Linguistics, Logic, and Finite Trees

Patrick Blackburn* and Wilfried Meyer-Violf

Abstract

A modal logic is developed to deal with finite ordered binary trees as
they are used in (computational) linguistics. A modal language is intro-
duced with operators for the ‘mother of’, ‘ first daughter of’ and ‘second
daughter of’ relations together with their transitive reflexive closures. The
relevant class of tree models is defined and three linguistic applications of
this language are discussed: context free grammars, command relations,
and trees decorated with feature structures. An axiomatic proof system
is given for which completeness is shown with respect to the class of finite
ordered binary trees. A number of decidability results follow.

Many computational linguists use ideas from logic to analyse and develop
syntactical frameworks. Their interest is not confined to the (fairly obviously
applicable) tools offered by proof and complexity theory: there is a growing
perception that the mathematical ontologies underlying linguistic theorising are
interesting in their own right, and that the grammatical formalisms that deal
with them should have an explicitly formulated semantics. In short, model
theory is increasingly seen as valuable.

Nonetheless, this model theoretic turn has been curiously one sided. It has
primarily been directed to the analysis of the role played by feature structures
in unification formalisms, and has tended to ignore other important aspects
of linguistic ontologies. For example, Generalised Phrase Structure Grammar
(GPSG) and Lexical Functional Grammar (LFG) are commonly regarded as
unification formalisms, yet they both make important use of finite trees in addi-
tion to feature structures. However most model theoretic work in feature logic
says nothing about this additional structure.

Such one-sidedness is unfortunate. For a start, one of the most interesting
aspects of GPSG and LFG is precisely the fact that they deal with hybrid onto-
logies. How do the different components fit together? What sort of expressive
power is needed for talking about composite structures? To ignore the presence

*Department of Philosophy, Rijksuniversiteit Utrecht, Heidelberglaan 8, 3584 CS Utrecht.
Email: patrick@phil.ruu.nl

fCentrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam. Email:
wilfried@cwi.nl

of trees in such systems is to ignore some of the most interesting issues. Mo-
reover, many syntactic theories (notably Chomsky’s Government and Binding
(GB) theory, probably the dominant contemporary syntactic paradigm) are
firmly tree based. If the insights of such frameworks are to be reconciled with
the insights of unification tradition, it seems important to extend the model
theoretic perspective to the role played by finite trees.

Some recent papers have made a start in this direction. Rogers and Vijay-
Shankar (1992) and Vijay-Shankar (1992) propose various languages for descri-
bing trees. Their motivation is to combine insights from the Tree Adjoining
Grammar and Unification traditions. Kracht (1993a) uses a modal ‘orientation
language’ over the parse trees of context free grammars to relate GB and GPSG.
Finally, Blackburn, Gardent and Meyer-Viol (1993) introduce a modal language
for talking about trees, and, by ‘layering’ this language across a feature logic,
give an account of some of the leading ideas of GPSG.

The present paper builds on Blackburn, Gardent and Meyer-Viol (1993).
We discuss two linguistic ontologies, namely finite ordered binary trees, and fi-
nite ordered binary trees fibred over feature structures, formulate languages for
talking about them, and prove a number of results. We proceed as follows. In
the first section we introduce finite ordered binary trees and a simple modal
language L for talking about them. In the second section we outline three lin-
guistic applications of £: talking about the parse trees of context free languages,
talking about GB command relations, and, by ‘layering’ £ across a feature lo-
gic, modeling aspects of GPSG. In the third section the technical work begins:
we introduce and discuss an axiomatisation of the logic of finite ordered binary
trees, and in the fourth section prove it to be complete. In the fifth section we
discuss some of the consequences of this completeness result, notably the deci-
dability of the logic, and, building on the work of Finger and Gabbay (1992), the
decidability of the ‘layered language’. We close the paper by noting a number
of directions for future work.

1 The language £ and its semantics

Trees can be found on the pages of most syntax textbooks; they are an important
part of the ontologies posited in most grammatical theories. In this section we
isolate a linguistically important class of trees, namely the finite ordered binary
trees together with a collection of unary relations, and define a simple modal
language L for talking about it.

First some terminology. We assume that the reader knows what a finite tree
is, and that such locutions as ‘a node w; immediately dominates node ws’, or
equivalently ‘w; is the mother of ws’ or equivalently ‘ws is a daughter of w;’
are understood. Next, certain special tree nodes are important. Every tree has
a unique node called the root which has the property that it is not the daughter
of any node. Moreover, a non-empty subset © of the nodes of any finite tree

are terminal nodes, that is, nodes without daughters. A tree is a binary tree if
no node in the tree immediately dominates more than two nodes.

In linguistics trees are typically thought of as ordered. For binary trees
this means the following: the daughters of any node (of which there are at
most two) are uniquely classified as being either the first daughter or the second
daughter. We think of the first daughter as preceding the second daughter (if in
fact there is a second daughter) and when finite ordered binary trees are drawn
this is conventionally represented by placing the first daughter to the left of the
second.

Such finite ordered binary trees lie at the heart of much syntactic analysis.
We will usually present them as tuples of the form

(W, >1, >2,root, ©).

Here W is a finite, non-empty set, the set of tree nodes; ©® (C W) contains all
and only the tree’s terminal nodes; and root is the (unique) root node of the
tree. As for »>; and >3, these are binary relations defined as follows: for all
w,w € W, w =1 w' iff w' is the first daughter of w; and w =9 w' iff w' is the
second daughter of w. Note that both >; and »2 are partial functions, for any
node in an ordered binary tree has at most one first daughter and at most one
second daughter. Further note that if w =5 w' then there exists a unique w"
such that w »=; w"”. Moreover w" # w'.

This presentation of finite ordered binary trees enables us to recover four
other binary relations we will make heavy use of, namely >, <, >, and <,.
We define = to be =1 U =3, thus w > w’' means that w' is a daughter of w.
We define < to be the converse relation of >, thus w < w' means that w' is
the mother of w. Note that < is a partial function that is defined on all nodes
except root. As to >, and <, they are the reflexive transitive closures of >
and < respectively. Sometimes it is convenient to make some of these defined
relations explicit in our presentations. For example, when defining satisfaction
it will be natural to present finite ordered binary trees O as tuples of the form

(W, =1, >2, <, >x, <x,T00t, O).

Finite ordered binary trees are clearly Kripke frames, but how does syntactic
theory give rise to Kripke models? The answer is not hard to find. Linguists
annotate trees with further information. For example, nodes may be marked by
the symbols S, NP or VP, indicating that they are sentential nodes, noun phrase
nodes, or verb phrase nodes respectively. Indeed nodes often bear multiple an-
notations. For instance, a noun phrase node might be marked +N, BAR-2 and
CASE-GENITIVE. In short, the structures underlying much linguistic theori-
sing can be seen as finite ordered binary trees together with a collection of unary
relations on the tree nodes, and such structures are Kripke models. Incidentally,
while trees are used by a wide range of grammatical theories, different theories

typically use different unary relations. Thus the frames we have isolated are
common to many theories, but the models built over them will vary.

Now that we know the structures we’re interested in, how shall we talk about
them? In this paper we explore the use of propositional modal language called
L.1 The primitive alphabet of £L(Prop) consists of following items: a non-empty
set of propositional symbols Prop, a truth functionally adequate collection of
Boolean operators, five primitive unary ‘diamond’ modalities !, |2, T, |* and
1*, and the punctuation symbols (and). For any choice of Prop, the wifs of
L(Prop) are built up in the usual way: all elements of Prop are wifs; if ¢ and
1 wifs, then so are ~, (pA), |16, |26, T¢, |*¢ and 1*¢; and nothing else is a
wif. We normally suppose that some choice of Prop has been fixed and speak
simply of the language L.

We use a number of defined modalities. Firstly, we define a new unary
diamond by stipulating that |¢ is to be |'¢ V |2¢. Second, we define the dual
‘box’ operators to our diamonds in the usual fashion: {'¢ is defined to be
-1, |20 is defined to be =|2—¢, ||¢ is defined to be = |—¢, ¢ is defined to
be = T—¢, §*¢ is defined to be =|* ¢, and }*¢ is defined to be = 1*—¢. Third,
we define two nullary modalities (or constants) as follows: s is defined to be f}L
and t is defined to be || L. We sometimes call |1, |2, | and T basic operators.

This language can talk about trees in linguistically interesting ways. The
atomic symbols of Prop will enable us to talk about node labels. Intuitively,
an atomic symbol (say, NP) will be true at a node iff that node is labeled with
the corresponding property (that is, iff it is a noun phrase node). The modal
operators are to ‘move us round’ the trees in a natural manner: |! and |2
will look for information at first and second daughters respectively, T will look
for information at mothers, and |* and T* will explore the ‘dominates’ and ‘is
dominated by’ relations respectively.

Let’s make this precise. The standard interpretation for our language is in
terms of Kripke models built over arbitrary Kripke frames of the form

(W’ R>-13R>-27R<7R>-*’R<*>7

that is, frames with a transition relation for each modality. However, because
we are interested in linguistic applications, we are only interested in models
built over frames

O = (W, >1,>2, <, >x, <x,r00t, O)

that are presentations of finite ordered binary trees. That is, our intended
semantics is in terms of those pairs (O, V) where O is such a presentation and
V is a map from Prop to Pow(W). In what follows we reserve the terms ‘Kripke
model’ and ‘model’ for our intended structures.

