

Mg,τ |= s ∼=Prop t iff [[s]]g,τ , [[t]]g,τ ∈ P and Mg,τ |= s↔ t
Mg,τ |= s ∼=(T=⇒Prop) t iff [[s]]g,τ , [[t]]g,τ ∈ [[T =⇒ Prop]]g,τ

and for all x ∈ T,Mg,τ |= sx↔ tx (x not free in s, t)
Mg,τ |= True(t) iff T([[t]]g,τ ) = 1
Mg,τ |= t ∈ T iff [[t]]g,τ ∈ E [[T ]]g,τ

11

Mg,τ |= ∼ϕ iff Mg,τ 6|= ϕ
Mg,τ |= ϕ ∧ ψ iff Mg,τ |= ϕ and Mg,τ |= ψ
Mg,τ |= ϕ ∨ ψ iff Mg,τ |= ϕ or Mg,τ |= ψ
Mg,τ |= ϕ→ ψ iff Mg,τ 6|= ϕ or Mg,τ |= ψ
Mg,τ |= ϕ↔ ψ iff Mg,τ |= ϕ exactly when Mg,τ |= ψ
Mg,τ |= ∀xϕ iff for all d ∈ D, Mg[d/x],τ |= ϕ
Mg,τ |= ∃xϕ iff for some d ∈ D, Mg[d/x],τ |= ϕ
Mg,τ |= ∀Xϕ iff for all S ∈ T ′, Mg,τ [S/X] |= ϕ
Mg,τ |= ∃Xϕ iff for some S ∈ T ′, Mg,τ [S/X] |= ϕ

Here, type quantification is restricted to non-polymorphic types. Type variables
are already constrained to denote types in T ′.

Definition 3 (Validity) A wff ϕ of PTCT is valid iff Mg,τ |= ϕ for all models
M and all assignment functions g, τ .

Theorem 3 (Soundness of PTCT) If PTCT ` φ, then φ is valid.

Proof: To prove that the tableau proof procedure for PTCT is sound we have
to prove the following lemma.

Lemma 1 If the initial sentence S of a tableau T is satisfied in a model M for
PTCT, then there is an open (possibly infinite) path P in T in which every full
sentence in P is satisfied.

Lemma 1 follows by induction on the downward correctness of the tableau rules
relative to the model theory of PTCT. For each full sentence F in P , if F is
true in M, then the rules of the model theory insure that the sentences in the
extension of the open path derived from F by application of the tableau rules
are also satisfied in M. We illustrate downward correctness of the tableau rules
with three examples, one for each type of rule.

Rules for Wffs Universal Quantification
The truth condition given in (21) for universal quantification over indi-
viduals entails that if ∀xϕ is true in M, then ϕx/c is true in M for every
individual constant c such that i(c) ∈ D.

Type Inference Rules General Function Spaces
(18l) and the truth condition for type membership formulas given in (21)
entail that if t ∈ (S =⇒ T ) and t′ ∈ S are true in M, then tt′ ∈ T is true
in M.

11Syntactic constraints on T guarantee that [[T ]]g,τ ∈ T .
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Truth Rules Conjunction
The truth conditions for True(t) and ϕ ∧ ψ in (21), and (20b) entail that if
True(s ∧̂ t) and s, t ∈ Prop are true in M, then Trues ∧ Truet is true in M.

From Lemma 1 it follows that if the tableau for a formula S is closed, then S is
not satisfiable in a model of PTCT. Therefore, if there is a proof of S (i.e. the
tableau for ∼S is closed), then S is satisfied in all models of PTCT. 2

Theorem 4 (Completeness of PTCT) If φ is valid, then PTCT ` φ.

Proof: To prove that the tableau proof procedure for PTCT is complete we must
prove the following lemma.

Lemma 2 If there is an open (possibly infinite) path in a tableau for a sentence
S, then S is satisfiable in a model of PTCT.

Lemma 2 follows by induction on the upward correctness of the tableau rules
relative to the model theory for PTCT. For each set Γ of formulas in an extension
of an open path derived by the application of the tableau rules to a formula F , if
the elements of Γ are true in a model M, then the definition of the model theory
insures that F is satisfiable in M. We illustrate the upward correctness of the
tableau rules with the same examples that we used for downward correctness. In
these illustrations correctness runs in the opposite direction, from the hypothesis
that the conclusions of the rule are true in M to the result that its premise(s)
are satisfiable in M.

