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Abstract
We present an approach to anaphora and ellipsis resolution in which pro-
nouns and elided structures are interpreted by the dynamic identification in
discourse of type constraints on their semantic representations. The con-
tent of these conditions is recovered in context from an antecedent expres-
sion. The constraints define separation types (sub-types) in Property The-
ory with Curry Typing (PTCT), an expressive first-order logic with Curry
typing that we have proposed as a formal framework for natural language
semantics.1

1 Introduction

We present a type-theoretic account of pronominal anaphora and ellipsis res-
olution within the framework of Property Theory with Curry Typing (PTCT),
a first-order logic with comparatively rich expressive power achieved through
the addition of Curry typing.PTCT is a fine-grained intensional logic that per-
mits distinct propositions (and other intensional entities) to be provably equiva-
lent. It supports functional, separation (sub), and comprehension types. It also
allows a weak form of polymorphism, which seems adequate to capture type-
general expressions in natural language. The proof and model theories ofPTCT
are classically Boolean with respect to negation, disjunction, and quantification.
Quantification over functional and type variables is restricted to remain within
the domain of a first-order system.

We take the resolution of pronominal anaphora to be a dynamic process of
identifying the value of a type parameter with an appropriate part of the repre-
sentation of an antecedent. The parameter corresponds to the specification of a
sub-type condition on a quantified individual variable inPTCT, where the con-
tent of this condition is recovered from part of the antecedent expression. We
propose a unified treatment for pronouns that accommodates bound variable, E-
type, and donkey anaphora.

We represent ellipsis as the identification of a value of a separation type pa-
rameter for expressions in the ellipsis site. The separation type provides a pred-

1 The research of the second author has been supported by grant number AN/2687/APN from
the Arts and Humanities Research Board of the UK, and grant number RES–000–23–0065
from the Economic and Social Research Council of the UK.
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icate for the bare element(s) in the ellipsis structure. The value of the parameter
is constructed by abstraction on an antecedent expression. When variables cor-
responding to pronouns are contained in the separation type retrieved from the
antecedent, typing conditions on these variables are imported into the interpre-
tation of the elided term. Different specifications of these conditions may be
possible, where each specification produces a distinct reading. Using alternative
resolutions of typing constraints on the pronoun variables in the ellipsis site per-
mits us to explain the distinction between strict vs. sloppy readings of pronouns
under ellipsis. It also allows us to handle antecedent contained ellipsis with-
out invoking syntactic mechanisms like quantifier phrase movement or semantic
operations like storage. Our treatment of ellipsis is similar to the higher-order
unification (HOU) analysis proposed by Dalrymple et al. (1991) and Shieber
et al. (1996). However, there are a number of important differences between the
two approaches which we will take up in Section 7.

In Section 2 we give a brief summary of the main features ofPTCT, partic-
ularly the type definitions. More detailed descriptions are provided by Fox et al.
(2002a), Fox et al. (2002b), Fox & Lappin (2003), Fox & Lappin (2004). In
Section 3 we add an intensional number theory, and in Section 4 we character-
ize generalized quantifiers (GQs) corresponding to quantified NPs withinPTCT.
Section 5 gives our treatment of pronominal anaphora, and we present our ac-
count of ellipsis in Section 6. In Section 7 we compare our account of pronominal
anaphora to Ranta’s (1994) analysis of donkey anaphora within Martin-Löf Type
Theory (MLTT) and our treatment of ellipsis to the HOU approach. Finally, in
Section 8 we present some conclusions and consider directions for future work.

