Chapter 7

Doing Natural Language Semanticsin an
Expressive First-Order Logic with Flexible

Typing

CHRIS FOX AND SHALOM LAPPIN

Dept. of Computer Science, University of Essex

and

Dept. of Computer Science, King's College London
E-mail: foxcj@essex.ac.uk and lappin@dcs.kcl.ac.uk

ABSTRACT. We present Property Theory with Curry Typing (PTCT), an intensional first-order
logic for natural language semantics. PTCT permits fine-grained specifications of meaning. It
also supports polymorphic types and separation types.. We develop an intensional number the-
ory within PTCT in order to represent proportional generalized quantifiers like most. We use the
type system and our treatment of generalized quantifiers in natural language to construct a type-
theoretic approach to pronominal anaphora that avoids some of the difficulties that undermine
previous type-theoretic analyses of this phenomenon.

7.1 PTCT: Syntax of the basic theory
The core language of PTCT consists of the following sub-languages:

1 Termst =z | e |1 T | Aa(t) | (&)t

(logical constants) I == A |V | = | & | L |V |3 |20 | S €
2. TypesT =B |Prop | T = S
3. Witpu= al(@Ad)[(@V)|(@—=9)|(pe)

| (V) | (o) | et
(atomicwff)a =t €T | L|t=rs|t=rs

The language of terms is the untyped A-calculus, enriched with logical con-
stants. It is used to represent the interpretations of natural language expressions.
It has no internal logic. With an appropriate proof theory, the simple language of

! Separation types are also known as sub-types.
89
Proceedings of Formal Grammar 2003

G. Jager, P. Monachesi, G. Penn & S. Wintner (editors).
Chapter 7, Copyright ©2003, Chris Fox and Shalom Lappin.

90 Formal Grammar 2003

types together with the language of terms can be combined to produce a Curry-
typed A-calculus. The first-order language of wffs is used to formulate type judge-
ments for terms, and truth conditions for those terms judged to be in Prop.?

It is important to distinguish between the notion of a proposition itself (in the
language of wff), and that of a term that represents a proposition (in the language
of terms). *“¢(¢) will be a true wff whenever the proposition represented by the
term ¢ is true, and a false wff whenever the proposition represented by ¢ is false.
The representation of a proposition ¢ (€ Prop) is distinct from its truth conditions
(true (t))

Later, in section 7.4, we will consider some extensions to the theory.

7.2 A Proof Theory for PTCT

We construct a tableau proof theory for PTCT. Its rules can be broken down into
the following kinds.

e The basic connectives of the wff: These have the standard classical first-
order behaviour.

o Identity of terms (=7"): These are the usual «, 3,7 rules of the untyped A-
calculus, applied to terms of the same type.

e Typing of A-terms: These are essentially the rules of the Curry-typed calcu-
lus, augmented with rules governing those terms that represent propositions
(Prop).

e Truth conditions for Propositions: Additional rules for the language of wffs
that govern the truth conditions of terms in Prop (which represent proposi-
tions).

e Equivalence = The theory has an internal notion of extensional equiva-
lence which is given the expected behaviour.

The following are examples of tableau rules of each kind.

The symbol * indicates that the corresponding proposition has been used, and
does not need to be considered again. When a rule requires more than one premise,
the premises are separated by commas (,).

4. Rules for Wffs

Conjunction Negated Conjunction
sAT)* ~(s At)*
1 (2
s ~s ~t
t

2Negation is defi ned by ~p =4 p — L. Although we could formulate a constructive theory, in
the following we assume rules that yield a classical, boolean version of the theory.

An Expressive First-Order Logic: Chris Fox and Shalom Lappin 91

Universal Quantification

Vz.p wherek occurs on the path
| (or isthe only constant
[k /x] occurring in the path)
5. Type Inference Rules

General Function Spaces Identity within a Type
te(S=T) wheet' € Sisonthe t=pt' ,~(€T)
th |
wer P 1
Conjunctive Propositions Universal Propositions
t € Prop,t' € Prop (Az.t) € (S = Prop)
- . |
(t At') € Prop VzeS.t € Prop
6. Truth Rules
Conjunction Universal Quantification
true(s A t)* wheres,t € Propison true (Ve S.t)* where
l the path Azt
trues /\ truet ep Vm(x e S - truet) ESz‘i)Perop) is
on the path