Rules for Wffs Universal Quantification
The truth condition given in (21) for universal quantification over individ-
uals entails that if ϕx/c is true in M for every individual constant c that
appears in the open path, where i(c) ∈ D, then ∀xϕ is satisfiable in M.

Type Inference Rules General Function Spaces
18l and the truth condition for type membership formulas given in (21)
entail that if tt′ ∈ T is true in M, then t ∈ (S =⇒ T ) and t′ ∈ S are true
in M.

Truth Rules Conjunction
The truth conditions for True(t) and ϕ ∧ ψ in (21), together with (20b)
and (20j) entail that if Trues ∧ Truet is true in M, then True(s ∧̂ t) and
s, t ∈ Prop are true in M.

Lemma 2 entails that if a branch B in a tableau for S is open, then all the
sentences in B, including S, are satisfiable in a model of PTCT. It follows that
if S is valid (∼S is not satisfiable in a model of PTCT), then there is a tableau
proof of S. 2
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9 Types and Properties

On initial examination, it appears that there are clear parallels between prop-
erties and types in PTCT, along the following lines.

xεT ∼= T (x)
(T =⇒ S) ∼= ∀̂xεT.S(x)
(T =⇒ S) ∼= ∀̂x(T (x) ∧̂ S(x))
{xεT.ϕ} ∼= λx(xεT ∧̂ ϕ)
{x.ϕ} ∼= λx(ϕ)

There is a sense in which types could be thought of as properties of type ∆ =⇒
Prop, although as we have seen above (Section 7), adding the universal type
directly to PTCT is problematic.

This apparent similarity between types and properties leads to the notion of
property-theoretic definability of a type.

Definition 4 (Property-Theoretic Definability of a Type) A type T is de-
finable as an unrestricted property p iff ∀x(x ∈ T ↔ Truep(x)), where an unre-
stricted property is one that forms a proposition with any argument.

If we allow type membership to be represented by predication in this way,
then we have effectively allowed free-floating type judgements in the language
of terms, of the form xεT . We might consider axiomatising the behaviour of
free-floating type judgements directly as follows.

Type(T ) → (xεT ) ∈ Prop
Type(T ) → True(xεT ) ↔ x ∈ T

We could add further constraints to these axions, such as requiring that the
term on the left of the membership symbol is not a type.

Unfortunately, allowing both free floating type judgements, and full property-
theoretic definability of types leads to a paradox in the case of the type Prop.12

Theorem 5 Prop cannot appear in free-floating type judgements of the form
xεProp.

Proof: Consider the term

R = λx(∼̂(xxεProp))

Assuming that Type(Prop), then we can show that ∀x(R(x) ∈ Prop). Therefore
RR ∈ Prop. The axioms governing truth then allow us to show that True(RR) ↔
(RR 6∈ Prop), which yields a contradiction. 2

Corollary 1 Prop has no property-theoretic definition.

These problems with free-floating type judgements also indicate why we
require intensional identity to be typed. If it was not, then we could define
free-floating type judgements as follows.

xεT =def ∃̂yεT.x =̂ y

As it stands, we require the type of y to be imposed independently of the identity
statement.

12Such paradoxes would also arise if we were to treat truth as a type.
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10 Separation Types and Internal Type Judge-
ments

The preceding discussion suggests that it is not possible to represent free-floating
type judgements in PTCT’s language of terms. However, as we shall now see,
there are some kinds of type judgements that can be incorporated into the
language of terms.

The types in question are separation types. Recall that these types have the
following form.

{xεT.ϕ′}

where ϕ′ is an internally representable wff. More pedantically, we write this as

{xεT.dϕ′e}

where dϕ′e is the term representation of the representable wff ϕ′, as defined in
Section 7.2.

As previously described, a term z is a member of this type under the following
circumstances.

z ∈ {xεT.dϕ′e} ↔ (z ∈ T ∧ ϕ′[z/x])

ϕ′ is term representable (it contains no free-floating type judgements), and so
the only part of the right-side of this equivalence that is not term representable is
z ∈ T . If we knew independently that z ∈ T , then we would have the following.

z ∈ {xεT.dϕ′e} ↔ ϕ′[z/x]

This statement is equivalent to

z ∈ T → (z ∈ {xεT.dϕ′e} ↔ ϕ′[z/x])

Observe that ϕ′[z/x] is equivalent to True((λxdϕ′e)z). Thus, it turns out that
z ∈ {xεT.dϕ′e} is equivalent to True((λxdϕ′e)z), in the event that z ∈ T .