2 PTCT

The core language ofPTCT consists of the following sub-languages:
(1) Termst ::= x | c | l | T | λx(t) | (t)t

logical constantsl ::= ∧̂ | ∨̂ | →̂ | ↔̂ | ⊥̂ | ∀̂ | ∃̂ | =̂T | ∼̂=T | ε
(2) TypesT ::= B | Prop | T =⇒ S
(3) Wff ϕ ::= α | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ) | (ϕ↔ ψ) | (∀xϕ) | (∃xϕ)

atomic wffα ::= (t =T s) | ⊥ | t ∈ T | t ∼=T s | truet

The language of terms is the untypedλ-calculus, enriched with logical con-
stants. It is used torepresentthe interpretations of natural language expressions.
It has no internal logic. With an appropriate proof theory, the simple language of
types together with the language of terms can be combined to produce a Curry-
typed λ-calculus. The first-order language of wffs is used to formulate type
judgements for terms, and truth conditions for those terms judged to be inProp.2

2 Negation is defined by∼ p =def p → ⊥. Although we could formulate a constructive theory,
in the following we assume rules that yield a classical Boolean version of the theory.
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It is important to distinguish between the notion of a proposition itself (in the
language of wff), and that of a term thatrepresentsa proposition (in the language
of terms). true(t) will be a true wff whenever the proposition represented by the
termt is true, and a false wff whenever the proposition represented byt is false.
The representation of a propositiont (∈ Prop) is distinct from its truth conditions
(true(t)).

We construct a tableau proof theory forPTCT.3 Its rules can be broken down
into the following kinds.

• The basic connectives of the wff: These have the standard classical first-
order behaviour.

• Identity of terms (=): These are the usual rules of the untypedλ-calculus
with α, β andη reduction.

• Typing ofλ-terms: These are essentially the rules of the Curry-typed cal-
culus, augmented with rules governing those terms that represent proposi-
tions (Prop).

• Truth conditions for Propositions: Additional rules for the language of
wffs that govern the truth conditions of terms inProp (which represent
propositions).

• Equivalence (∼=T ): The theory has an internal notion of extensional equiv-
alence which is given the expected behaviour.

There are two equality notions inPTCT. t ∼=T s states that the termst, s
are extensionally equivalent in typeT . Extensional equivalence is represented in
the language of terms byt ∼̂=T s. t =T s states that two terms are intensionally
identical. The rules for intensional identity are essentially those of theλαβη-
calculus. It is represented in the language of terms byt =̂T s. It is necessary
to type the intensional identity predicate in order to avoid paradoxes when we
introduce comprehension types.

The rules governing equivalence and identity are such that we are able to
derivet =T s → t ∼=T s for all types inhabited byt (s), but nott ∼=T s → t =T

s. As a result,PTCT can sustain fine-grained intensional distinctions among
provably equivalent propositions. Therefore, we avoid the reduction of logically
equivalent expressions to the same intension, a reduction which holds in classical
intensional semantics, without invoking impossible worlds. Moreover, we do so
within a first-order system that uses a flexible Curry typing system rather than a
higher-order logic with Church typing (as in Fox et al.’s (2002c) modification of
Church’s (1940) Simple Theory of Types).

One possible extension that we could consider is to add a universal type∆ to
the types, and rules corresponding to the following axiom.

3 For an introduction to tableau proof procedures for first-order logic with identity see (Jeffrey
1982). Fitting (1996) presents an implemented tableau theorem prover for first-order logic
with identity, and he discusses its complexity properties.
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(4) UT: x ∈ ∆ ↔ x = x

Unfortunately this is inconsistent inPTCT if Prop is a type. Considerrr, where
r = λx.∃̂y ∈ (∆ =⇒ Prop)[x =̂ y ∧̂ ∼̂xy]. However, there are other consistent
extensions that can be adopted.

2.1 Separation types

We add{x ∈ T : ϕ′} to the types, and a tableau rule that implements the follow-
ing axiom.

(5) SP:z ∈ {x ∈ T : ϕ′} ↔ (z ∈ T ∧ ϕ′[z/x])

Note that there is an issue here concerning the nature ofϕ. To ensure the the-
ory is first-order, this type needs to be term representable, soϕ′ must be term
representable. To this end, we can define a term representable fragment of the
language of wffs. First, we introduce syntactic sugar for typed quantification in
the wffs.