Modal languages seem a natural choice for linguistic applications: although extremely
simple, they offer significant expressive power. For further discussion see Blackburn, Gardent
and Meyer-Viol (1993).

Now for the satisfaction definition. For any model M (= (O, V), for any
node w of M, and for any wif ¢ we define:

M,wlEp iff weV(p), for all p € Prop
Muws-p it Muwg

MwEd¢Ay iff MwpEde¢and MwlE ¢
M,w = |16 iff Fw'(w>;w and M,w' | ¢)
M,w = |24 iff Fw'(w=qw' and M,w' | ¢)
M,w = 14 iff Fw'(w<w' and M,w' | ¢)
M,w = |*¢ iff Fw'(w>.w and M,w' | ¢)
M,w = 1*¢ iff Fw'(w<.w and M,w' | ¢).

If M,w = ¢ then we say ¢ is true in M at w, or ¢ is satisfied in M at w. For
any wif ¢, if there is a model M and a node w in M such that M, w |= ¢, then
we say that ¢ is satisfiable. If ¢ is true at all nodes in a model M then we say
it is valid in the model M. The notion of validity in a model has an important
role to play for us. As discussed in the next section, we think of grammars G
as £ wifs ¢@. The trees admitted by the grammar are precisely those models
in which ¢€ is valid. Another important concept is validity: if a wif ¢ is valid
in all models then we say it is valid and write |= ¢.

The satisfaction definition clearly captures the intended interpretation of L.
Also, note what the defined operators mean. In particular, note that:

M,wEs iff w=root
MwEt if weoO
M,wEl¢ iff Fw'(w>w and M,w' = ¢).

That is, s and t are constants true at only the root node and terminal nodes
respectively, while | looks for information at daughter nodes. Other useful
defined operators abound, for £ is very expressive over its intended models. For
example, we can define the universal modality: [Ul¢p =4c5 1*(s A *¢). This
says that ¢ is true at all points in a model, thus the modality allows universal
constraints on grammatical well-formedness to be stated in the object language;
see Blackburn and Spaan (1993) for further discussion.

Before considering applications, there is an aspect of L’s semantics that is
worth discussing, namely the way we have restricted our discussion to binary
trees. Actually, from a logical point of view the important point is not that our
trees are binary, but that there is a fixed upper bound on their branch factor.
We could easily extend £ to permit third daughters, fourth daughters, ..., n-th
daughters to be talked about using unary operators |3, |4, ..., |?, and the
results of this paper generalise straightforwardly to such extensions. However if
we do not have a fixed upper bound, matters are different. We briefly discuss
the issue in the paper’s conclusion.

Linguistically the restriction to binary trees is reasonable, though not un-
controversial. In GB (see Chomsky (1981)) binary branching trees are widely

considered to be fundamental. On the other hand, most versions of GPSG (see
Gazdar et al (1985)) regard co-ordinations as ‘flat’. For example, ‘John and
Sue and Bill and Lou and Butch and Peggy-Sue’ would be represented by a
node with six daughters. As no upper bound can be placed on the number of
conjuncts, such versions of GPSG place no upper bound on the branch factor.

2 Three linguistic applications

The aim of this section is to give the reader a taste of £ in action. We give three
examples. First we show that £ can pick out the parse trees of any context free
phrase structure grammar. Second we show that £ can express many of the
‘command relations’ used in GB. Third, we combine £ with a ‘feature logic’ in
a particularly simple fashion. The resulting ‘layered language’ enables some of
the more important ideas of GPSG to be captured.

2.1 Context free grammars

We show here how to construct £ formulas that will distinguish the parse trees of
a given context free grammar from all other models. Strictly speaking, we only
show how to capture the parse trees of any context free grammar that rewrites no
symbol to more than two symbols. However, as far as weak generative capacity
is concerned, nothing is lost; for any context free language can be generated by
a grammar in Chomsky Normal Form, and such grammars have this property.
Moreover, it will be clear from our discussion that by adding to £ finitely many
of the operators |®, |4, ..., |®!, |™ mentioned in the previous section, any
context free grammar whatsoever can be handled directly.

So suppose G = (S, N,T,P) is a context free grammar with start symbol S,
set of non-terminal symbols A, set of terminal symbols 7', and set of productions
P. We can assume that all these sets are finite and that A, 7 and {S} are
pairwise disjoint. Our goal is to define a wif ¢9 that is valid on all and only the
parse trees of the grammar G.

The first step is to specify our modal language; that is, to find a suitable
choice of Prop. For any context free grammar G there is an obvious choice. If
the grammar contains no epsilon productions (that is, the grammar rewrites no
symbol to the null string), take Prop to be N'U7T U {S}. On the other hand,
if the grammar contains epsilon productions choose some distinct new symbol
€ and take Prop to be N U7 U{S} U {e}.

The next step is to capture the effect of the productions in G. As we assume
that G contains only binary rewrites, every production has one of the following
three forms:

X —YZ or X—0Y or X —e¢,

where X € N U{S} and Y,Z € N UT U{S}. For each production P € P we
form the corresponding wif ¢, namely:

X ('YAl?2Z) or XY o X —l'e

Let ¢7 be Vpep ¢F. Clearly ¢F is valid on every parse tree for G.

But we want to define an £ formula that is valid on all and only the parse
trees for G, so we have a little more work to do: we must express in £ certain
general facts about parse trees. First, we insist that each node of a parse tree
must be labeled by at least one element of Prop: VpePropp achieves this.
Second, we insist that each node of a parse tree must be labeled by at most
one element of Prop: p — /\qurop\{p} —q achieves this. Third, we insist
that the root node of a parse tree must be decorated by the start symbol S
of the grammar: s — S achieves this. Fourth, we insist that non-terminal
symbols label only nonterminal nodes of parse trees: /\p€ n(p — —t) achieves
this. Fifth, we insist that terminal symbols label only terminal nodes of parse
trees: /\peT(p — t) achieves this. Finally, we insist that € labels only terminal

nodes: € — t achieves this. Call the conjunction of these wifs ¢¥.

Now we can define the required formula: let ¢9 be ¢¥ A ¢¥. Clearly for any
model M, M k= ¢9 iff M is (isomorphic to) a parse tree for G.

The most important point to note about this logical reconstruction of G is
the way that something essentially procedural (namely rewrite rules on strings)
have been turned into something declarative (namely a collection of axioms re-
gulating the local structure of parse trees). This is not a new idea in linguistics.
It is standard in both GB and GPSG to insist that phrase structure ‘rewrite
rules’ should not be thought of as operations on strings (or indeed, as opera-
tions at all) but rather as node admissibility conditions on trees. In GB this
is a consequence of the idea that representations, not rules, are fundamental.
In GPSG it is a consequence of an explicitly model theoretic stance towards
syntactic theorising: the primary task facing the linguist is to construct a lo-
gical theory characterising precisely those structures exhibited by grammatical
sentences. How these structures are to be constructed is an interesting, but
separate, concern.

It’s also worth remarking that even the idea of turning rewrite rules into
modal axioms is not novel: essentially the same thing was done by McCawley
in 1968. McCawley doesn’t use the terminology of modal logic, nonetheless the
heart of his insight is that the rewrite arrow of formal language theory can be
regarded as a modal operator interpreted over tree based Kripke models. Thus
our choice of a modal language for talking about trees was not capricious. Modal
operators arise quite naturally in the transition from the ‘rule based’ perspective
on linguistic structure to the declarative model theoretic perspective, a theme
that recurs in contemporary work on feature logic.

2.2 Command relations

The tree relations we have been considering are rather conventional. The ‘mo-
ther of’ and ‘daughter of’ relations, together with their transitive closures, are
fundamental relations that occur in practically any research area concerned with
trees. However many linguistic frameworks, and in particular GB, work with
a much richer collection of tree relations. Perhaps the prime examples of such
relations are the command relations of GB. Intuitively, command relations deal
with the sphere of influence of syntactic mechanisms, and they play an essen-
tial role in various components of GB theory. Here we will investigate how £
copes with command relations. Our point of departure is the definition given

by Barker and Pullum (1990).

Definition 2.1 (Command Relations on Tree Models) Let M be a model
and P be a unary relation on the nodes of M. The P-command relation Cp on

M is defined as {{w,v) :Vk(k#w & k >~ w & k€ P =k >, v)}. O

P is called the generating property of the command relation Cp. The set {v €
W : Cp(w,v)} is called the P-command domain of w in M. Note that because
the P-command relations are defined on trees, when Cp(w, v) holds in M, then
all P-nodes properly dominating w dominate v and, consequently, the (unique)
lowest such P-node dominates v. Conversely if the lowest P-node dominating w
dominates v, then all P-nodes dominating w do. So the P-command domain of
w is determined by the lowest P-node properly dominating w. By checking the
definition we see that, if P is the empty set or if P is the singleton set {root},
then the P command domain of w is the entire tree.