We conclude that it is safe to have a restricted form of free-floating type
judgement in the language of terms. We use the symbol ε′ to represent a re-
stricted type membership relation of this kind. We can axiomatise it in the
usual way, describing when such type judgements are propositions, and when
they are true propositions.

t ∈ S → (tε′{x ∈ S.ϕ}) ∈ Prop

and
t ∈ S → (True(tε′{x ∈ S.ϕ}) ↔ ϕ[t/x])

Conceptually, this internalisable type judgement can be thought of as ex-
ploiting a combination of the notion of a universe or small type as used in
MLTT [40, 41] and Frege Structures [1] (that is, we restrict which types can
appear in internal type judgements) with Turner’s S5-like treatment of the in-
ternalisation of troublesome predicates, such as those for propositions and truth
in PT [55] (the internal type judgement only “makes sense” if we already know
something about the type of the term t). There is a clear connection between
this approach to accommodating restricted free floating type judgements and
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our use of typed identity and equivalent predicates to avoid paradox. They are
both instances of the same strategy.

So internal type judgements tε′S are felicitous, provided S is a separation
type {xεT.ϕ}, and that we are in a context where it can be shown independently
that t ∈ T .

There is a choice about how to incorporate these observations into PTCT.
We could change the language, add new rules and revise the model, or we can
take expressions involving tε′{xεT.ϕ}—where we know t ∈ T—to be “syntactic
sugar” for an equivalent representation that does not involve these new judge-
ments, namely (λx(dϕ′e))t.

On the former approach, one way of proceeding is to add the logical constant
ε′ to the language of terms13, and to adopt the the following tableau rule to
determine that a judgement is felicitous.

Internal Separation Types

p ∈ Prop

zε′{xεT.p} ∈ Prop

where
z ∈ T

The following two rules determine when the judgement is true.

Internal Separation Types
True(zε′{xεT.p})*

Truep[z/x]

where
z ∈ T, p ∈ Prop

Negated Internal Separation Types

∼ True(zε′{xεT.p})*

∼ Truep[z/x]

where z ∈
T, p ∈ Prop

On the alternative approach, we can use the following definition.

Definition 5 (Restricted Free Floating Type Judgements) In the con-
text where t ∈ T , terms of the form tε′{xεT.ϕ} are taken to be “syntactic sugar”
for (λx(dϕ′e))t.

For presentational reasons, we here adopt the latter approach. In places we
also use the notation ∈ for ε′ where the context makes it clear what is meant.

Whichever approach is taken, it is possible to revise our recursive definition of
translation for term representable wffs to terms so that it includes a translation
rule for unproblematic type judgements, for example14

da ∈ {x ∈ T.ϕ}e = aε′{xεT.dϕe}
13An alternative would be to “overload” the existing ε constant.
14The original recursive translation is defined only for term-representable wffs. Adding

this new rule for type judgements gives a translation whose result is specified for some non-
representable wffs, namely type judgements of the form a ∈ {x ∈ T.ϕ} where it cannot be
shown that a ∈ T , but the result will not be a proposition. If the translation procedure is to
be constrained to avoid such cases, then it needs to be revised so that it keeps track of the
relevant typing context.
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11 An Intensional Number Theory

We add an intensional number theory to PTCT, incorporating rules correspond-
ing to the axioms in (26).

(22) Terms: 0 | succ | pred | add | mult | ˆmost | | · |B

(23) Types: Num

(24) Wffs: zero(t) | t ∼=Num t′ | t <Num t′ | most(p)(q)

(25) Axioms for Num: The usual Peano axioms, adapted to PTCT

(26) Axioms for <Num:

(a) y ∈ Num → 0 <Num succ(y)
(b) x ∈ Num → x 6<Num 0
(c) x ∈ Num ∧ y ∈ Num → (succ(x) <Num succ(y) ↔ x <Num y)

The model theory can be extended in a straightforward way to support these
new rules of the proof theory.