(6) (a) ∀Txϕ =def ∀x(x ∈ T → ϕ)
(b) ∃Txϕ =def ∃x(x ∈ T ∧ ϕ)

Wff’s with these typed quantifiers, and no free-floating type judgements will then
have direct intensional analogues—that is, term representations—which will al-
ways be propositions. We can define representable wffs byϕ′:

(7) ϕ′ ::= α′ | (ϕ′ ∧ ψ′) | (ϕ′ ∨ ψ′) | (ϕ′ → ψ′) |
(ϕ′ ↔ ψ′) | (∀Txϕ

′) | (∃Txϕ) | truet
atomic representable wffs
α′ ::= (t =T s) | ⊥ | t ∼=T s

The term representations of representable wffsdα′e are given as:

(8) (a) da ∧ be = dae ∧̂ dbe
(b) da ∨ be = dae ∨̂ dbe
(c) da→ be = dae →̂ dbe
(d) da↔ be = dae ↔̂ dbe
(e) da ∼=T be = dae ∼̂=T dbe
(f) da =T be = dae =̂T dbe
(g) d⊥e = ⊥̂
(h) dtruete = t

(i) d∀Tx.ae = ∀̂xεT dae
(j) d∃Tx.ae = ∃̂xεT dae

Now we can express separation types as{x ∈ S.ϕ′}, which can be taken to
be sugar for{xεS.dϕ′e}. The following theorem is an immediate consequence
of the recursive definition of representable wffs and their term representations.
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Theorem 1 (Representability) dϕ′e ∈ Prop for all representable wffsϕ′, and
furthermoretruedϕ′e ↔ ϕ′.

2.2 Comprehension types

Usually comprehension can be derived from SP and UT. We are forgoing UT to
avoid paradoxes, so we have to define comprehension independently. The same
arguments apply as for SP concerning representability. We add the type{x : ϕ′}
and a tableau rule corresponding to the following axiom.

(9) COMP:z ∈ {x : ϕ} ↔ ϕ[z/x]

Given that COMP = SP + UT, where UT is the Universal Type∆ = {x : x =̂ x},
we would derive a paradox if= was not typed. This is because inPTCT Prop
is a type. Sorr, wherer = λx.∃̂y ∈ (∆ =⇒ Prop)[x =̂ y ∧̂ ∼̂xy] produces a
paradoxical propositional. Our use of a typed intensional identity predicate filters
out the paradox because it must be possible to prove that the two expressions for
which=T is asserted are of typeT independently of the identity assertion.s =T t
iff s, t ∈ T ands = t.

2.3 Polymorphic types

We enrich the language of types to include type variablesX, and the wffs to
include quantification over types∀Xϕ,∃Xϕ. We addΠX.T to the language of
types, governed by the tableau rule corresponding to the following axiom:

(10) PM:f ∈ ΠX.T ↔ ∀X(f ∈ T )

Polymorphic types permit us to accommodate the fact that natural language
expressions such as coordination and certain verbs can apply as functions to ar-
guments of different types. Note that PM is impredicative (the type quantification
ranges over the types that are being defined). To avoid this, we add a language
of Kinds (K) to PTCT.

(11) Kinds:K ::= T | ΠX.K
(12) PM′: f ∈ ΠX.K ↔ ∀X(f ∈ K) whereX ranges only over types.

This constraint limits quantification over types to type variables that take non-
Kind types as values. Therefore, we rule out iterated type-polymorphism in
which functional polymorphic types apply to polymorphic arguments. In fact,
this weak version of polymporphism seems to be adequate to express the in-
stances of multiple type assignment that occur in natural languages (van Ben-
them 1991).
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2.4 Final syntax

Adopting the extensions discussed above, which do not allow the derivation of a
paradox, leads to the following language.

(13) Termst ::= x | c | l | T | λx(t) | (t)t
(logical constants)l ::= ∧̂ | ∨̂ | →̂ | ↔̂ | ⊥̂ | ∀̂ | ∃̂ | =̂T | ∼̂=T | ε

(14) TypesT ::= B | Prop | T =⇒ S | X | {x ∈ T.ϕ′} | {x.ϕ′}
(15) KindsK ::= T | ΠX.T
(16) Wff ϕ ::= α | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ) | (ϕ↔ ψ)

| (∀xϕ) | (∃xϕ) | (∀Xϕ) | (∃Xϕ)
(atomic wff)α ::= (t =T s) | ⊥ | t ∈ K | t ∼=T | truet

whereϕ′ is as defined in section 2.1.