Given command relations Cp, are the obvious modalities corresponding to
these relations expressible in £? To be more precise, it would be pleasant to
have at our disposal for each P of interest a modality (P) with the following
semantics:

M,w E (P)¢ iff Jv(Cp(w,v) & M,v =).

Are such modalities definable in £? The answer is ‘yes’ whenever there is an £
formula ¢¥ which holds in M on all and only all nodes in P. For suppose we
have such a formula ¢¥. Then it is clear that defining

(P =aer M"((sV ") = 1"9)

has the required effect. (The presence of s ensures that if no #¥ node dominates
the point of evaluation then the command domain will be the entire tree; this is
the approach adopted by Pullum and Barker.) The dual operator [P] can also
be defined:
[Pl =aer 117°((s v ") AY"9).

Because of the correspondence between the relations P and the wifs ¢ which
pick them out, it is natural to use the £ formulas themselves to label the mo-
dalities. That is, if ¢ is the wif corresponding to P we will write (@)1 rather

than (P)t. Using this ‘command modality’ notation, here are some examples
of expressible command relations:

1. (T)¢ insists that ¢ holds in the smallest command domain of w, for
Ct(w,v) iff v is dominated by the mother of m.

2. {1)¢ insists that ¢ holds in the largest command domain of w, for C (w,v)
iff v is dominated by root.

3. (l?T)¢ insists that ¢ holds somewhere in what is known as the c-command
domain of w. Note that C>1(w,v) iff v is dominated by the first branching
node dominating w.

4. (S)¢ insists that ¢ holds in the S-command domain of w. Note that the
generating property of this relation consists of all the nodes in the tree
decorated with S for ‘Sentence’.

The last two examples are typical of the command relations used in GB.
The terminology c-command is short for ‘in construction with’ and plays an
important role in the GB account of anaphoric binding; the classic account is
Reinhart (1981). For further discussion of S-command, Sentence command, see
Barker and Pullum (1990).

A full discussion of command relations would take us too far afield (for a
thorough investigation see Kracht (1992, 1993a, 1993b)) but it is worth noting
that a number of the characterizing properties of command relations discussed
by Barker and Pullum follow straightforwardly from the semantics of our lan-
guage. For example, consider the intersection property, which can be formulated
as Cyyy = CyNCy: the intersection of command relations corresponds to union
over their generating properties. This immediately follows from the fact that

M (s Vo Vvy) = 1"x)

is logically equivalent to

M (s vV é) = ") A ((s Vo) = ["x).

When written in command modality notation this boils down to the fact that

(P V)x < (d)x A (¥)x is logically valid.

2.3 Trees decorated with feature structures

When linguists decorate trees they do not usually do so in the manner familiar
from formal language theory. For example, when a linguist decorates a node
with the information NP this is usually a way of insisting that it possesses a
whole bundle of properties. Sometimes it is possible to represent this informa-
tion bundle using only Boolean combinations of propositional variables, but for

theories such as GPSG this would be most unnatural. GPSG envisages ‘ato-
mic level information’ as a structured entity, a so-called feature structure. The
purpose of the present section is to show how the intuition concerning structu-
red atomic information that underlies GPSG can be captured. First we define
a standard notion of feature structure and present a language £F for talking
about them. We then show how to ‘layer’ £ over £LF | yielding a language £(L£F)
capable of formulating the central ideas of GPSG in a natural way.

A feature structure is a labeled decorated directed graph. The elements of
feature structures will be called points, and to say that feature structures are la-
beled directed graphs simply means that one can envisage the points being linked
by arrows bearing a label. The most important constraint on feature structu-
res concerns these labeled arrows: there is no point in any feature structure
from which two distinct arrows bearing the same label emerges. In effect, labe-
led arrows are representations of partial functions; these partial functions are
usually called features. As to the decorations, we envisage the points of feature
structures being adorned with pieces of information of linguistic interest.

Let’s make this precise. We assume that the linguistic theory we are working
with tells us what features and decorations may be used. That is, we assume
that our linguistic theorising gives us a signature (F, D) where both F and D
are non-empty denumerable sets, the set of features and the set of decorations
respectively. Typical elements of F might be CASE, NUMBER, PERSON and
AGREEMENT; while typical elements of D might be genitive, singular, plural,
1st, 2nd, and 3rd. We now define:

Definition 2.2 (Feature structures) A feature structure of signature (F, D)
is a triple F of the form (U,{Ry}ser,{Qai}aep), where U is a non-empty set;
for all f € F, Ry is a binary relation on U that is a partial function; and for
each d € D, Qg is a unary relation on U. |

As we have defined them feature structures are multimodal Kripke models;
and indeed the language £ we now introduce will be the obvious modal lan-
guage for talking about them, with the Ry serving to interpret its modalities,
and the)4 interpreting its propositional symbols. However we shall continue
to call these entities feature structures, reserving the words ‘model’ and ‘Kripke
model’ for the objects that interpret our language of trees L.

The language £ (of signature (F,D)) contains the following items: all
the elements of D (which we will regard as propositional symbols), a truth
functionally adequate collection of Boolean connectives, and all the elements
of F (which we will regard as one place modal operators).? The set of wifs
of LF is the smallest set containing all the propositional symbols (that is, all
the elements of D) closed under the Boolean and modal operators (that is, the

2Qur discussion of £LF and its semantics is of necessity somewhat brief. For a more leisurely
account see Blackburn and Spaan (1993).

10

elements of 7). Thus a typical wif of £ might be the following:
(AGREEMENT)(PERSON) 3rd A (CASE)genitive.
In passing, a computational linguist would probably write this wif as follows:

AGREEMENT [PERSON 3rd]
CASE genitive

Such two dimensional wifs are called Attribute Value Matrices, and they are
essentially a perspicuous notation for £ wifs.

LY wifs are interpreted on feature structures as follows. For any feature
structure F (that is, (U, {Rs}secx, {Qda}taep,)) and any point u € U:

F,ul=d iff u € Qq, for alld € D

F,ulE ¢ iff not F,u = ¢

FuEoéAy iff FuE¢ and FulE=vy

F,ulE (f)¢ iff Ju'(uRsu' and F,u' |= ¢).
If F,u = ¢ then we say that ¢ is satisfied (or true) in F at u. The most obvious
definition of validity in £F is as follows: a wif ¢ is valid iff it is satisfied at all
points in all feature structures. However, many feature structures are lingui-
stically uninteresting, so we will confine our attention to finite point-generated
feature structures (or finite rooted feature structures). These are finite feature
structures F that contain a point ug such that any other point u of F can be
reached by making a finite number of feature transitions from ug. (Such a point
up is said to generate F.) Thus an alternative definition suggests itself: an £
wif is valid iff it is satisfied at all points in all finite, point generated feature
structures. Actually, as we shall later see, both definitions yield the same set of
validities.

With £F and its semantics defined, we are ready to define a language for
talking about the structures underlying GPSG: trees decorated with feature
structures. The language is called £(£F), that is, the language £ layered over
the language £, and it is defined in a very simple way. We simply choose Prop
to be £F and then construct the £ wiffs over this base in the usual way. As a
result, we’ve given an ‘internal structure’ (namely, a modal structure) to the
propositional symbols of £. For further discussion see Blackburn, Gardent and
Meyer-Viol (1993).

Syntactically that’s all there is to it; what about the semantics? There is a
straightforward interpretation for £(£F) in terms of the following entities:

Definition 2.3 (Feature decorated trees) By a (finite, ordered, binary) fea-
ture structure decorated tree (of signature (F,D)) is meant a triple (O, Z, z)
where O 1is the presentation of a finite ordered binary tree, Z is a function that
assigns to each node u of O a finite, point-generated feature structure (of si-
gnature (F, D)), and z is a function that assigns to each node u of O a point
z(u) € Z(u) that generates Z(u). O

11

Two comments about feature decorated trees are in order. First of all,
they seem to do justice to the ideas of GPSG. An examination of Gazdar et
al (1985) suggests that they are a natural mathematical embodiment of the
ontology underlying GPSG (modulo the fact that we are working only with
binary trees). Second, in a number of recent talks Dov Gabbay has emphasized
the importance of ‘fibred semantics’ for combined logics. By a combined logic
he means a layered language of the sort exemplified by £(£F); and feature
decorated trees are a nice example of what he means by a fibred semantics —
the definition fibres a tree over a collection of feature structures. Finger and
Gabbay (1992) gives a very clear and detailed account of such systems and
proves a number of useful results which we shall make use of later.

To interpret L(LF) wifs on feature structure decorated trees, all we have to
do is alter the base clause of the satisfaction definition for £. Let M = (O, Z, z)
be a feature structure decorated tree, and w any node in Q. Then for all £F
wifs ¢, M,w | ¢ iff Z(w),z(w) E ¢. f M (= (O, Z, z)) is a feature structure
decorated tree, w is a node in O, ¢ is an £(£)F wif and M,w = ¢ then we
say that ¢ is satisfied (or true) in M at w. If ¢ is satisfied at all nodes w of all
feature structure decorated trees, then we say that ¢ is valid.