When we incorporate the intensional number theory into PTCT we lose
completeness of the proof theory. However, it is important to recognize that
incompleteness sets in only when tableau rules that encode number-theoretic
inferences are applied. The basic logic and type system of PTCT without these
rules and their corresponding definitions in the model theory remains complete.

By defining the cardinality of properties, we can express the truth conditions
of proportional quantifiers in PTCT.

(27) Cardinality of properties |p|B :

(a) p ∈ (B =⇒ Prop) ∧ ∼∃x(x ∈ B ∧ Truepx) → |p|B ∼=Num 0
(b) p ∈ (B =⇒ Prop) ∧ b ∈ B ∧ Truepb→

|p|B ∼=Num add(|λx(px ∧̂ ∼̂(x =̂B b)|B)(succ(0))

Note that we can give an equivalent type-theoretic formulation of cardinality.
This is apparent if we observe the close relationship between properties and
separation types.

(28) Cardinality of types |{xεB.px|B :

(a) p ∈ (B =⇒ Prop) ∧ ∼∃x(x ∈ B ∧ Truepx) →
|{xεB.px}|B ∼=Num 0

(b) p ∈ (B =⇒ Prop) ∧ b ∈ B ∧ Truepb→
|{xεB.px}|B ∼=Num add(|{xεB.px ∧̂ ∼̂(x =̂B b)}|B)(succ(0))

We represent most(p)(q) as follows:

(29) p ∈ (B =⇒ Prop) ∧ q ∈ (B =⇒ Prop) →
most(p)(q) ↔ |{x ∈ B.Truepx ∧ ∼ Trueqx}|B <Num |{x ∈ B.Truepx ∧
Trueqx}|B

Given that PTCT is a first-order theory in which all quantification is limited
to first-order variables, this characterization of most effectively encodes a higher-
order generalized quantifier within a first-order system.
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11.1 Presburger Arithmetic

If we wish to avoid the incompleteness that results from using Peano arithmetic,
we can adopt a weaker number theory, such as Presburger arithmetic [46].

The conventional presentations of Presburger arithmetic adopt the con-
stants:

+, 1, 0,=

together with the following axioms

(30) ∀x∼(0 = x+ 1)

(31) ∀xy(∼(x = y) → ∼(x+ 1 = y + 1))

(32) ∀x(x+ 0 = x)

(33) ∀xy((x+ y) + 1 = x+ (y + 1))

and the axiom schema for induction.

(34) (φ[0] ∧ ∀x(φ[x] → φ[x+ 1])) → ∀x(φ[x])

Presburger arithmetic does not include multiplication, and so it is not as
strong as Peano arithmetic. It is not allow the formulation of theorems about
prime numbers, for example. However, it is adequate for the purpose of deter-
mining the truth conditions of proportional cardinality quantifiers.

Adapting these axioms to give a number theory in PTCT will result in a
system that is complete, and remains semi-decidable, but which is sufficiently
expressive to cope with proportional cardinality quantifiers. To incorporate
Presburger arithmetic PTCT, the language has to be extended to include +, 0, 1
as terms. As before, the wff t ∼=Num s can serve as the notion of numerical
identity. All that remains is to add closure axioms for Num and the new terms,
and adapt the Presburger axioms to PTCT.

(35) Closure axioms:

(a) 0 ∈ Num

(b) 1 ∈ Num

(c) (t ∈ Num ∧ s ∈ Num) → (t+ s) ∈ Num

(36) Presburger axioms:

(a) x ∈ Num → ∼(0 ∼=Num x+ 1)
(b) (x ∈ Num ∧ y ∈ Num) → (∼(x ∼=Num y) → ∼(x+ 1 ∼=Num y + 1))
(c) x ∈ Num → (x+ 0 ∼=Num x)
(d) (x ∈ Num ∧ y ∈ Num) → ((x+ y) + 1 ∼=Num x+ (y + 1))
(e) (φ[0] ∧ ∀x((x ∈ Num ∧ φ[x]) → φ[x+ 1])) →

∀x(x ∈ Num → φ[x])

Cardinality and <Num can be treated as before.
Although Presburger arithmetic is decidable, it has some unfortunate com-

putational properties. Fischer and Rabin [16] show that the time required to
decide the truth of a statement of length n is at least 22cn