2.5 A model theory forPTCT

In order to give a model forPTCT, we first need a model of the untypedλ-
calculus. This will form the model forPTCT’s language of terms. Here we
present Meyer’s model (Meyer 1982).

Definition 1 (General Functional Models) A functional model is a structure of
the formD = 〈D, [D → D],Φ,Ψ〉 where

• D is a non-empty set,
• [D → D] is some class of functions fromD toD,
• Φ : D → [D → D],
• Ψ : [D → D] → D,
• Ψ(Φ(d)) = d for all d ∈ D

We can interpret the calculus as follows (g is an assignment function from
variables to elements ofD):

(17) [[x]]g = g(x)
[[λx.t]]g = Ψ(λd.[[t]]g[d/x])
[[ts]]g = Φ([[t]]g)[[s]]g

This interpretation exploits the fact thatΦ maps every element ofD into a cor-
responding function fromD to D, andΨ maps functions fromD to D into
elements ofD. Note we require that functions of the formλd.[[t]]g[d/x] are in the
class[D → D] to ensure that the interpretation is well defined. In the case where
we permit constant terms, then we can add the clause (i assigns elements from
D to constants):
(18) [[c]]g = i(c)

Theorem 2 If t = s in the extensional untypedλ-calculus (withξ andη), then
[[t]]g = [[s]]g for each assignmentg.
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Proof: By induction on the derivations. 2

A modelM of PTCT is constructed on the basis of a simple extensional
model of the untypedλ-calculus (Meyer 1982, Barendregt 1984, Turner 1997),
with additional structure added to capture the type rules and the relation between
the sublanguages ofPTCT. On the basis of the full proof and model theories, we
prove the soundness and completeness ofPTCT.4

3 An intensional number theory

We add an intensional number theory toPTCT, incorporating rules correspond-
ing to the axioms in (23).

(19) Terms:0 | succ | pred | add | mult | ˆmost | | · |B
(20) Types:Num
(21) Wffs: zero(t) | t ∼=Num t′ | t <Num t′ | most(p)(q)
(22) Axioms forNum: The usual Peano axioms, adapted toPTCT
(23) Axioms for<Num:

(a) y ∈ Num → 0 <Num succ(y)
(b) x ∈ Num → x 6<Num 0
(c) x ∈ Num ∧ y ∈ Num → (succ(x) <Num succ(y) ↔ x <Num y)

The model theory can be extended in a straightforward way to support these new
rules of the proof theory.

When we incorporate the intensional number theory intoPTCT we lose com-
pleteness of the proof theory. However, it is important to recognize that incom-
pleteness sets in only when tableau rules that encode number-theoretic inferences
are applied. The basic logic and type system ofPTCT without these rules and
their corresponding definitions in the model theory remains complete.

4 Representing proportional generalized quantifiers inPTCT

By defining the cardinality of properties, we can express the truth conditions of
proportional quantifiers inPTCT. The cardinality of properties|p|B is formu-
lated as follows.
(24) p ∈ (B =⇒ Prop) ∧ ∼∃x(x ∈ B ∧ truepx) → |p|B ∼=Num 0
(25) p ∈ (B =⇒ Prop) ∧ b ∈ B ∧ truepb→

|p|B ∼=Num add(|λx(px ∧̂ ∼̂x =̂B b)|B)(succ(0))

The cardinality of types can be defined in a similar way. We representmost(p)(q)
as follows:

4 The full proof and model theories forPTCT, and the proofs for soundness and completeness
are presented by Fox & Lappin (2004).
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(26) p ∈ (B =⇒ Prop) ∧ q ∈ (B =⇒ Prop) →
most(p)(q) ↔
|{x ∈ B.truepx ∧ ∼ trueqx}|B <Num |{x ∈ B.truepx ∧ trueqx}|B

Given thatPTCT is a first-order theory in which all quantification is limited to
first-order variables, this characterization ofmost effectively encodes a higher-
order GQ within a first-order system.

