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0 Abstract

This paper argues that Sherrilyn Roush’s (2005) daans that evidence should be
highly probable and that this contradicts the Baeaccount of surprising evidence
are flawed. It shows that evidence need not belyigrobable, even by Roush’s own
criteria for evidence. It also provides a stronggument for the demand that
evidence have high probability from her own poifhwview by presenting an
alternative characterization of evidence that alstber meets her demand to connect
evidence for a hypothesis with there being reasdretieve the hypothesis.

1 Introduction

In her 2005 book Sherrilyn Roush offers a plausdaieof conditions for when e is
evidence for h, for dichotomous variables e andRoush has desiderata for evidence
and she constructs her conditions for evidencedetithese. These include that
evidence for h should discriminate between it dietr@ative hypotheses and that
evidence for a hypothesis should be a good indicdtthe hypothesis. These two
conditions are also important for achieving anottesideratum, that evidence should
be a guide to belief in the hypothesis for whicis kvidence, it should provide ‘one
who has it some reason to believe that the hypistiesue’ (p158). She uses these
desiderata to argue that ‘ideally’ evidence shdnddighly probable, which, she
maintains, contradicts the Bayesian way to modebissing’ evidence by low
probability evidence. We shall argue both thatdrguments in favour of high
probability for evidence are weak and that her vikogs not contradict the Bayesian
account of surprising evidence given her objedtiniglerstanding of probability. We
shall additionally provide a stronger argumenttfe@ demand that evidence have high
probability from her own point of view by offeriran alternative characterization of
evidence to hers that, we claim, better meets Wwarademand connecting the
existence of evidence with there being reason lievse

2 How does Roush define evidence?

Roush argues that evidence shadiktriminate between hypotheses. She takes this to
mean that if e is evidence for h then P(e|h) >Bjepr, in terms of the likelihood

ratio (LR) that LR > 1, where the likelihood rateodefined by LR = P(e|h)/P(e|-h).
She also invokes a number of authors to arguehkdikelihood ratio is also the best
measure of how good evidence is at discriminating.

Roush takes the discrimination condition to be mtmversial and focuses greater
attention on the second condition for evidencejtesation condition. It requires

! Other desiderata are that the conditions for eMideshould be given purely in terms of probability,
that a measure of the support evidence providggethesis should be given, that whether e is
evidence should be an objective matter, and tieatdmditions for evidence should provide ‘leverage’
on the truth of the hypothesis, that is, knowingditions for evidence are met should make it edsier
know the truth of the hypothesis.



that the probability of the evidence and the likebd ratio both be sufficiently high to
ensure that P(h|e) > 0.5. This, of course, is edeint to P(h|e) > 0.5.

The two conditions together define evidence. Téfendion of evidence is:

e issome evidence for h if and only if
FC1 (Discrimination Condition): LR > 1
FC2 (Indication Condition) : P(h|e) > 0.5

Roush also adds a stronger concept of evidenceavtherindication condition is
more restrictive, it is:

e isgood evidence for h if and only if
FCLLR>1
FC2': P(h|le) >b where b >>0.5

We have labelled the conditiorfSC’ to point out that the expression of the
conditions is ours and not Roush’s. Roush offefes anore roundabout but exactly
equivalent formulatiof:

R: e is some/good evidence for h if and only if féhés a lower bound greater
than 1 on [LR] and a lower bound greater than @@@) such that P(h|e) is
greater than 0.5'/‘greater than some high threshplaropriate to having good
reason to believe’ (p.183).

R-addendum: She adds ‘[w]hile on this view LR>1 is a necegsamdition
for ... evidence, high P(e) is not necessary budasli (p.183).

Roush’s own formulation is odd for at least thregasons. First is the asymmetric
treatment oFC1 andFC2. No constraints are placed on hB®1 is to be satisfied.
But FC2is to be met in a certain way. Second any vali€ge and LR for which
FC2 hold are values ‘sufficiently high’ for it to holdp matter how low they are.
They may in fact both be extremely low yet P(hjgehigh. Even supposirC1l is
met, P(e), we shall point out, can take any vatuesistent with high P(h|e). Perhaps
this is why she adds that high P(e) is not necggsaevidence, presumably for
evidence as understood by Roush, but only ‘idelit what then is the status &
addendum? Ris supposed to be a definition. Presumably byadding the
addendum into the definition Roush wishes to allbat e can be evidence, indeed
good evidence, for h even if P(e) is low. Does shath&ve in mind three concepts:
some evidencegood evidencejdeal evidence? It seems not since the addendum is
not offered as a definition.