, for some constant
c. It may be possible to optimise the implementation of the theory in a com-
putational system for the evaluation of the truth conditions of proportional
quantifiers.
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12 A Type-Theoretical Approach to Anaphora

To illustrate the expressiveness of PTCT we combine our treatment of gen-
eralised quantifiers with our characterisation of separation types to provide a
unified type-theoretic account of anaphora.15

We assume that all quantified NPs are represented as cardinality relations
on the model of our treatment of most. Pronouns are taken to be appropriately
typed free variables. If the free variable is within the scope of a set forming
operator that specifies a subtype and it meets the same typing constraints as
the variable bound by the operator, the variable can be interpreted as bound by
the operator through substitution under α identity. This interpretation yields
the bound reading of the pronoun.

(37) Every man loves his mother.

(38) |{x ∈ B.Trueman′(x) ∧ Truelove′(x,mother-of ′(y))}|B ∼=Num |{x ∈ B.Trueman′(x)}|B ⇒
|{x ∈ B.Trueman′(x) ∧ Truelove′(x,mother-of ′(x))}|B ∼=Num |{x ∈ B.Trueman′(x)}|B

Representations of this kind are generated by compositional semantic oper-
ations as described by (for example) Lappin [34], and Lappin and Francez [36].

When the pronoun is interpreted as dependent upon an NP which does
not bind it, we represent the pronoun variable as constrained by a dependent
type parameter whose value is supplied by context. Generally, the value of this
type parameter is obtained from the predicative part of the antecedent clause
representation. In the default case, we treat the pronoun variable as bound by
a universal quantifier in the language of wffs.

(39) Every student arrived.

(40) |{x ∈ B.Truestudent′(x) ∧ Truearrived′(x)}|B ∼=Num |{x ∈ B.Truestudent′(x)}|B

(41) They sang.

(42) ∀y ∈ A.(Truesang′(y))
where A = {x ∈ B.Truestudent′(x) ∧ Truearrived′(x)}

In the case of proper names and existentially quantified NP antecedents we
obtain the following.

(43) John arrived.

(44) Truearrived′(john)

(45) He sang.

(46) ∀y ∈ A.(Truesang′(y))
where A = {x ∈ B.x =̂B john ∧ Truearrived′(x)}

(47) Some man arrived.

(48) |{x ∈ B.Trueman′(x) ∧ Truearrived′(x) ∧ Trueφ(x)}|B >Num 0

(49) He sang.

15This approach to anaphora is extended to ellipsis in Fox and Lappin [18].
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(50) ∀y ∈ A.(Truesang′(y))
where A = {x ∈ B.Trueman′(x) ∧ Truearrived′(x) ∧ Trueφ(x)}

φ is a predicate that is specified in context and uniquely identifies a man who
arrived in that context.

We handle donkey anaphora in PTCT through a type constraint on the
variable corresponding to the pronoun.

(51) Every man who owns a donkey beats it.

(52) |{x ∈ B.Trueman′(x) ∧ (|{y ∈ B.Trueown′(x, y) ∧ Truedonkey′(y)}|B >Num

0) ∧
∀z ∈ A(Truebeat′(x, z))}|B

∼=Num

|{x ∈ B.Trueman′(x) ∧ (|{y ∈ B.Trueown′(x, y) ∧ Truedonkey′(y)}|B >Num

0)}|B
where A = {y ∈ B.Trueown′(x, y) ∧ Truedonkey′(y)}

The representation asserts that every man who owns at least one donkey
beats all of the donkeys that he owns.

Our type-theoretic account of donkey anaphora is similar in spirit to the
E-type analysis proposed by Lappin and Francez [36]. There is, however, an
important difference. Lappin and Francez [36] interpret an E-type pronoun as
a choice function from the elements of an intersective set specified by the clause
containing the antecedent NP to a range of values determined by this NP. Both
the domain and range of the function are described informally in terms of the se-
mantic representation of the antecedent clause. On the type-theoretic approach
proposed here the interpretation of the E-type pronoun is specified explicitly
through type constraints on variables in the semantic representation language.
Therefore our account provides a more precise and properly formalized treat-
ment of pronominal anaphora.