5 A type-theoretical approach to anaphora

We combine our treatment of generalized quantifiers with our characterisation
of separation types to provide a unified type-theoretic account of anaphora. We
assume that all quantified NPs are represented as cardinality relations on the
model of our treatment ofmost. Pronouns are represented as appropriately typed
free variables. If the free variable is within the scope of a set forming operator
that specifies a sub-type and it meets the same typing constraints as the variable
bound by the operator, the variable can be interpreted as bound by the opera-
tor through substitution underα identity. This interpretation yields the bound
reading of the pronoun.

(27) Every man loves his mother.
(28) |{x ∈ B.trueman′(x) ∧ truelove′(x,mother-of ′(y))}|B

∼=Num |{x ∈ B.trueman′(x)}|B
→
|{x ∈ B.trueman′(x) ∧ truelove′(x,mother-of ′(x))}|B
∼=Num |{x ∈ B.trueman′(x)}|B

Representations of this kind are generated by compositional semantic operations
as described by (for example) Lappin (1989), and Lappin & Francez (1994).

When the pronoun is interpreted as dependent upon an NP which does not
bind it, we represent the pronoun variable as constrained by a separation type
parameter whose value is supplied by context. Generally, the value of this type
parameter is determined in two parts. The initial type membership condition is
imported directly from the antecedent corresponding to the GQ. The wff part of
the separation type corresponds to the relation between the restriction and the
predication in the antecedent clause. In the default case, the pronoun variable is
bound by a universal quantifier in the language of wffs.

(29) Every student arrived.
(30) |{x ∈ B.truestudent′(x) ∧ truearrived′(x)}|B

∼=Num |{x ∈ B.truestudent′(x)}|B
(31) They sang.
(32) ∀y ∈ A.(truesang′(y))

whereA = {x ∈ B.truestudent′(x) ∧ truearrived′(x)}
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In the case of proper names and existentially quantified NP antecedents we
obtain the following.

(33) John arrived.
(34) truearrived′(john)
(35) He sang.
(36) ∀y ∈ A.(truesang′(y))

whereA = {x ∈ B.truex =̂B john ∧ truearrived′(x)}
(37) Some man arrived.
(38) |{x ∈ B.trueman′(x) ∧ truearrived′(x) ∧ trueφ(x)}|B >Num 0
(39) He sang.
(40) ∀y ∈ A.(truesang′(y))

whereA = {x ∈ B.trueman′(x) ∧ truearrived′(x) ∧ trueφ(x)}
φ is a predicate that is specified in context and uniquely identifies a man who
arrived in that context.

We handle donkey anaphora inPTCT through a type constraint on the vari-
able corresponding to the pronoun.

(41) Every man who owns a donkey beats it.
(42) |{x ∈ B.trueman′(x) ∧

(|{y ∈ B.trueown′(x, y) ∧ truedonkey′(y)}|B >Num 0)
∧ ∀z ∈ A(truebeat′(x, z))}|B

∼=Num

|{x ∈ B.trueman′(x) ∧ (|{y ∈ B.trueown′(x, y) ∧ truedonkey′(y)}|B
>Num 0)}|B

where
A = {y ∈ B.trueown′(x, y) ∧ truedonkey′(y)}

The representation asserts that every man who owns at least one donkey beats all
of the donkeys that he owns.

Our type-theoretic account of donkey anaphora is similar in spirit to the E-
type analysis proposed by Lappin & Francez (1994). There is, however, an im-
portant difference. Lappin & Francez (1994) interpret an E-type pronoun as a
choice function from the elements of an intersective set specified by the clause
containing the antecedent NP to a range of values determined by this NP. Both
the domain and range of the function are described informally in terms of the se-
mantic representation of the antecedent clause. On the type-theoretic approach
proposed here the interpretation of the E-type pronoun is specified explicitly
through type constraints on variables in the semantic representation language.
Therefore our account provides a more precise and properly formalized treat-
ment of pronominal anaphora.