7.3 Intensional | dentity v. Extensional Equivalence

There are two equivalence notions in PTCT. ¢t 2 s states that the terms ¢, s are
extensionally equivalent in type T'. Extensional equivalence is represented in the
language of terms by ¢ &7 s. ¢ =7 s states that two terms are intensionally
identical. The rules for intensional identity are essentially those of the Aa/fn-
calculus. Itis represented in the language of terms by ¢ =1 s. It is necessary to type
the intensional identity predicate in order to avoid paradoxes when we introduce
comprehension types.

The rules governing equivalence and identity are such that we are able to derive
t =r s = t = s for all types inhabited by £ (s), but not ¢ ¢ s — t =1 s. As
a result, PTCT can sustain fine-grained intensional distinctions among provably
equivalent propositions. Therefore, we avoid the reduction of logically equivalent
expressions to the same intension, a reduction which holds in classical intensional
semantics (Carnap, 1947; Montague, 1974), without invoking impossible worlds
(Muskens, 1995; Barwise, 1997; Gregory, 2002). Moreover, we do so within a
first-order system that uses a flexible Curry typing system rather than a higher-
order logic with Church typing (as in Fox et al.’s modification of Church’s simple
theory of types (Fox et al., 2002; Church, 1940)).

7.4 Extendingthe Type System

One possible extension that we could consider is to add a universal type A to the
types, and rules corresponding to the following axiom.

92 Formal Grammar 2003

7. UT'ze A=z

This allows Chierchia’s analysis of nominalisation (Chierchia, 1982). Unfortu-
nately this is inconsistent in PTCT if Prop is a type. Consider rr, where r =
Mz.3y € (A = Prop)[z = y A < zy]. However, there are other consistent exten-
sions that can be adopted.

7.4.1 Separation Types

We add {z € T : ¢'} to the types, and a tableau rule that implements the following
axiom.

8. SPize{zeT: o'} (€T AN¢'z/x])

Note that there is an issue here concerning the nature of ¢. To ensure the theory
is first-order, this type needs to be term representable, so ¢ must be term repre-
sentable. To this end, we can define a term representable fragment of the language
of wffs. First, we introduce syntactic sugar for typed quantification in the wffs.

9. (@) Vrzp =gef V(z € T — o)
(b) 3rzp =ger Fz(z € T A ¢)

Wffs with these typed quantifiers, and no free-floating type judgements will then
have direct intensional analogues—that is, term representations—which will al-
ways be propositions. We can define representable wffs by J:

10. @' u= o | (" AP) | (@' V) [(" =) | (¢ <)
| (Vrzg') | Grayp) | "¢t
(atomic representable wffs) o := L |t =7 s |t Zp s

The term representations of representable wffs [«'] are given by the following.
11. (@) [a Ab] = [a] A [b]

(b) [aVb] =Ta] V[b]
(€) [a—b] = [a] = [b]
(@ [a 6> b] = [a] & [b]
(€) [a =1 b] = [a] =r [b]
(0 [a=r 8] = [a] = [b]
@ [L1=1

(h) [trues] =)

(i) [Vrz.a] =VzeT[a]
() [Frz.a] = JzeT[a]

Now we can express separation types as {z € S.¢'}, which can be taken to be
sugar for {zeS.[¢'1}.

The following theorem is an immediate consequence of the recursive definition
of representable wffs and their term representations.

12. Theorem (Representability) [¢'] € Prop for all representable wffs ', and
furthermore ™¢['] < ¢’

An Expressive First-Order Logic: Chris Fox and Shalom Lappin 93

7.4.2 Comprehension Types

Usually comprehension can be derived from SP and UT. We are forgoing UT to
avoid paradoxes, so we have to define comprehension independently. The same
arguments apply as for SP concerning representability

We add the type {z : ¢’} and a tableau rule corresponding to the following
axiom.