Ranta develops an analysis of anaphora within Martin-Löf Type Theory
(MLTT) [47]. He represents donkey sentences as universal quantification over
product types.16

(53) Πz : (Σx : man)(Σy : donkey)(x owns y))(p(z) beats p(q(z))

In this example, z is a variable over product pairs, and p and q are left and right
projections, respectively, on the product pair, where

(54) (a) p(z) : man

(b) q(z) : (Σy : donkey)(p(z) owns y)

(c) p(q(z)) : donkey

(d) q(q(z)) : (p(z) owns p(q(z))).

Ranta’s account does not generate the existential reading of donkey sentences
[45]. On the preferred interpretation of (55), for example, every person who had
a quarter put at least one quarter in a parking meter.

16Note that here expressions of the form Πx : (T )(S) denote a dependent product type.
This is not to be confused with PTCT’s polymorphic types, whose form (ΠX.T ) is superficially
similar.
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(55) Every person who had a quarter put it in a parking meter.

We can generate these readings by treating the principle that the free variable
representing a pronoun is bound by a universal quantifier as defeasible. We can
then substitute an existential for a universal quantifier.

(56) |{x ∈ B.Trueman′(x) ∧ (|{y ∈ B.Truehad′(x, y) ∧ Truequarter′(y)}|B >Num

0)
∧ ∃z ∈ A(Trueput-in-a-parking-meter′(x, z))}|B

∼=Num

|{x ∈ B.Trueperson′(x) ∧ (|{y ∈ B.Truehad′(x, y) ∧ Truequarter′(y)}|B >Num

0)}|B
where A = {y ∈ B.Truehad′(x, y) ∧ Truequarter′(y)}

This representation asserts that every person who had a quarter put at least
one quarter that he/she had in a parking meter.

By taking the binding of the free variable corresponding to a pronoun by a
universal quantifier as defeasible through lexical semantic and real world knowl-
edge factors we are adopting a version of the pragmatic maximality condition on
the interpretation of unbound pronouns proposed in Lappin and Francez [36].
Therefore, the choice between universal and existential readings of donkey pro-
nouns is a pragmatic effect, and not the result of semantic ambiguity.17

As Ranta acknowledges, his universal quantification-over-pairs analysis fol-
lows DRT [30] in inheriting the proportionality problem in a sentence like the
following (57) [26, 29].

(57) Most men who own a donkey beat it.

On the universal quantification-over-pairs account of donkey anaphora, con-
trary to the desired interpretation, the sentence is true in a model in which ten
men own donkeys, nine men own a single donkey each and do not beat it, while
the tenth man owns ten donkeys and beats them all. The preferred reading of
the sentence requires that it is false in this model.

Ranta cites Sundholm’s [51] solution to the proportionality problem. This
suggestion involves positing a second quantifier most on product pairs (Σx :
A)(B(x)) that is interpreted as applying an A injection to the pairs, where
this injection identifies only the first element of each pair as within the domain
of quantification. Defining an additional mode of quantification as a distinct
reading of most in order to generate the correct interpretation of (57) would
seem to be an ad hoc approach to the difficulty. There is no evidence for taking
most as ambiguous between two quantificational readings beyond the need to
avoid the inability of the quantification-over-pairs analysis to yield the correct
results for this case. Assuming two modes of quantification adds considerable
complication to the type-theoretic approach to anaphora without independent
motivation.

The proportionality problem does not arise on our account. Most is repre-
sented as a cardinality relation (generalized quantifier) in which quantification
is over the elements of the set corresponding to the subject restriction rather
than over pairs. Therefore the sentence is false in this model.

17This approach contrasts with that of Chierchia [12] who uses two distinct formal mech-
anisms, dynamic binding and E-type pronoun choice-functions, to represent each of these
readings, thus treating donkey sentences as systematically ambiguous.
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13 Relevance of PTCT to Computational Seman-
tics

We believe that the features of PTCT that we have discussed here make it
particularly appropriate for implementing theorem proving systems for natural
language semantics. It adds appropriate “expressiveness” to a first-order the-
ory, without an undesirable increase in formal power. Historically, higher-order
systems have dominated the field in natural language semantics. In general, the
set of theorems of such systems is not r.e. For this reason, a first-order system
is preferable, if it is sufficiently expressive for the relevant domain. Basic first-
order logic by itself does not provide the features that are required for natural
language semantics. It is insufficiently expressive for this purpose. PTCT is
a first-order system whose expressiveness is designed for natural language se-
mantics. It directly supports fine-grained intensionality and a flexible system
of types. We have formulated tableau rules for PTCT, which provide an effec-
tive theorem proving procedure for the underlying logic and type system of the
theory (i.e. PTCT without the intensional number theory).