We can generate existential readings of donkey sentences (Pelletier & Schu-
bert 1989) by treating the principle that the free variable representing a pronoun
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is bound by a universal quantifier as defeasible. We can then substitute an exis-
tential for the universal quantifier.

(43) Every person who had a quarter put it in a parking meter.
(44) |{x ∈ B.trueperson′(x) ∧

(|{y ∈ B.truehad′(x, y) ∧ truequarter′(y)}|B >Num 0)
∧ ∃z ∈ A(trueput-in-meter′(x, z))}|B∼=Num

|{x ∈ B.trueperson′(x) ∧
(|{y ∈ B.truehad′(x, y) ∧ truequarter′(y)}|B
>Num 0)}|B

whereA = {y ∈ B.truehad′(x, y) ∧ truequarter′(y)}
This representation asserts that every person who had a quarter put at least one
quarter that he/she had in a parking meter.

The default presence of a universal quantifier in thePTCT representation
of a donkey pronoun is an instance of a pragmatic maximality condition of the
kind that Lappin & Francez (1994) invoke to explain the preferred readings of
sentences like (41). As they observe, lexical semantic and pragmatic factors can
override a maximality constraint in cases like (43). We represent the suspension
of the maximality requirement by substituting an existential for the universal
quantifier binding the variable corresponding to the pronoun in these sentences.

6 Ellipsis

Let S be a parameter that is instantiated by separation types. We can represent a
clause containing an elided VP like (45) as (46).

(45) John sings, and Mary does too.
(46) truesings ′(john) ∧ mary ∈ S

Assuming thatmary andjohn are both of typeB, we can abstract onjohn to
obtain the separation type{x ∈ B.truesings′(x)} from the antecedent in order to
resolveS. This yields the desired interpretation of the elided clause in (47).5

(47) truesings ′(john) ∧ truesings ′(mary)

We have not introduced product types intoPTCT, but we are assuming that
all predicate types are curried functions. For simplicity of notation we repre-
sent transitive and ditransitive verbs as multi-argument functional expressions,
but we continue to assume that they are interpreted as a sequence of curried

5 The presentation adopted here requires a slight change toPTCT as it is formulated elsewhere
(Fox et al. 2002a, Fox et al. 2002b, Fox & Lappin 2003) in order to allow free-floating type
judgements within the language of terms. This extension is not problematic provided appro-
priate restrictions are observed (Fox & Lappin, to appear).
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functions. Similarly we assume that separation types corresponding to curried
function predicate can be built up through curried function application.

Our treatment of VP ellipsis extends directly to gapping (48).6

(48) Mary reviewed Principia and Max Ulysses.
(49) truereviewed ′(mary , principia) ∧ (max , ulysses) ∈ S
(50) S = {(x, y) ∈ B ⊗B.truereviewed ′(x, y)}
(51) truereviewed ′(john, principia) ∧ truereviewed ′(max , ulysses)

It also applies to pseudogapping (52).7

(52) Max introduced Rosa to Sam before
Bill did Mary to John.

(53) trueintroduced ′(max , rosa, sam)
before
(bill ′,mary , john) ∈ S

(54) S = {(x, y, z) ∈ B ⊗B ⊗B.
trueintroduced ′(x, y, z)}

(55) trueintroduced ′(max , rosa, sam)
before
trueintroduced ′(bill ,mary , john)

If we combine our treatment of ellipsis with our account of pronominal
anaphora, the representation of the distinction between strict and sloppy read-
ings of pronouns under ellipsis is straightforward.

(56) John loves his mother, and Bill does too.
(57) ∀x ∈ A(trueloves ′(john,mother -of ′(x)) ∧ bill ∈ S

Let S be defined as follows.

S = {y ∈ B.∀x ∈ A(trueloves′(y,mother -of ′(x))}

If the type parameterA on the variablex is specified as{w ∈ B.truew =̂B john}
in the antecedent clause prior to the resolution ofS, then a strict reading of the
pronoun results. IfA is determined after the value ofS is identified, then it can
be taken as{w ∈ B.truew =̂B bill}, which provides the sloppy reading.