To sum up: when in the course of evaluating an £(L¥) wif at a node w we
encounter an £ wif (that is, when we reach what used to be the ‘atomic’ level)
we jump into the feature structure associated with w (that is, Z(w)), and start
evaluating the £F wif at z(w). This atomic level change is the only change
needed: the remaining clauses are those that were given in the satisfaction
definition for £. In short, the ‘top’ layer of language £ moves us round trees
in the familiar way, while the ‘bottom’ layer of language £F moves us round
feature structures.

Having assembled the machinery, let’s briefly discuss how GPSG puts it to
work. One of the central insights of GPSG is that by making systematic use of
the structured information embodied in feature structures, it is possible to give
elegant accounts of many troublesome grammatical phenomena. First, context
free rules in GPSG makes use of feature information. The GPSG analogue of
VP — V NP (‘A verb phrase is made up of a verb followed by a noun phrase’)
might be something like:

—noun A verb A (BARYtwo — |'(—noun A verb A (BAR)zero)A
12(noun A —verb A (BAR)two).

For the purposes of the present discussion it is the form of this wif that is
important: the ‘outer’ (or L) level of this wif has the same form as the wiffs
we used to capture the parse trees of context free grammars. But because of
the ‘inner’ (or £F) level it reaches inside the feature structures and insists that
certain conditions must hold there.

Secondly, and more interestingly, GPSG imposes a number of global restric-
tions on the way feature structures can be distributed over trees. The simplest

12

of these is the foot feature principle. When a natural language is analysed GPSG
style, certain information is classified as ‘foot information’. For a feature decora-
ted tree to be acceptable, foot information must be ‘passed up’ to the feature
structure associated with the mother node.® This is essentially to demand the

validity of the following £(LF) wif:
(FOOT)¢ — N(FOOT).

Now, every word in a GPSG lexicon is associated with feature information,
that is, with an £F wff. If a certain word bears foot information then the
foot feature principle forces this information to trickle up the tree from any
terminal node where the word is inserted. It is quite possible that this foot
information is incompatible with other information present in the structure. If
this happens the structure is judged ‘bad’ that is, as not being the representation
of a grammatical sentence. It is in this manner that ‘feature passing’ allows more
refined accounts of grammaticality to be developed.

In short, GPSG is essentially a collection of axioms stipulating which fea-
ture decorated trees correspond to grammatical structures and which do not.
Some of the theory’s constraints are essentially a generalisation of the idea of
phrase structure grammars to the richer setting of feature decorated trees; but
in addition there is a set of global constraints, such as the foot feature conven-
tion, which act as a further filter on ungrammaticality. The way these various
principles interact enables GPSG to give a neat account of a variety of pheno-
mena in a wide range of languages. Many of these principles can be formalised
in £(LF). For further discussion of GPSG from the present perspective see
Blackburn, Gardent and Meyer-Viol (1993).

We close this section with a general warning. The reader should not conclude
from our discussion that layered modal languages or feature structure decorated
trees are all there is to modelling grammatical frameworks that make use of
feature structures. This is simply false. For a start, different theories use feature
structures in different ways. For example, Lexical Functional Grammar (LFG)
(see Kaplan and Bresnan (1982)) uses them to model grammatical relations such
as subject and object, and Head Driven Phrase Structure Grammar (HPSG)
(see Pollard and Sag (1987)) uses them for a wide variety of tasks. Moreover,
while both GPSG and LFG have composite ontologies made up of trees and
feature structures, the theories ‘glue’ these building blocks together differently.
Like GPSG, substantial parts of the LFG formalism can be viewed as a certain
combination of modal logics; but the combination in question is not the simple
layering + fibering idea embodied in £(£F), and the resulting systems have
very different logical properties.

3As far as later versions of GPSG are concerned this is something of a simplification; in
such systems feature passing involves the use of defaults. For a discussion of some of the
logical issues raised see Evans (1987).

13

3 The axiomatisation

In this section we present an axiomatisation of the logic of finite ordered binary
trees. We will later prove that this axiomatisation (which we call Lot) is com-
plete. As axioms we take any suitable axiomatisation of propositional calculus,
together with all instances of the schemas B1-B10, E1-E4, D1-D9 and F1-F3
below. As rules of inference we take modus ponens (if ¢ and ¢ — 1 are provable
then so is 1) and the rule of necessitation in {}!, {2, f, J* and f*. That is, if
¢ is provable then so are {1, 26, ft¢, I*¢ and f*¢. Formal proofs are finite
sequences of wis built using the axioms and rules of inference in the usual way.
If a wif ¢ is provable then we write - ¢ and say that ¢ is a theorem.

With these generalities to hand, let us examine the details. The axioms
split naturally into four groups. First of all, there are the axioms for the basic
operators.

B1 {!(¢ -) - (U1¢ — U19)
B2 |2(¢ = ¥) - (U%¢ — §?9)
B3 (¢ — ¢) = (¢ — 1)
B4 |'¢— s

B5 |’ — ¢

B6 16 — ¢

B7 ¢ — {'1¢

B8 ¢ — {*1¢

B9 ¢ — f1l¢

B10 |27 — |'T

Most of this is familiar. B1-B3 are universally valid modal principles, while
B4-B6 reflect the partial functional (or ‘deterministic’) nature of the =1, »9
and < relations. B7 and B8 are familiar from tense logic: they record the fact
that both the converse of >=; and the converse of >5 are contained in <. B9 is
closely related and says that the converse of < is contained in =1 U >3 (to see
this, recall that |¢ is shorthand for ['¢ V |2¢). Finally, B10 takes account of
the fact that in ordered binary trees, the existence of a »5 successor to some
node entails the existence of a =1 successor to that same node.

The next group of axioms deals with the transitive closure operators and
their interactions with the basic operators.

El "¢ & (¢ A" 9)

14

E2 "¢ & (¢ AfM1"9)
E3 §*(¢ - U¢) — (6 — 79)
E4 17(¢ - f1¢) — (6 > 179)

These are familiar from temporal logic and Propositional Dynamic Logic;
see Goldblatt (1992). They reflect the fact that =, and <, are the reflexive
transitive closures of > and < respectively.

The intended meaning of the defined symbols was discussed in the introduc-
tion; the next group of axiom pins these down:

D1 s o fL
D2te L

D3 |6 o 16V |2
D4 Y16 o ~11-¢
D5 2 & 129
D6 g > ~1-
D7 U > =1
D8 I o 1"
DY 1 ~1"¢

Finally we turn to the axioms that give the system its flavour, namely those
that reflect the fact that our intended models are all finite.

F1 |*t
F2 1*s
F3 ¢ — ["(¢ A" 9)

F1 and F2 are straightforward: no matter where we are in a finite tree we
are only a finite number of < steps away from the root node (which is what
F1 says) and a finite number of > steps away from at least one terminal node
(which is what F2 says). More interesting is F3. Roughly speaking, it says
that if ¢ holds at any node in a tree, then this node dominates a ¢ node not
dominating any other ¢ nodes. It is this axiom that will enable us to maintain
the finiteness of the tree constructed in the completeness proof. As it plays such
a crucial role, let’s look at it more closely.

All instances of F3 are valid in our intended semantics. For suppose some
wif ¢ is true at a point w; in a model M. Now, either w; dominates a distinct

15

node wq such that M, wy = ¢, or this is not the case. If this is not the case then
we are through: for it is immediate that M, w; |= ¢ A JJ* ¢, and as wy =, w1
it follows that M, w; | |*(¢ A JJ*—¢), and we have verified the consequent of
the axiom. So suppose that there is a point wy such that w; # we, wy =, wa,
and M, wy = ¢. Now we ask: does wp dominate a distinct point ws such that
M, ws | ¢? If the answer is ‘no’ then it follows that M, w; = [*(¢ A YJ*—¢)
and we have verified the consequent of the axiom. On the other hand, if the
answer is ‘yes’, then we repeat the question, asking whether there is a distinct
wg4 ... in short, we keep asking whether or not there is a lower node that
satisfies ¢, and as soon as we get the answer ‘no’ we have our desired result.
And we must eventually get the answer ‘no’, for as we are working with finite
trees, our original point w; dominates only finitely many nodes.

Note that all instances of @ — 1*(¢ A M*—¢), the mirror image of F3, are
also valid. However we don’t need them as axioms: its an easy exercise to show
that they are all derivable in Lot. This derivability of the mirror image reflects
a fairly obvious fact about our models. When we look downwards in a tree
we may see complex branching structure, and a special axiom (namely F3) is
needed to cope with this. However when we look upwards we see a nice regular
linear structure, and the deductive power we already have copes successfully.*

The discussion of this section has established that Lot is sound: the axioms
are valid, and the rules of inference clearly preserve validity. We are ready to
turn to the question of its completeness.

4 The completeness proof

We begin with the following observation: a completeness result for Lot must
be a weak completeness result, for as we are working only over finite trees there
is an obvious compactness failure. For example, let ® be {p, 1p, TTp, 111p,...}.
Any finite subset of ® has a model, but it is impossible to satisfy all the wifs of
® in the same model.