13. COMP: z € {z : ¢} <> ¢[z/1]

Given that COMP = SP + UT, where UT is the Universal Type A = {z : z = z},
we would derive a paradox if = was not typed. This is because in PTCT Prop
is a type. So rr, where 7 = Az.Jy € (A = Prop)[z = y A < azy] produces a
paradoxical propositional. Our use of a typed intensional identity predicate filters
out the paradox because it must be possible to prove that the two expressions for
which = is asserted are of type T independently of the identity assertion. s = ¢
iff s,t € Tand s = t.

7.4.3 Polymorphic Types

We enrich the language of types to include type variables X, and the wffs to in-
clude quantification over types VX ¢, 3X ¢. In the model theory that we present in
Section 7.5, types denote terms in the domain of the model, so quantification over
types remains first-order. We add ITX.T" to the language of types, governed by the
tableau rule corresponding to the following axiom:

14. PM: f e IX.T <+ VX(f € T)

Polymorphic types permit us to accommodate the fact that natural language
expressions like coordination and certain verbs can can apply as functions to argu-
ments of different types.

Note that PM is impredicative (the type quantification ranges over the types that
are being defined). To avoid this, and the paradoxes that impredicativity generates,
we add a language of Kinds (K) to PTCT:

15. Kinds: K :=T |IIX.K
16. PM': f e IX.K + VX(f € K) where X ranges only over types.

This constraint limits quantification over types to type variables that take non-
Kind types as values. Therefore, we rule out iterated type polymorphism in which
functional polymorphic types apply to polymorphic arguments. In fact, this weak
version of polymorphism seems to be adequate to express the instances of multiple
type assignment that occur in natural languages (van Benthem, 1991).

7.4.4 Final Syntax

Adopting the extensions discussed above, which do not allow the derivation of a
paradox, leads to the following language.

94 Formal Grammar 2003

17. (logical constants) I == A |V || & | L V|3 | 20| Er e
(terms) t u=z|c|l|T]| z(t) | (t)t
(Types) T =B |Prop|T=85|X|{zeTy}|{z¢}
(Kinds) K =T |1OX.T
(atomic wff) ax=teK|Ll|t=ps|t=rs
(wff) pu=all@Ay) [(eVY) (=)]| (g)

| (Vo) | Bzp) | (VX@) | BX @) | "Mt

where ¢’ is as defined in section 7.4.1.

75 A Mode Theory for PTCT

In order to give a model for PTCT, we first need a model of the untyped A-calculus.
This will form the model for PTCT’s language of terms. Here we present Meyer’s
model (Meyer, 1982).

7.5.1 Moddsof the (Extensional) A-Calculus

18. Definition (General Functional Models) A functional model is a structure of
the form D = (D, [D — D], ®, ¥) where

(@ D is anon-empty set,

(b) [D — D] is some class of functions from D to D,
(c) @:D —[D— D,

(d) ¥:[D— D]— D,

(e) ¥(®(d)) =dforalld € D

We can interpret the calculus as using the following.

19. [z]y = g(z)
z.t]g = T[] g(4/a))
[tslg = @([tlg)[s]g

where g is an assignment function from variables to elements of D. This inter-
pretation exploits the fact that & maps every element of D into a corresponding
function from D to D, and ¥ maps functions from D to D into elements of D.
Note we require that functions of the form Ad.[t] 4/, are in the class [D — D]
to ensure that the interpretation is well defined.
In the case where we permit constant terms, then we can add the clause

20. [c]q = i(c)
where 7 assigns elements of D to constants.

21. Theorem If t = s in the extensional untyped A-calculus (with & and 7), then
[t]lg = [s]g for each assignment g.
Proof: By induction on the derivations. O

An Expressive First-Order Logic: Chris Fox and Shalom Lappin 95

A model M of PTCT is constructed on the basis of a simple extensional model
of the untyped X calculus (Meyer, 1982; Barendregt, 1984; Turner, 1997), with
additional structure added to capture the type rules and the relation between the
sublanguages of PTCT.

22. Definition A model of PTCTis M = (D, T,P,B, B, T, K), where

(@ D is a model of the A-calculus

(b) T: D — {0,1} models the truth predicate ™

(c) P ¢ D models the class of propositions

(d) B C D models the class of basic individuals

(e) T < K models the class of types

() B(B) is a set of sets, whose elements partition B into equivalences
classes of individuals.