We have also characterized intensionality and achieved find grained inten-
sional distinctions without invoking (im)possible worlds. Therefore, PTCT pro-
vides a treatment of intensions that is entirely independent of modality.

14 Conclusion

We have constructed a first-order fine-grained intensional logic with flexible
Curry typing, PTCT, for the semantic representation of natural languages.
PTCT contains typed predicates for intensional identity and extensional equal-
ity. Its proof theory permits us to prove that identity of intension entails identity
of extension, but that the converse does not hold.

The theory can be distinguished from Aczel’s Frege Structures [1] and re-
lated, weakly typed theories of properties (PT) [54] in two ways. First, there is
an explicit notion of polymorphic type within the theory, which is more appro-
priate for natural language semantics than the universal type of PT. Second,
the type Prop can appear in intensional representations of propositions. This
allows us to express the fact that, for example, the universal quantification in
statements of the form John believes everything that Mary believes ranges only
over propositions. In PT, this requirement can only be expressed as an external
constraint [56].

We have provided a model theory for PTCT using extensional models for the
untyped λ-calculus enriched with interpretations of Curry types. The restric-
tions that we impose on separation types, comprehension types, quantification
over types, and the relation between the three sublanguages of PTCT insure that
it remains a first-order system in which its enriched expressive power comes
largely through quantification over terms and the representation of types as
terms within the language.

Unlike alternative hyperintensionalist frameworks that have been proposed,
this logic distinguishes among provably equivalent propositions without resort-
ing to impossible worlds to sustain the distinction. The incorporation of Curry
typing into the logic allows us to sustain weak polymorphism. Subtypes also per-
mit a us to develop a uniform type-theoretical account of pronominal anaphora

33



with wide empirical coverage. This application illustrates the expressive power
of the system for expressing complex semantic phenomena of natural language
in a straightforward and formally integrated way.
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Kiadó. Also available as ITLI Prepublication Series LP–90–02.

[25] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and
Philosophy, 14:39–100, 1991.

[26] I. Heim. E-type pronouns and donkey anaphora,. Linguistics and Philoso-
phy, 13:137–177, 1990.

[27] L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15:323–344, 1950.

[28] R. Jeffrey. Formal Logic: Its Scope and Limits. McGraw-Hill, New York,
1982.

[29] N. Kadmon. Uniqueness. Linguistics and Philosophy, 13:237–324, 1990.

[30] H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Mod-
eltheoretic Semantics of Natural Language, Formal Logic and Discourse
Representation Theory. Kluwer, Dordrecht, 1993.

35



[31] E. Keenan and K. Stavi. A semantic characterization of natural language
determiners. Linguistics and Philosophy, 9:253–326, 1986.

[32] E. Keenan and D. Westerst̊ahl. Generalized quantifiers in linguistics and
logic. In J. van Benthem and A. ter Meulen, editors, Handbook of Logic
and Language, pages 838–893. Elsevier, Amsterdam, 1997.

[33] F. Landman. Towards a Theory of Information. Foris, Dordrecth, 1986.

[34] S. Lappin. Donkey pronouns unbound. Theoretical Linguistics, 15:263–286,
1989.

[35] S. Lappin. An intensional parametric semantics for vague quantifiers. Lin-
guistics and Philosophy, 23:599–620, 2000.

[36] S. Lappin and N. Francez. E-type pronouns, I-sums, and donkey anaphora.
Linguistics and Philosophy, 17:391–428, 1994.

[37] S. Lappin and C. Pollard. A hyperintensional theory of natural language
interpretation without indices or situations. ms., King’s College, London
and Ohio State University, 1999.

[38] S. Lappin and C. Pollard. Strategies for hyperintensional semantics. ms.,
King’s College, London and Ohio State University, 2000.

[39] R. Larson and G. Segal. Knowledge of Meaning. MIT Press, Cambridge,
MA, 1995.

[40] P. Martin-Löf. Constructive mathematics and computer programming. In
Cohen, Los, Pfeiffer, and Podewski, editors, Logic, Methodology and Phi-
losophy of Science VI, pages 153–179. North Holland, 1982.
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