Roush explains that her roundabout formulatioR©2 has two advantages. First she
wants to ‘leverage’ the hypothesis, h, that is, dbes not want criteria for evidence
that would require, to be known, substantive knolgéeof the hypothesis that the
evidence is supposed to help obtain. Roush’s muanredabout formulation of the
indication condition, in terms of sufficiently higlalues of LR and P(e), has a
leverage advantage when values for P(e) and Lbeanferred more easily than that

2 Supposing P(e) > 0.



of P(h|e). The second reason for her more rounddbonulation of the condition is
to highlight a disagreement she has with Bayesaasothers about the size of P(e).
The standard Bayesian view is that surprising enaderepresented by low P(e),
raises degree of belief in a hypothesis by more thesurprising evidence. In
contrast Roush argues that evidence with highiB@pre helpful for inferring the
likely truth of a hypothesis.

3 What does Roush show?
Using the probability axioms Roush establishes
A. P(hle) = [LR-P(e|h)/P(e)]/[LR-1].

She then points out thAtimplies facts about how P(h|e) can increase usyetial
circumstances. The special circumstances are that

1. LR>1

2. LR is held fixed

3. P(e|h) is held fixed.
Note that this implies that P(e/-h) is also fixed.

Given these three conditions she points out tloah .
B. P(hle) increases with P(e).

Roush elaborates d&h with a series of graphs of P(h|e) against LR fffeknt
possible values of P(e|h). Each graph assumdteeedt, fixed value of P(e). Roush
uses the graphs to show that for high values ofd_8Ufficiently high lower bound on
P(e) implies P(h|e) greater than a half. Rougtaisicularly interested in lower
bounds for P(e) and LR that are sufficient foriti@ication condition for some
evidence (P(h|e) > 0.5). She shows that P(e) aftd3_R > 3 are jointly sufficient
for P(hle) > 0.5. Although she does not hergateghis result in this way, the
general point that she uses the graphs to illestran be formulated as:

C. For any b < 1, there exist d and ¢ such that LR>R{e) > ¢ => P(h|e) > b.
We prove this general result in the apperdix.
4 Roush’s argument against surprising evidence
Roush argues th&. andC. conflict with the Bayesian way of explaining why
surprising evidence is better for raising the posterobability of a hypothesis.The
Bayesian view can be illustrated from the standardion of Bayes Theorem.

Bf. P(hle) = P(h)P(e|h)/P(e)

In Bf. with P(e|h) fixed the posterior probability ofdrraised more by evidence
which has a low probability, i.e. the lower P(e9 tjreater the increase in P(h|e) from

% See Theorem 4 in the appendix.
* For an exposition of the Bayesian view see HovasmhUrbach (2005, p.97) for example.



P(h). If surprising evidence is modelled by love R ¢his explains why surprising
evidence has higher confirmation power for a hypsith

Roush argues against this widely accepted wayeatitrg the higher confirmation
power of surprising evidence. She argues instaadire withB. andC. —that it is
when evidence has a sufficiently high probabiltg &R is sufficiently high that the
power of evidence is greater. In addition she nodsrds an alternative to the
Bayesian view of how to model surprising evidentéerms of P(e|-h) instead of
P(e), which could allow surprising evidence to pdevhigher confirmation of h while
still allowing the ‘ideal’ condition that P(e) bégh. Her independent argument for
high P(e) is that if e is to be good evidence foe Bhould provide good reason to
believe h and that for e to be taken as reasobéieving anything else, one must
have reason to believe And for this P(e) should be sufficiently highchese before
one can accept e as evidence one must have reabeleve it. Otherwise how could
it be the basis for revising any other beliéfs?