(9) K € D models the class of kinds

with sufficient structural constraints on T, P and 7 to validate the rules of
PTCT.

In the following, we give some examples of the structural constraints.

7.5.2 Kindsand Types

Kinds and types can be interpreted as subsets of D. To ensure that polymorphic
types are predicative (i.e. to avoid an implicit circularity in their definition), there
is quantification over types, but not over kinds.

To give a first-order account of type quantification, we will consider the inter-
pretation of term representations of types. We take types in PTCT to denote terms
in7 C D. If type T in PTCT denotes an individual S € T, the underlying type
(or set of individuals) will be denoted by “ S.

The types in the model, and the interpretation of PTCT’s types are specified
by rules like those in the following examples.

23. (@) Forallte K,Ytc D
) [X]gr=7(X) €T
() If[S)g,r,[Ulg,r € T.then[S = Uly, €T
(d) If[S]y,r € T and [[¢']g,- € Pthen [{z € S.¢'}yr €T
() “[S = Ul ={d € D:Ve € "[S],,,®(d)e € “[U]y,+}
(M) “[{z € S.¢'}yr={d € U[[S]]Q,T-Mg[d/w],r =o'}

Here, 7 is an assignment from type variables to elements of 7, and [-] is as defined
in section 7.4.1, and @ is as defined in the model of the A-calculus.

7.5.3 Propositions

The typing rules for Prop are supported by structural constraints that are exempli-
fied by the following.

96 Formal Grammar 2003

24. (a) If[t]y,r € Pand [s],, € P, then [t A s]y, € P.
(b) If[S]y,- € T, and [[t]]g[d/m],T e Pforalld € V[S],.-,
then [VzeS.t],, € P.
(©) If[S]g,r € T, then [t Zg sl € Piff [s]gr, [t]g,r € “[S]g,r-
(d) If [S]y,- € T, then [t =5 5]y, € Piff [s]g,r, [t]g,r € “[STg,r-

754 Truth

The rules for “¢ are supported by the following structural constraints, amongst
others.

25. (a) If [t]y,r € Pand [s]g,r € P, then T([t A s]g,-) = 1iff T([t]y,r) =1

and T([s]g,r) = 1.

(b) If [S]g,r € T and [t]gja/q,- € P forall d € “[S],,-, then

T([VzeS-tly,) = 1iff T([tlyia/a),-) = 1 forall d € “[S]g,,.

© i If[tlgr [s]g,r € Bthen T([t &g s]y,r) = 1iff there is an A such
that A € B(B) and [¢],,-, [s]4,~ are elements of A.

ii. If [t]gr, [s]g,r € P then T([t Zprop slg,r) = 1iff T([t]y,r) =
T([s]g.r)-

ii. If [t]g.r,[slg,r € [S = Uly,r, Where [S]g.+,[Uly- € T then
T([t Zs=v) slor) = 1iff T([tr 2y sz]y4/0),,) = 1 for all
de U|[S]]g,7'-

(@) 1 [tlg,r, [slg,r € “[S]g,r. then T([t =5 slg,r) = 1iff [t]g,r = [s]g,r
(e) If T([t]y,r) = 1then [¢],,r € P.

Note that we give no rules for the extensional equivalence of elements of com-
prehension types, separation types or polymorphic types.

755 Wdl-Formed Formulae

The language of wff can now be given truth conditions. Some examples follow.

26. Mgy, |Es=rtiff[t],, |[3]]g,'r € [T]y,- and [t]g,r = [s]g,
Mg s =p tiff T([s]gr =r [tly,r) =1
Mg E=e(t) iff T([t]y,) =1
Mg, EteT iff[t]y, € [T]y:°
Moz Ee Ny iff Mg |Epand Mg =9
Mg, L
My EVzp iff foralld € D, Mg/ E ¢
My - EVXe iff forall SeT, Mg,T[S/X} Eo

27. Definition (Validity) A wff ¢ of PTCT is valid in a model M iff M, ; |= ¢
for all assignment functions g, 7.

3gyntactic constraints on T’ guarantee that [T],,~ € 7.