In fact Lot is weakly complete and the proof falls into two parts. In the first
part (‘Preliminaries’) we define the basic entities we use to build our model,
prove a number of results about them, and finally state and prove the Truth
Lemma that we shall use. Much of this material is familiar from the literature on
temporal logics for programs and Propositional Dynamic Logic. We have given
fairly complete proof details, but occasionally the reader may find it useful to
consult Goldblatt (1992) or van Benthem and Meyer-Viol (to appear).

In the subsequent part (‘Building the model’) we turn to the heart of the
proof. The problem is this: we need to build a model, but this model must be
based on a finite tree. An inductive construction suggests itself, but can it be

41t’s also interesting to note (as Jan van Eijck pointed out to us) that F1 can be derived
from the other axioms. F3 plays a key role in its derivation.

16

shown to terminate after a finite number of steps? By making use of axiom F3
it is possible to guarantee this.

4.1 Preliminaries

The first notion we need is that of a closure of a set of sentences. Recall that
a set of sentences X is said to be closed under subformulas iff for all ¢ € X, if
1 is a subformula of ¢ then ¥ € ¥. We need to work with closures that offer
more structure than just closure under subformulahood, thus, following Fisher

and Ladner (1979) we define:

Definition 4.1 (Closures) If ¥ is a set of formulas, CI(X) is defined to be
the smallest set of sentences containing Y. that is closed under subformulas and
satisfies the following additional properties:

1. T*¢ € CI(X) implies 11*¢ € CI(T).
2. |*¢ € CU(X) implies ||*¢ € CI(X).
3. 11T, 12T, 1T, 1*s and |[*t € CI(%).
4. If $ € CI(X) and 6 is not of the form —ip then ~¢ € CI(X).
CI(X) is called the closure of X.. Note that if ¥ is finite then CI(X) is finite. O

In fact, because of the failure of compactness already noted (and because
our ultimate goal is to build a finite tree) we shall only be interested in finite
closures. The next step is to pick out the subsets of CI(X) needed for building
models. Following van Benthem and Meyer-Viol (to appear) we define:

Definition 4.2 (Atoms) If X is a set of formulas, then At(X) consists of all
the mazimal consistent subsets of CI(X). That is, A € At(X) means that A
is consistent, and, if B is a consistent subset of CI(X) such that A C B, then
A = B. The elements of At(X) are called atoms. O

For example, if ¥ is the set of all formulas then elements of At(X) are just
the usual maximal consistent sets of sentences. More generally, the following
relationship holds between atoms and the familiar notion of maximal consistent
set of sentences:

Lemma 4.3 Let M be the set of all mazimal consistent sets of sentences, and

Y be some set of sentences. Then At(X) = {M NCI(X): M € M}.
Proof: Straightforward. O

The next two lemmas guarantee that we have a plentiful supply of atoms, and
that atoms have nice properties. Direct proofs of these facts are straightforward,
or one can observe that analogues of these results are familiar properties of
maximal consistent sets of sentences and use the previous lemma to transfer
them to atoms.

17

Lemma 4.4 If ¢ € CI(X) and ¢ is consistent then there is an A € At(X) such
that ¢ € A. O

Lemma 4.5 For any set of sentences ¥, and any A € At(X):
1. If p € CU(T) then p € A iff ~¢ & A.
Ifo AN eCUX) thenpAYp e AiffoEe Aandp € A
If ¢ — 9 and ¢ € CI(X), then ¢ — ¥ and ¢ € A implies) € A.
If1*¢ € CI(Z) then 1*¢ € A iff € A or 11*A € A.
Ifl*¢ € CI(Z) then |*¢ € Aiff € A or ||*A € A.
T*s, [*t and T € A. |

S & b

In the completeness proof that follows we shall work with closures of finite
sets of sentences Y. Let us assume from now on that ¥ always denotes a finite
set of sentences.

In the finite case At(X) has a very pleasant structure. We can enumerate
all the singly negated formulas in CI(X) as one list -0y, ..., -0, (we call this
the negative enumeration) and all the non-negated formulas in CI(X) as another
list o1,...,0, (we call this the positive enumeration), in such a way that the
i-th item on the negative enumeration is the negation of the ¢-th item on the
positive enumeration. Note that for any formula ¢ in CI(X) there is a formula v;
(1 <¢ < n) such that ¢ is logically equivalent to ¥; and 1; occurs on either the
negative or positive enumerations at the ¢-th place. Define a pointwise selection
from the negative and positive enumerations to be the result of choosing, for
each ¢ (1 < i < m), a wif from one of the enumerations. Further, note that
the conjunction of all the wifs in a consistent pointwise selection is logically
equivalent to the conjunction of all the wifs in some atom, and conversely.

Lemma 4.6 Suppose At(X) = {Ay,..., A,}. Then - ANA; V-V A\ A,.

Proof: Simple propositional logic: use the tautology a < ((a A B) V (a A =3))
repeatedly. |

We now define the finite analogs of the canonical model:
Definition 4.7 For all A, B in At(X) define:

1. A>1 B iff NAA [\ B is consistent.

2. A>3 B iff NANA |2 \B is consistent.

3. A>Biff A>1 B or A>3 B.

4. A< B iff NAAT A\ B is consistent.

18

5. A>. B iff NAA|* \ B is consistent.
6. A<. B iff NAANT* \ B is consistent.
Let C* be At(X) together with these siz relations. O

C* is not generally a tree; nonetheless, as the following sequence of lemmas
shows, it does have a number of useful properties.?

Lemma 4.8 For all A, B in At(%):
1. A>; B implies B < A.
2. A >5 B implies B < A.
8. A< B implies B >1 A or B >4 A.
4. A< B iff B> A.
5. A >, B iff there is a finite sequence of atoms A= A; >---> A, = B.
6. A <. B iff there is a finite sequence of atoms A = A; <---< A, = B.

Proof: These results are standard, or simple variations on standard results.
1 and 2 are proved using B7 and B8 respectively in the manner familiar from
tense logic; & is a minor variation on this theme, making use of B9 and D3; while
4 follows immediately from 1 — 8. The proofs of 5 and 6 make use of E1-E4 in
the standard fashion; see Goldblatt (1992) or van Benthem and Meyer-Viol (to
appear) for further details. O

Lemma 4.9 For any atom A, s € A iff no formula of the form ¢ is in A; and
t € A iff no formula of the form |'¢ or |2¢ is in A.

Proof: We prove the second equivalence. Suppose that ¢ € A and further
suppose for the sake of a contradiction that a formula of the form |'¢ or |2¢ is
in A; without loss of generality we suppose that it is a formula of the form |!¢.
Ast € A we have L € A by D2, but as |'¢ € A we have that |' L € A, which
contradicts the consistency of A. This proves the left to right direction.

For the right to left direction, suppose no formula of the form |'¢ or |2¢
is in A, and further suppose for the sake of a contradiction that t ¢ A. Now
1*t € A (by Lemma 4.5 clause 6) and by Lemma 4.5 clause 5 this means that
either t € A or ||*t € A. But t ¢ A, thus ||*t € A. That is, either |!|*t or
12]*t is in A, which contradicts our original assumption. We conclude that ¢
must be in A after all, the required result. O

51t is perhaps worth making an aside for readers familiar with the approach of Goldblatt
(1992). One can also regard CZ% as arising by filtrating the canonical model; this is Goldblatt’s
approach and it is probably the standard one. We have a slight preference for the present
approach (developed in detail in van Benthem and Meyer-Viol (to appear)) because it deals
with finite structures right from the start.

19

Lemma 4.10 Suppose ¢ € CI(X), where o € {|1,1%,|,1,1*,1*}. Then for
all atoms A and B we have that AR°B and ¢ € B implies o¢ € A, where R°®
denotes the relation on the canonical graph corresponding to the operator ©.

Proof: We treat the case for |*; the others are similar. Suppose |*¢ € CI(X)
and further suppose that A >, B and ¢ € B. Thus we have that A AA |* A B
is consistent, and as ¢ € B we have \ A A [*¢ is consistent. As |*¢ € CI(X)
and A is an atom (which means it is mazimal consistent in CI(X)), |*¢ € A. O

Lemma 4.11 For all atoms A and B:
1. If A>; B and |'¢ € A then ¢ € B.
2. If A>o B and |2¢ € A then ¢ € B.
3. If A< B and 1¢ € A then ¢ € B.

Proof: We treat the third case. Suppose A < B and 1¢ € A. Thus A AATA B
is consistent, and as T¢ € A we have that T¢ A T A\ B is consistent. It is an easy
consequence of B6, the functionality axiom for 7, that = Ty A TA — T(y A A);
thus it follows that (¢ A A B) is consistent, which in turn means that ¢ A A B
is consistent. But ¢ € CI(X) (as 1¢ € A), so as B is an atom, ¢ € B.