Finally, consider the antecedent contained ellipsis (ACE) structure:
(58) Mary read every book that John did.

Restrictive relative clauses modify head nouns of NPs. Therefore, it is reasonable
to impose the condition that the conjunct corresponding to a restrictive relative
clause in the propositional part of the sub-type expression of a GQ contain an

6 Here we use product types. Product types can be added toPTCT (Fox & Lappin, to appear),
or the examples can be represented using an equivalent curried form.

7 Here we assume there is some suitable treatment of the temporal ordering of the circumstances
described by the propositionsp andq in the expressionp before q without further elaboration.
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occurrence of the variable bound by the set operator of the sub-type. This is, in
effect, a non-vacuousness constraint on relative clause modification. It requires
that a relative clause be interpreted as a modifier that contributes a restriction to
the head noun. Given this constraint the representation of (58) is:
(59) |{x ∈ B.truebook′(x) ∧ (john, x) ∈ S) ∧ trueread′(mary, x)}|B

∼=Num |{x ∈ B.truebook′(x) ∧ (john, x) ∈ S}|B
Taking the conjunct of (59) that corresponds to the matrix clause as the an-
tecedent and abstracting over both its arguments we obtain the separation type
specified in (60). This yields (61) as the interpretation of (58).8

(60) S = {(y, w).trueread′(y, w)}
(61) |{x ∈ B.truebook′(x) ∧ trueread′(john, x) ∧ trueread′(mary, x)}|B

∼=Num |{x ∈ B.truebook′(x) ∧ trueread′(john, x)}|B
Statement (61) asserts that every book that John read Mary read, which is the

intended reading of (58).
We have generated this interpretation without using a syntactic operation of

quantifier raising, as in the analysis of Fiengo & May (1994) or a semantic pro-
cedure of storage, as in the HOU treatment of Dalrymple et al. (1991). We also
do not require a syntactic trace (Lappin 1996) or aSLASH feature (Lappin 1999)
in the ellipsis site. The presence of the variable bound by the set operator of
the sub-type as the second argument of the function which assigns a value to the
elidedPTCT expression is motivated by a general condition on the representa-
tion of restrictive relative clauses as non-vacuous conjuncts in a GQ.

7 Comparison with other type-theoretical approaches

Ranta develops an analysis of anaphora within Martin-Löf Type Theory (MLTT)
(Ranta 1994). He represents donkey sentences as universal quantification over
product types.9

(62) Πz : ((Σx : man)(Σy : donkey)(x owns y))
(p(z) beats p(q(z))

In this example,z is a variable over product pairs, andp andq are left and right
projections, respectively, on the product pair, where

(63) (a) p(z) : man
(b) q(z) : (Σy : donkey)(p(z) owns y)
(c) p(q(z)) : donkey

8 For simplicity we suppress typing on the variablesy andw here.
9 Note that here expressions of the formΠx : (T )(S) denote a dependent product type. This

is not to be confused withPTCT’s polymorphic types, whose form (ΠX.T ) is superficially
similar.
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(d) q(q(z)) : (p(z) owns p(q(z))).

Ranta’s account does not generate the existential reading of donkey sentences
(Pelletier & Schubert 1989).

As Ranta acknowledges, his universal quantification-over-pairs analysis fol-
lows Discourse Representation Theory (DRT) (Kamp & Reyle 1993) in inher-
iting the proportionality problem in a sentence like the following (Heim 1990,
Kadmon 1990).

(64) Most men who own a donkey beat it.

On the universal quantification-over-pairs account of donkey anaphora, contrary
to the desired interpretation, the sentence is true in a model in which ten men
own donkeys, nine men own a single donkey each and do not beat it, while the
tenth man owns ten donkeys and beats them all. On the preferred reading the
sentence is false in this model.