An Expressive First-Order Logic: Chris Fox and Shalom Lappin 97

28. Theorem (Soundness of PTCT) If PTCT F ¢, then ¢ is valid.
Proof: By induction on the downward correctness of the tableau rules of
PTCT. O
29. Theorem (Completeness of PTCT) If ¢ is valid, then PTCT F ¢.
Proof: By induction on the upward correctness of the tableau rules of PTCT.
O

7.6 AnIntensional Number Theory

We add an intensional number theory to PTCT, incorporating the axioms as tableau
rules.

30. Terms: we add 0, succ, pred, add, mult, most and |-|B

31. Types: we add Num

32. Wiffs: we add zero(t), t Znum t's t <num ¢’ @and most(p)(q)
33. Axioms for Num: The usual Peano axioms, adapted to PTCT
34. Axioms for <nuym:

(@ y € Num — 0 <num succ(y)
(b) z € Num = z £num O
() £ € Num Ay € Num — (suce(z) <num succ(y) <> £ <num Y)

The model theory can be extended in a straightforward way to support these
new rules of the proof theory. Of course, when the number theory is added to
PTCT, the extended theory is incomplete.

7.7 Representing Proportional Generalized Quantifi ersin
PTCT

By defining the cardinality of properties, we can express the truth conditions of
proportional quantifiers in PTCT.

35. Cardinality of properties |p|p:
(@) p € (B = Prop) A ~3z(z € BA"pzx) — |p|p ZNum 0
(b) p€ (B= Prop) AN\be BA'eph —
1| B ZNum add(|p — {z.z =5 b}|B)(succ(0))

We represent most(p)(q) as follows:

36. p € (B = Prop) A g € (B = Prop) —

most(p)(q) <
|{$ € B.truepx A Ntrueq$}|B <Num ‘{.’B c B.truepx A trueq$}|B

Given that PTCT is a first-order theory in which all quantification is limited
to first-order variables, this characterization of most effectively encodes a higher-
order generalized quantifier within a first-order system.

98 Formal Grammar 2003

7.8 A Type-Theoretical Approach to Anaphora

To illustrate the expressiveness of PTCT we combine our treatment of generalised
quantifiers with our characterisation of separation types to provide a unified type-
theoretic account of anaphora.

We assume that all quantified NPs are represented as cardinality relations on the
model of our treatment of most. Pronouns are represented as appropriately typed
free variables. If the free pronoun is within the scope of a set forming operator that
specifies a sub-type and it meets the same typing constraints as the variable bound
by the operator, the variable can be interpreted as bound by the operator through
substitution under « identity. This interpretation yields the bound reading of the
pronoun.

37. Every man loves his mother.

38. |[{z € B."®man/(z) A "™elove' (z, mother-of (y))} B ZNum
{z € B.*®man'(z)}|p —
{z € B."®man'(z) A " love' (x, mother-of' ()} B ZNum
{z € B."®man'(z)}|B

Representations of this kind are generated by compositional semantic opera-
tions as described by (for example) Lappin (1989), and Lappin and Francez (1994).

When the pronoun is interpreted as dependent upon an NP which does not bind
it, we represent the pronoun variable as constrained by a dependent type obtained
from the predicative part of the antecedent clause representation. In the default
case, the pronoun variable is bound by a universal quantifier in the language of
wifs.

39. Every student arrived.
40. |{z € B."estudent'(z) A '™ Carrived (z)}| B ZNum
{z € B."¢student'(z)}|5
41. They sang.
42. Yy € B.(*""®sang'(y))(y € {z € B.""student'(z) A "™ arrived (z)})

In the case of proper names and existentially quantified NP antecedents we
obtain the following.

43. John arrived.
44, "egrrived' (john)
45. He sang.
46. Vy € B.(""¢sang'(y))
(y € {zx € B.x = john})
47. Some man arrived.
48. |{z € B."®man/(z) A " arrived () A" ¢(z)} B >Num 0
49. he sang.

An Expressive First-Order Logic: Chris Fox and Shalom Lappin 99

50. Vy € B.(*®sang'(y))(y € {z € B.M®man'(z) A "Carrived (z) A
ep(z)})

¢ is a predicate that is specified in context and uniquely identifies a man who
arrived in that context.

We handle donkey anaphora in PTCT through a type constraint on pairs of
variables.