The other two cases are similar, and make use of B4 and B5. O

Definition 4.12 Let O (= (W, >y, >2, >, root, ©})) be the presentation of a fi-
nite ordered binary tree and X a finite set of sentences. By a decoration of O
by At(X) is meant a mapping h : W — At(X). Suppose h is a decoration with
the following properties:

1. For allw, w' € T, if w >=1 w' then h(w) >1 h(w'),
2. For allw, w' € T, if w > w' then h(w) >9 h(w'),
3. s € h(root),
4. t € h(w), for allw € ©.
Then h is a sensible decoration. O

Lemma 4.13 Let h be a sensible decoration of O by At(X). Then, for all nodes
w and w' of O, w = w' implies h(w) > h(w') and w < w' implies h(w) < h(w').

Proof: Suppose w > w'. Thus w' =1 w or w' =5 w. But h is a sensible
decoration, thus h(w') >1 h(w) or h(w') >2 h(w). Thus, by definition, h(w) >
h(w'), and the first implication is proved. As for the second implication, suppose
that w < w'. Thus w' > w. Thus, making use of the first implication, h(w') >
h(w). Thus, by Lemma 4.8 clause 4, h(w) < h(w'), the required result. i

20

Definition 4.14 (Models induced by decorations) Let h be a decoration
of O by At(X). Let V be the valuation on O defined by w € V(p) iff p € h(w),
for all nodes w in O. The model induced by h is the pair (O, V). O

Lemma 4.15 (Truth lemma) Let h be a sensible decoration of O by At(T),
and let M (= (0, V)) be the model induced by h. Then, for all ¢ € CI(X), and
all nodes w in M: M,w = ¢ iff ¢ € h(w).

Proof: By induction on the structure of ¢. For all atoms p we have that
M,w E piff w € V(p) iff p € h(w) so the base case is clear. Assume the desired
result holds for all wifs of degree less than n. Suppose that ¢ has degree n. If ¢
is of the form — or 9V~ then the desired result follows easily using Lemma 4.5,
so let us consider the cases involving modalities.

Suppose ¢ has the form T¢ and M, w |= 1¢. Thus there is a w' such that
w < w' and M,w’ = 9. But as h is a sensible decoration, by Lemma 4.13
h(w) < h(w'), and by the inductive hypothesis ¥ € h(w'). So by Lemma 4.10
1% € h(w) as desired.

So assume M, w [~ 11¢. Then either w = root or there is a w' such that
w < w' but M,w'" £ 1. Now if w = root then as h is a sensible decoration we
have that s € h(w), thus by Lemma 4.9 we have 1¢ ¢ h(w), the required result.
On the other hand, suppose there is a w’ such that w < w' and M, w' [£ .
Thus h(w) < h(w') (by Lemma 4.13) and by the inductive hypothesis ¢ & h(w').
So 19 & h(w), the required result.

If ¢ is of the form |14 or |24, the argument is essentially the same as that
just given, so let us consider the transitive closure operators.

Suppose M,w |= [*3. Then there is a node w' such that w >, w' and
M, w' |= 9. That is, there is a finite sequence of nodes w = wy > - -+ > wg = w’
such that M,w' = 1¢. But as h is a sensible decoration we thus have (by
Lemma 4.13) that h(w) = h(wy) > -+ > h(wg) = h(w'), thus using Lemma 4.8
clause 5 we have h(w) >, h(w'). Moreover, by the inductive hypothesis ¥ €
h(w'). Tt thus follows from Lemma 4.10 that |*¢ € h(w), as required.

So suppose M,w [~ |*i. Then for all w' such that w >. w' we have
M, w' [£ 1. Thus, by the inductive hypothesis, for all w’ such that w >, w' we
have 9 ¢ h(w'). Now if we suppose that |*i) € h(w), then by Lemma 4.4 we
have that either ¥ € h(w) or ||*¢ € h(w). Taken together with the fact that
O is a finite tree, this swiftly leads to contradiction (we leave the argument to
the reader); we conclude that |*1) & h(w) as required.

The arguments for 7%y are similar. O

4.2 Building the model

With these preliminaries to hand we turn to the heart of the proof. Our task
is to show that any consistent sentence ¢ is satisfiable. This is equivalent to
showing that s A |*¢ is satisfiable. Thus a natural strategy suggests itself.

21

Given a consistent sentence ¢, form At({s A |*¢}), and inductively define a tree
decorated by atoms from this set. First create a root node for the tree, and
decorate it with any atom containing s A |*¢. If there are no formulas of the
form |'4 or |24 in the decorating atom, stop. Otherwise, create the needed
daughter nodes, extend the decoration in the obvious way, and so on.

Now this is the essence of what we’ll do — but there is an obvious difficulty
to be overcome. Our task is to make a finite decorated tree, but how can
we guarantee that the inductive procedure just sketched produces only finitely
many nodes? It is here that axiom F3 comes into play. F3 will allow us to
assign each atom a unique ‘level’ measuring its distance from the atoms that
contain the terminal nodes. Crucially, we will be able to show that if an atom A
contains |19 (or |24)) then there is an atom B of lower level than A containing
) such that A >; B (respectively, A >5 B). This means that when inductively
building our decorated tree we can always choose decorations of lower level, and
doing this ensures that the construction halts after finitely many steps. The
following sequence of lemmas shows that F3 really does allow us to impose such
a level structure on the canonical graph.

Lemma 4.16 If ¢ is consistent then ¢ A }*—¢ is consistent.
Proof: Suppose ¢ is consistent. As F ¢ — [*(¢p A YJ*—¢) (this is F3), [*(4 A
JU*—9) is consistent, whence ¢ A J{}*—¢ is consistent. O

Lemma 4.17 Let A (= {A1,...,A,}) and B (= {Bi,...,Bm}) be non-empty
subsets of At(X) that partition At(X). (That is, ANB =0, and AUB = At(X).)
Then for some A; in A, A; ANJ*(AB1V -+ V A\ By,) is consistent.

Proof: As all atoms are consistent, any disjunction of atoms is consistent. Thus
AV ---V A, is consistent and thus by the previous lemma

(NArV-v \A) A (N A V- v \ 4n)

is consistent. Now by lemma 4.6 we have that

FANAV-vAAVAB V-V \Bn,

or equivalently

|__|(/\A1V...V/\An)—»/\Blv...V/\Bm,

thus it follows that

(ANALv--v NA) AW (ABLV---V \ Bm)

is consistent. But this in turn means that for some A; in A,

NAA W (N\BLV -V \ Bn)

22

is consistent, the required result. O

We now inductively define the levels on At(X). The 0-th level, Ly, is defined
to be {A € At(X) : t € A}. Next, suppose the i-th level, L;, is defined. First we

define:
0<5<4

(That is, S; is the ‘sum’ of all levels up to and including level i. Note that Sy
is just Lg.) Next, if At(X)\S; is non-empty then the ¢ + 1-th level L;;; exists
and is defined as follows:

Liy1={AcAt(X): A¢ S, and ANYJ* \/ /\B is consistent}.
BES;

On the other hand, if A#(X)\S; is empty then there is no i + 1-th level.
Lemma 4.18 FEvery atom A in At(X) belongs to exactly one level.

Proof: It is clear from the inductive definition that every atom A belongs to at
most one level, thus it remains to show that each atom belongs to some level.

We first show by induction that there are no empty levels. For the base case,
note that as |*t is an axiom, t is consistent, thus there are atoms that contain
t and so Ly is non-empty. Further note that as Sy is just Ly we have that Sy
is also non-empty. For the inductive step we show that if S; is non-empty and
L;1 exists, then L;11 is non-empty. To see this note that for L;;1 to exist it
must be the case that At(X)\S; is non-empty. But then A#(X)\S; and S; are
a pair of non-empty sets that partition A#(X); thus applying lemma 4.17 we
deduce that there is an atom A in At(¥)\S; such that AA YJ*Vges A B is
consistent. But then A isin L;;1, thus the ¢+ 1-th level is non-empty. It follows
by induction that no level is empty.

But now it is easy to see that every atom A belongs to at least one level.
For, as every level is non-empty, and as every atom belongs to at most one
level, then as there are only finitely many atoms there must be a maximum
level. Call this level L,,,,. Suppose for the sake of a contradiction that there is
some atom A that does not belong to any level. This means, A € Sy,4,- But this
means that At(X)\Smaez i non-empty, thus Lyqqz41 exists and is non-empty: a
contradiction. So every atom belongs to some level. O

Now for the vital lemma:
Lemma 4.19 Suppose A is an atom belonging to L; and that there is a wff of
the form |1¢ € A (respectively, |2¢ € A). Then there is an atom B belonging to

L,, where m < i (respectively, there is an atom C belonging to L, where n < i)
such that A >1 B (respectively, such that A >2 C).

23

Proof: Suppose A is an atom in L; and that there is a wif of the form |1¢ € A.
Note that as |'¢ € A we have by lemma 4.9 that t & A, thus ¢ > 0. This means
that S;_1 exists and is non-empty. We will show that there is an atom B in
S;_1 such that A >; B.

Suppose for the sake of a contradiction that this is not the case. That is,
suppose that for all atoms B in S;_; we have that A AA |! A B is inconsistent.
This means that for all B in S;_; we have - A A — |!= A B. Enumerate all

the atoms in S;_1 as By, ..., B,. It follows by simple modal reasoning that

FAA=V(ABLv---v \Bn).

Abbreviate A By V---V A\ B, to B. Thus - A A — |!-B.