Ranta cites Sundholm’s (1989) solution to the proportionality problem. This
suggestion involves positing a second quantifiermoston product pairs(Σx :
A)(B(x)) that is interpreted as applying anA injection to the pairs, where this
injection identifies only the first element of each pair as within the domain of
quantification. Defining an additional mode of quantification as a distinct reading
of mostin order to generate the correct interpretation of (64) would seem to be
an ad hoc approach to the difficulty. There is no evidence for takingmostas
ambiguous between two quantificational readings beyond the need to avoid the
inability of the quantification-over-pairs analysis to yield the correct results for
this case. Assuming two modes of quantification adds considerable complication
to the type-theoretic approach to anaphora without independent motivation.

The proportion problem does not arise on our account.Most is represented
as a cardinality relation (GQ) in which quantification is over the elements of the
set corresponding to the subject restriction rather than over pairs. Therefore the
sentence is evaluated as false in the model that creates difficulties for DRT and
for Ranta, without the need to adopt additional devices.

On the HOU approach to ellipsis proposed by Dalrymple et al. (1991) and
Shieber et al. (1996), the elided predicate is represented as a higher-order vari-
able, which is unified with a lambda term obtained from the antecedent clause
through abstraction over the arguments that correspond to the bare arguments of
the ellipsis site. This term is then applied to the bare arguments to produce an
interpretation of the elided structure.

OurPTCT-based analysis of ellipsis is similar in approach to the HOU view.
In both cases correspondences are set up between a sequence of phrases in an
ellipsis site and an antecedent clause, and a predicate term is abstracted from the
antecedent for application to elements in the elided clause. However, while HOU
solves an equation with a higher-order variable to obtain a lambda expression,
our account uses a parameter that is resolved to a separation type expression.
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In our model theory, type variables take terms as values. Therefore, even if a
separation type parameter is construed as a variable ofPTCT, we remain within
the first-order resources ofPTCT.

In addition, HOU requires storage to extract a quantified NP from its an-
tecedent-contained position in the semantic representation of an ACE structure.
By contrast, we are able to interpret these NPsin situby virtue of the presence of
a bound variable in the part of a sub-type in a GQ representation that corresponds
to the relative clause of the ACE.

8 Conclusions and future work

We have developed type-theoretic treatments of pronominal anaphora and ellip-
sis within the framework ofPTCT, a first-order fine-grained intensional logic
with flexible Curry typing. Our account of anaphora has wider empirical cov-
erage than Ranta’s (1994) MLTT analysis. Our account of ellipsis avoids the
higher-order variables of HOU, and we do not require an operation of storage to
handle ACE structures.

The application ofPTCT to anaphora and ellipsis illustrates its considerable
expressive resources. The primary advantage ofPTCT is the fact that it provides
the expressiveness of a higher-order system with rich typing while remaining a
first-order logic with limited formal power.

We have provided a model theory forPTCT using extensional models for the
untypedλ-calculus enriched with interpretations of Curry types. The restrictions
that we impose on comprehension types, quantification over types, and the rela-
tion between the three sublanguages ofPTCT ensure that it remains a first-order
system in which its enriched expressive power comes largely through quantifica-
tion over terms and the representation of types as terms within the language.

In future work we will be investigating the possibility of incorporating prod-
uct types intoPTCT without taking it out of the class of first-order systems and
also determine the most appropriate way of incorporating the representation of
free-floating type judgements in the language of terms. Product types will permit
us to simplify our representations ofk-ary predicates and the sub-types defined
in terms of them. They will also permit us to capture dependent types, which
we require to deal with certain kinds of anaphora, such as donkey pronouns in
conditional sentences.

We will consider a property-theoretic variant of the treatment of anaphora
and ellipsis which exploits properties and application rather than the types and
type-membership used in the type-theoretic treatment presented in this paper.
We will then examine extensions that establish correspondences between types
and properties. One aim of this would be to show an equivalence between the
type-theoretic and property-theoretic approaches to anaphora and ellipsis.
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We will explorePTCT as a semantic representation language in implemented
systems of natural language interpretation. As part of this research we will be
constructing a theorem prover that usesPTCT’s tableau proof theory. We will
also investigate the implementation of our proposed approaches to anaphora and
ellipsis resolution.
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