51. Every man who owns a donkey beats it.
52. {z € B."®man'(z) A
({y € B."eown'(z,y) A "™edonkey' (y)}| B >nNum 0) A
Vz(*ebeat' (x, 2)) B ZNum
{z € B."®man'(z) A
({y € B."own'(z,y) A "™¢donkey'(y)}| B >num 0)}5
where ((z,z) € {(y,w) € B® B."own’(y,w) A "™edonkey’ (w)})

We have not introduced product types into PTCT. The type constraint on the pair
(z, z) is in fact a convenient notational device for representing a curried type con-
straint which applies in sequence to z and z.

53. (z € {y € B{z € {w € B."®own'(y,w) A "donkey’' (w)}})

The representation asserts that every man who owns at least one donkey beats
all of the donkeys that he owns.

Ranta (1994) develops an analysis of anaphora within Martin-L6f Type Theory
(MLTT). He represents donkey sentences as universal quantification over product
types.*

54. 11z : (Xz : man)(By : donkey)(z owns y))(p(z) beats p(q(z))

In this example, z is a variable over product pairs, and p and ¢ are left and right
projections, respectively, on the product pair, where

55. (@) p(z) : man
(b) q(2) : (Zy : donkey)(p(z) owns y)
(©) p(q(2)) : donkey
(d) q(q(2)) : (p(2) owns p(q(2)))-

Ranta’s account does not generate the existential reading of donkey sentences
(Pelletier and Schubert, 1989).

We can generate these readings by treating the principle that the free variable
representing a pronoun is bound by a universal quantifier as defeasible. We can
then substitute an existential for a universal quantifier.

56. Every person who had a quarter put it in a parking meter.

“Note that here expressions of the form Iz : (T')(S) denote a dependent product type. Thisis
not to be confused with PTCT’s polymorphic types, whose form (I1X.T) is superfi cialy similar.

100 Formal Grammar 2003

57. |{z € B."*man'(z) A
({y € B."¢had'(z,y) A "™“equarter'(y)} B >nNum 0) A
Jz(*put-in-a-parking-meter' (z,2)) Hp ZNum
{z € B."person'(z) A
({y € B."had'(z,y) A "¢quarter'(y)}|p >num 0)}5
where ((z,z) € {(y,w) € B® B.'"¢had'(y, w) A "equarter (w)})

This representation asserts that every person who had a quarter put at least one
quarter that he/she had in a parking meter.

As Ranta acknowledges, his universal quantification over pair analysis follows
DRT (Kamp and Reyle, 1993) in inheriting the proportionality problem in a sen-
tence like the following (Heim, 1990; Kadmon, 1990).

58. Most men who own a donkey beat it.

Contrary to the desired interpretation, the sentence is true in a model in which ten
men own donkeys, nine men own a single donkey each and do not beat it, while
the tenth man owns ten donkeys and beats them all.

This problem does not arise on our account. Most is represented as a cardinality
relation (generalized quantifier) in which quantification is over the elements of the
set corresponding to the subject restriction rather than over pairs. Therefore the
sentence is false in this model.

7.9 Reevanceof PTCT to Computational Semantics

We believe that the features of PTCT make it particularly appropriate for imple-

menting theorem proving systems for natural language semantics. It adds appro-

priate “expressiveness” to a first-order theory, without an undesirable increase in
formal power. Historically, higher-order systems have dominated the field in nat-
ural language semantics. In general, the set of theorems of such systems are not

r.e. For this reason, a first-order system is preferable, if it is sufficiently expressive
for the relevant domain. Basic first-order logic by itself does not provide the fea-
tures that are required for natural language semantics. It is insufficiently expressive
for this purpose. PTCT is a first-order system whose expressiveness is designed
for natural language semantics. It directly supports fine-grained intensionality and
a flexible system of types. We have formulated tableau rules for PTCT, which

provide an effective theorem proving procedure (for the logic without the number

theory).

7.10 Conclusion

We have constructed a first-order fine-grained intensional logic with flexible Curry
typing, PTCT, for the semantic representation of natural languages. PTCT con-
tains typed predicates for intensional identity and extensional equality. Its proof

An Expressive First-Order Logic: Chris Fox and Shalom Lappin 101

theory permits us to prove that identity of intension entails identity of extension,
but that the converse does not hold.