As A isin L; and 7 > 1, by our definition of levels we have that A A A B
is consistent. Writing |} explicitly in terms of |}' and |}?, we thus have that
ANAAU'B A 2B is consistent. But we have - A\ A — {|!=B by our previous
argument, thus

NAANVBAYPBAY-B

is consistent. This means that A A A !B A |J!=B is consistent, which means
that A\ A A J!L is consistent. As |'¢ € A we deduce that |'L is consistent,
which is impossible. So our original supposition was mistaken and we conclude
that there is an atom B in S;_; such that A >; B. This means that for some
level L,,, where m < i, B € L,,, the required result.

The result for the operator |2 is proved analogously. O

We are now ready for the inductive construction of our desired model. Sup-
pose ¢ is consistent. Form At({s A |*¢}). Let W be some denumerably infinite
set; we shall use (finitely many) of its elements as the tree nodes.

Stage 0. Choose some wy € W, and some atom Ag in At({s A [*¢}) such
that s A [*¢ € Ag. As ¢ is consistent, so is s A |[*¢, thus by Lemma 4.4 such
an Ag exists. Define Wy to be {wg}; =9 to be 0; =3 to be @; and hgy to be

{{wo, Ao)}-
Stage n + 1. Suppose n stages of the inductive construction have been

performed. We call a pair (w, k) (where w € W,, and k € {1,2}) an unsatisfied
demand iff |F ¢ € h(w) but there is no w' € W, such that w > w'.

If there are no unsatisfied demands the construction is complete.

Otherwise, choose an unsatisfied demand (w, k). Note that as |*¢ € h(w), h(w)
cannot belong to level zero, for otherwise we would contradict Lemma 4.9. Let
w' € W\W,. Let A,1 be an atom such that h(w) =4 Apt1 and A,y belongs
to a strictly lower level than h(w); Lemma 4.19 guarantees that such an A, 41
exists. Let j be 1if k is 2, and 2 if k is 1. Define:

24

Wn+1 = W,u {w’}

= = e U{(w,w')}
=t =
hn+1 = h,U {<w1:An+1>}'

While adjoining a new node w' to w as described in the inductive step may
result in new unsatisfied demands (w', k), where k € {1,2}, we were careful
to choose h(w') from a strictly lower level than h(w). This means that in the
course of the construction we will be forced to map the newly adjoined node w’
to an atom of level zero; but doing so cannot give rise to an unsatisfied demand.
Thus the construction process terminates after finitely many steps.

Let m be the stage at which the construction is completed. Define h to be
hm. Define W to W,,; define >; to be >1*; define >3 to be >5*; define root to
be wy; and define O to be {w' : w' ¥; w and w' ¥1 w, for all w € W}. Define
O to be

(W, =1, >2, >, <,node, ©).

Lemma 4.20 O is the presentation of a finite tree. Moreover, h is a sensible
decoration of O.

Proof: That O is the presentation of a finite tree follows straightforwardly
from its inductive definition. There is only one subtlety: if w >9 w' then how
do we know that there is a w” such that w >; w" (and w' # w")? In fact,
by using our last remaining unused axiom, namely B10, we can guarantee this.
For suppose w =3 w'. The inductive construction would only have adjoined w'
if at some stage (w,2) was an unsatisfied demand. But this means that some
formula |2¢ € h(w). But then, by B10, |'T € h(w). So if there is no w" in
W such that w >; w” then (w, 1) is an unsatisfied demand — but there are no
unsatisfied demands.

Showing that h is a sensible decoration of O is straightforward. O

Theorem 4.21 (Completeness) FEvery consistent sentence has a model.

Proof: Given a consistent sentence ¢, we use the inductive construction to
build a tree decorated by At({s A |*¢}). By the previous lemma the decoration
so constructed is sensible, thus by the Truth Lemma the induced model satisfies
s A\ |*¢ at its root node, hence ¢ is true somewhere in this model. O

25

5 Consequences of completeness
The most important consequence of completeness is that validity is decidable.
Theorem 5.1 The set of valid wffs is recursive.

Proof: The set of wifs that are not valid is recursively enumerable (r.e.). For,
if a wif ¢ is not valid then it is falsifiable on some model. As all our models
are based on finite ordered binary trees it is possible to write a procedure that
systematically generates models and tests for the validity of ¢ on the models so
produced. Any such procedure will eventually tell us that ¢ is not valid.

On the other hand, the set of valid wifs is also r.e.. For the set of Lot
proofs is obviously an r.e. set (systematically generate finite sequences of wffs,
discarding those that are not Lot proofs) and by the Completeness Theorem a
wif is valid iff it is provable. As both the set of validities and its complement
are r.e., the set of validities is recursive. O

Next, recall that in section 2 we defined a language £(LF), the result of
layering £ over £F. By making use of results proved by Finger and Gabbay
(1992) we will be able to see that the set of valid £(£F) formulas is both
recursively axiomatisable and decidable.

Finger and Gabbay’s results are fairly general. Essentially they show how
completeness and decidability results enjoyed by both languages participating
in the layering process can be combined to obtain completeness and decidability
results for the layered language. Now, we have just established such results for
L, so the next step is to ascertain that similar results hold for £¥. As these
results are well known (and rather simple) we only sketch the required proofs.

Suppose we have fixed some signature {F,.A). The following axiomatisation
suffices to capture the £ wifs (over this signature) that are valid on all finite,
point generated feature structures. As axioms take all the wifs of LI (over this
signature) that are instances of the following two schemas:

Feature 1 [f](¢ — ¢) — ([fl¢ — [f]¥)
Feature 2 (f)¢ — [f]o.

As rules of inference take modus ponens and the rule of necessitation for each
‘box’ modality (that is, if ¢ is provable, so is [f]¢, for all f € F). A formal
proof in this system is a sequence of wifs regulated by the axioms and rules of
inference in the usual way, and Fr ¢ means that ¢ is formally provable.

To prove completeness proceed as follows. Given a consistent £F wff ¢,
use Lindenbaum’s Lemma to form a maximal consistent set of sentences ® that
contains ¢. The Feature 2 axioms guarantee that the relations in the canonical
model M¥ for this system are partial functions, and by the usual argument
M, ® | ¢; thus M is a feature structure that satisfies ¢. Thus we have a
(strong) completeness result for the axiomatisation with respect to the class of

26

all feature structures. The next step is to transform M# into a finite point-
generated feature structure that satisfies ¢ and thus prove the relevant (weak)
completeness result. This is routine. Take the submodel of M¥ generated by
&, but only generate out m steps, where m is the maximal depth of nesting of
modalities in ¢, and only generate on the relations corresponding to modalities
actually occurring in ¢. This establishes the result. It also tells us a little more.
First, as the axiomatisation is complete with respect to both the class of all
feature structures and the class of all finite point-generated feature structures,
the two definitions of £F validity given in section 2 must coincide. A second
consequence is the decidability of £F validity, for the generation process yields
an upper bound on the size of (finite) point generated feature structures that
need to be inspected to determine ¢’s validity.

We now have all the information about £F and £ that we need to apply
the results of Finger and Gabbay to £(LF). Following their account, here is an
axiomatisation of the £(£%") validities:

Tree 1 All £(£F) instances of the Lot axioms.
Tree 2 All the Lot rules of inference.

Preserve For all wifs ¢ in £F, if Fr ¢ then ¢ is provable.

It’s worth being explicit about what this means. A proof in this system is any
finite sequence of £(LF) wffs such that for any wif ¢ in the sequence either ¢
is an instance in £(LF) of our tree axioms or follows from earlier items in the
sequence by making use of the rules of inference in our proof system for finite
trees (this is the content of the Tree 1 and Tree 2 clauses); or ¢ is an £ wif
such that Fp ¢ (this is the content of the Preserve rule of inference). If ¢ is
the last item in some such sequence then we say that ¢ is provable. Thus the
axiomatisation reflects the layered nature of L(£!") very clearly. The Preserve
rule tells us that in addition we can ‘lift’ formulas provable in the feature logic
to the layered system.

This axiomatisation is complete for the intended semantics of £(£F), that
is, finite trees trees fibred over finite point-generated feature structures. We
won’t prove this here; it is a straightforward application of Finger and Gabbay’s
methods requiring no new ideas. Instead we will prove a simple corollary of
completeness: our layered logic is decidable. First a lemma:

Lemma 5.2 The set of validities of L(LY) is recursively enumerable.

Proof: Clearly we can write a procedure that systematically generates the
finite sequences of L(LF) wffs; but can we ‘weed out’ those sequences that
are not formal L(LF) proofs? It is clear that we can write a procedure for
determining whether or not a wif in a putative proof sequence is licenced by the
Tree 1 or Tree 2 clauses, thus it only remains to check that we can write a

27

procedure for determining whether a wif in a putative proof sequence is licenced
by the Preserve rule. But, by the decidability result for £F, this must be the
case. In short, we can recursively enumerate £(LF) proof sequences. As this
axiomatisation is complete, validity and formal provability coincide, and we
have the result. O

By systematically generating finite trees fibred over finite point-generated
feature structures we can recursively enumerate non-valid £(£)F wiffs. This
fact together with the previous lemma yields:

Corollary 5.3 The set of valid L(LY) wffs is recursive. O

To close this section we briefly discuss how to generalise these results to
cover the case of models constructed over finite trees when there is a fixed
upper bound on the branch factor greater than 2. Recall that in section 1 we
introduced suitable languages for such models: for any fixed n > 2 enrich £ by
adding operators 13,1%,..., ™ that look for information at 3rd, 4th, ..., n-th
daughters respectively.