The theory can be distinguished from Aczel’s Frege Structures (Aczel, 1980)
and related, weakly typed theories of properties (PT) (Turner, 1988) in two ways.
First, there is an explicit notion of polymorphic type within the theory, which is
perhaps more appropriate for natural language semantics than the universal type
of PT. Second, the type Prop can appear in intensional representations of propo-
sitions. This allows us to express the fact that, for example, the universal quan-
tification in statements of the form John believes everything that Mary believes
ranges only over propositions. In PT, this requirement can only be expressed as an
external constraint (Turner, 1997).

We have provided a model theory for PTCT using extensional models for the
untyped A-calculus enriched with interpretations of Curry types. The restrictions
that we impose on comprehension types, quantification over types, and the relation
between the three sublanguages of PTCT insure that it remains a first-order system
in which its enriched expressive power comes largely through quantification over
terms and the representation of types as terms within the language.

Unlike alternative hyperintensionalist frameworks that have been proposed,
this logic distinguishes among provably equivalent propositions without resorting
to impossible worlds to sustain the distinction. The incorporation of Curry typing
into the logic allows us to sustain weak polymorphism. Sub-types also permits a us
to develop a uniform type-theoretical account of pronominal anaphora with wide
empirical coverage.

Bibliography

Aczel, P. (1980). Frege structures and the notions of proposition, truth and set.
In Barwise, Keisler, and Keenan, eds., The Kleene Symposium, North Holland
Studies in Logic, pp. 31-39. North Holland.

Barendregt, H. (1984). The Lambda Calculus: Its Syntax and Semantics, volume
103 of Sudies in Logic and the Foundation of Mathematics. North Holland,
Amsterdam, second edition.

Barwise, J. (1997). Information and impossibilities. The Notre Dame Journal of
Formal Logic, 38:488-515.

Carnap, R. (1947). Meaning and Necessity. University of Chicago Press, Chicago.

Chierchia, G. (1982). Nominalisation and Montague grammar: a semantics without
types for natural languages. Linguistics and Philosophy, 5:303-354.

Church, A. (1940). A formulation of the simple theory of types. Journal of Sym-
bolic Logic, 5:56-68.

Fox, C., S. Lappin, and C. Pollard (2002). A higher-order, fine-grained logic for in-
tensional semantics. In G. Alberti, K. Balough, and P. Dekker, eds., Proceedings
of the Seventh Symposium for Logic and Language, pp. 37-46. Pecs, Hungary.

Gregory, H. (2002). Relevance logic and natural language semantics. In Proceed-
ings of Formal Grammar 2002. Trento, Italy.

Heim, 1. (1990). E-type pronouns and donkey anaphora,. Linguistics and Philoso-
phy, 13:137-177.

Kadmon, N. (1990). Uniqueness. Linguistics and Philosophy, 13:237-324.

Kamp, H. and U. Reyle (1993). From Discourseto Logic. Kluwer, Dordrecht.

Lappin, S. (1989). Donkey pronouns unbound. Theoretical Linguistics, 15:263—
286.

Lappin, S. and N. Francez (1994). E-type pronouns, i-sums, and donkey anaphora.
Linguistics and Philosophy, 17:391-428.

Meyer, A. (1982). What is a model of the lambda calculus? Information and
Control, 52:87-122.

Montague, R. (1974). Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven/London. Edited with an introduction by R.H.
Thomason.

Muskens, R. (1995). Meaning and Partiality. CSLI and FOLLI, Stanford, CA.

Pelletier, J. and L. Schubert (1989). Generically speaking. In G. Chiercihia, B. Par-
tee, and R. Turner, eds., Propteries, Types, anmd Meaning, volume 2. Kluwer,
Dordrecht.

Ranta, A. (1994). Type Theoretic Grammar. Oxford University Press.

Turner, R. (1988). Properties, propositions, and semantic theory. In Proceedings
of Formal Semantics and Computational Linguistics. Switzerland.

Turner, R. (1997). Types. In J. van Benthem and A. ter Meulen, eds., Handbook of
Logic and Language, pp. 535-586. Elsevier.

van Benthem, J. (1991). Language in Action. Studies in Logic. North-Holland.