A complete axiomatisation of the validities in any such language is obtained
from our axiomatisation for binary branching models as follows. First, we need
a new defining axiom for the | modality:

D3n |¢— [LV.--v "6

Second, we generalise axiom B10 by adding, all instances of the following
schema, where 2 <1¢ < n:

B10On ['T — |!T.

It should be clear that the required completeness proof involves only trivial
modification to that given for £. With this completeness result established,
the decidability result for the pure tree language follows by the argument used
in Theorem 5.1, and the Finger and Gabbay methods yield completeness and
decidability results for the layered languages in the manner just discussed.

6 Concluding remarks

In this paper we established completeness and decidability results for a simple
modal language £ interpreted over finite trees. As we saw, £ is strong enough to
be linguistically interesting, but it is natural to enquire whether similar results
can be proved for stronger, or different, systems. To close this paper we mention
some extensions and variations it seems worthwhile investigating, and discuss
the long term goals of this research.

First, in the literature on temporal logics of programs, it is common to
dispense with |* in favour of stronger operators, namely various generalisations

28

of Kamp’s Until operator; see Goldblatt (1992) for definitions and discussion.
We think it would be interesting to strengthen £ in this fashion, and in addition
to replace 7* the stronger Since operator.

A second direction worth exploring is what happens when the unbounded
semantics is employed, that is, when no finite upper bound is placed on the
branch factor of the allowed models. This is important if one wants to give an
‘unbounded’ GPSG style analysis of co-ordination.

An obvious language for dealing with the unbounded semantics is the fol-
lowing. For every natural number n add a unary operator |™ for looking for
information at the m-th daughter. Actually, this extension isn’t quite good
enough. Because there is no upper bound on the branch factor, | is no longer
a definable operator. If we want to be able to assert that information holds at
some unspecified daughter (and in most linguistic applications we probably do)
we need to add | as a primitive unary modality. Let us call the language with
the operators T, |, 1%, |* and |™ (for all natural numbers n) £°. Note that
L has a ‘horizontal’ failure of compactness in addition to the ‘vertical’ failure
already noted for £. For while every finite subset of

{Ip,=1'p,~1?p, = °p,~|*p,.. .}

is satisfiable, the whole set cannot be satisfied at any single node in any model.

But to conclude the paper, let’s change tack slightly. While we feel it is
important to investigate extensions and variations of the type just mentioned, in
certain respects they give a misleading picture of the long term goals of this work.
Ultimately we hope to give a logical analysis of the leading grammar formalisms,
but many aspects of this investigation are not covered by the extensions just
mentioned. To close the paper we will indicate why this is so and which questions
we think are worth pursuing.

As was already mentioned, the languages discussed in this paper make use
of fairly orthodox aspects of tree structure. The operators they employ quantify
across relations on trees (such as mother, daughter and their transitive refle-
xive closures) that are familiar from applications in mathematics and computer
science. In linguistics, when trees are used together with a notion of feature
structure, these may well be the only relations that need to be considered: this
seems to be the case as far as GPSG is concerned. However it is probably not
the case in general. In GB, for example, the feature component is minimal.
Instead, various more complex relations on trees are employed. The command
relations discussed earlier are one example of the relations of interest, but these
are merely the tip of the iceberg. In order to do justice to GB ideas on X-bar
syntax and bounding, for example, it seems that one must explore a variety of
other, less familiar, relations on trees and their interactions.

We feel that a systematic investigation of these richer structures could be re-
warding. For a start, there are the more-or-less obvious logical questions: what
languages are appropriate for describing these richer structures and what are

29

their properties? But, more importantly, a precise account of (say) the GB onto-
logy would make it possible to address more substantial issues. What, precisely,
are the trade-offs between imposing more structure on trees and adopting vari-
ous notions of feature structure? Can the ‘dynamic’ notion of movement in GB
be reduced to a ‘static’ one? Is there a canonical way of turning a GB account
into (say) an LFG account and vice-versa? Different linguistic theories usually
start from different pre-theoretic notions, and model these notions using very
different mathematical ontologies. Nonetheless, mainstream syntactic theories
are usually concerned with more or less the same data, and in spite of the (often
vitriolic) inter-theoretic disputes, common themes are discernible. We believe
that model theoretic investigations may provide a perspective from which the
commonalities (and differences) emerge clearly.

It hardly needs stressing that these are difficult issues, and much of the
groundwork remains to be done.® Nonetheless, we hope we have given the
reader a taste of why we feel optimistic about the model theoretic approach to
linguistic formalisms.

Acknowledgements We are very grateful to Claire Gardent, Jan van Ei-
jck and Yde Venema for their comments on earlier drafts, and to Maarten de
Rijke for editorial help over and above the call of duty. We would also like
to thank the IGPL Bulletin referees for their comments on the penultimate
draft. Patrick Blackburn would like to acknowledge the financial support of the
Netherlands Organisation for the Advancement of Research (project NF 102/62-
356, ‘Structural and Semantic Parallels in Natural Languages and Programming
Languages’).

References

[1] Van Benthem J., and Meyer-Viol, W.: to appear, Logical Semantics of
Programming.

[2] Blackburn, P., Gardent, C., and Meyer-Viol, W.: 1993, Talking about
Trees. In Proceedings of the 6th Conference of the European Chapter of the
Association for Computational Linguistics, Utrecht, pp. 21-29.

[3] Blackburn, P. and Spaan, E.: 1993, A Modal Perspective on the Computa-
tional Complexity of Attribute Value Grammar. Journal of Logic, Language
and Information, 2, pp. 129-169

SInteresting work which addresses such general issues has appeared recently. Kracht (1992,
1993a, 1993b) gives a precise formulation of many of important ideas in GB, and relates them
to the ideas underlying GPSG.

30

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Carpenter, Bob.: 1992, The Logic of Typed Feature Structures, Cambridge
Tracts in Theoretical Computer Science, 32, Cambridge University Press,
Cambridge.

Barker, C. and Pullum, G.: 1990, A Theory of Command Relations. Lin-
guistics and Philosophy, 13, pp. 1-34.

Chomsky, N.: 1981, Lectures on Government and Binding, Foris, Dor-
drecht.

Evans, R.: 1987, Towards a formal specification for defaults in GPSG. In
Klein E. and van Benthem J. (ed.) Categories, Polymorphism and Unifica-
tion, Edinburgh: Centre for Cognitive Science and Amsterdam: ITLI.

Finger, M. and Gabbay, D.: 1992, Adding a Temporal Dimension to a Logic
System. Journal of Logic, Language and Information, 1, pp. 203-233.

Fisher, M. and Ladner. R.: 1979, Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18, 194-211.

Gazdar, G., Klein, E., Pullum, G., and Sag, S.: 1985, Generalised Phrase
Structure Grammar, Basil Blackwell.

Goldblatt, R.: 1992, Logics of Time and Computation, 2nd edition. CSLI
Lecture notes, 7, Center for the Study of Language and Information, Stan-
ford.

Kaplan, R. and Bresnan, J.: 1982, Lexical-Functional Grammar: A Formal
System for Grammatical Representation. In Bresnan J. (ed.) The Mental
Representation of Grammatical relations, pp. 173-281, MIT Press, Cam-
bridge, Massachusetts.

Kracht, M.: 1992, The Theory of Syntactic Domains. Logic Group Pre-
print Series 75, Department of Philosophy, Rijksuniversiteit Utrecht, The
Netherlands.

Kracht, M.: 1993a, Nearness and Syntactic Influence Spheres, manuscript,
II. Mathematisches Institut, Freie Universitat Berlin.

Kracht, M.: 1993b, Mathematical Aspects of Command Relations. In Pro-
ceedings of the 6th Conference of the European Chapter of the Association
for Computational Linguistics, Utrecht, pp. 240-249.

McCawley, J.: 1968, Concerning the Base Component of Transformational
Grammar. Foundations of Language, 4, pp. 55-81.

Pollard, C. and Sag, I.: 1987, Information-Based Syntax and Semantics:
Volume 1, Fundamentals, CSLI Lecture notes, 13, Center for the Study of
Language and Information, Stanford.

31

einhart, T.: , Definite np-anaphora and c-command domains. Lin-
18] Reinh T.: 1981, Defini h d dd ins. Li
guistic Inquiry, 12, pp. 605—635.

[19] Rogers, J. and Vijay-Shankar, K.: 1992, Reasoning with Descriptions of
Trees. In Proceedings of the 25th Annual Meeting of the Association for
Computational Linguistics, pp. 72-80.

[20] Vijay-Shankar, K.: 1992, Using Descriptions of Trees in a Tree Adjoining
Grammar. Computational Linguistics, 18, pp. 481-517.

32