Both A. and Bayes Theorem hold from the axioms of prdiigbso the conflict
between Roush and the Bayesian views does nat ffeeiequations. The conflict is
elsewhere. To identify its source it helps to laoknore detail at Roush’s argument.
5 A closer look at Roush’s argument
Roush’s graphical analysis shows that lower bowmdsR and P(e) are sufficient for
a lower bound on P(h|e). Yet she concludes heghgral analysis with a ‘proposal ...
that the second condition on evidence...be a lowant@n P(e)’ (p.171). This
makes explicit Roush’s desire that high P(e) becassary criterion for evidence.
Despite Roush’s proposal, a lower probability atlemce can make for better
evidence on her own criteria. Consider for exantiptecase where P(e|h) £ tvhich
is one way to model ‘h explains e’ in the deductivenological account of
explanation. In this case Bayes Theorem reduces to

D. P(hle) = P(h)/P(e).
Since P(e|h) =1, it is also follows that

E. P(e) =P(h) + P(e|-h)P(=h)
and so

F. P(hle) = P(h)/[ P(h) + P(e|-h)P(=h)].
Given our restriction that P(e|h) = 1 it also faelbothat

G. LR = 1/P(e|-h).

® In this way she rejects the Bayesian reading ef B giving the probability of e before it is otveel.
® Similar examples can be generated for any fixadzero value of P(e|h).



In this case lowering P(e) by lowering P(e|-h) dtameously produces improvements
both in LR and in P(h|e). Lowering e in this wagkes e better evidence for h on
both Roush’s criteria. This is despite Roush’pgreal analysis, which shows a
sufficient but not a necessary condition. It igetras she concludes from her graphs,
that ‘increasing P(e) with fixed or rising LR wilave the effect of increasing P(h|e)’
(p.168). But it is equally true that decreasing)R(ith rising LR can have the effect
of increasing P(hle). So the graphs hardly proaid&ong argument for increasing
P(e) in order to satisfy the criteria for evidence.

Not only can lowering P(e) raise both LR and P(Hja} both condition§C1 and
FC2 can be maximally satisfied while P(e) takes on\adye whatsoever. For
suppose e is a perfect sign of h; i.e.le Then P(h|e) = 1 and LR is infinitely high,
but P(e) can be as small or as large as one wiield |

Besides saving the venerable connection betweeleree® and surprise this example
has another nice result as well. Whenever therénaréndependent criteria for the
same thing questions of trade-off come up. Whaoed when one criterion improves
at the cost of the other? But here trade-off iSdeab. In this case (or any case with
fixed P(e|h)) when the results implied by a hypsth&ecome more surprising, the
results can become better evidence by both crig¢rience. Thus, it seems the more
surprising evidence is (in terms of lower P(e)g better evidence e can be in terms of
Roush’s criteria for evidence.

The example above shows how e for which P(e) isdawbe better evidence
according to Roush’s definition. It appears tadlsapport to the conventional view
that surprising evidence has higher confirmatiowgrathan unsurprising evidence
where surprising evidence is modelled by low P(#)also brings out the source of
the disagreement between Roush’s and the Bayesanof surprising evidence.

The difference is that Roush considers the impad®(t|e) of increases in P(e) for a
fixed LR. In contrast the Bayesians — and the examgsented here — do not assume
a fixed LR. By allowing LR to increase with low(e), lower P(e) can raise P(hle) in
line with the Bayesian view of surprising evidence.

We should also note that Roush’s graphical argusifenthigh P(e) depend heavily
on the asymmetry with which she treats the two pedelent criteria for evidence, an
asymmetry that we remarked on in section 2. Suppads ‘candidate’ evidence for h
in the sense th&C1 is well satisfied (i.e. LR is high). Then it isi¢ that high P(e) is
sufficient for the satisfaction ¢fC2 (i.e. high P(h|e)). But the exactly symmetric
claim is not true. Suppose e is ‘candidate’ evigeior h in the sense tha€2 is well
satisfied (i.e. P(h|e) is high). Then it is noetthat high P(e) is sufficient for the
satisfaction oFC1 (i.e. LR is high). We prove this in the appenfiXhe result
illustrates an important asymmetry in Roush’s asialthat, although a high P(e) is
useful for obtaining the high P(h|e) when LR idfisidntly high, a high P(e) is not
sufficient for high LR when P(h|e) is high. Yeetk is no special reason for
considering either criterion differently from thther. So again it seems that formula
A. and the associated graphical analysis do not gecwivery good argument for
taking high P(e) as the ideal.

" See Theorem 5 in the appendix.



Roush defends her claim that P(e) be high in diateg to be evidence for anything
on three fronts. The first involves the argumdrgised on formulé. and the
accompanying graphs. This, we have just arguedyjges very weak grounds for the
demand, if any at all. On the second front shengtts to defuse arguments to the
opposite conclusion, that P(e) should be low. Gfeer central arguments on this
front is that Bayesians themselves need high B(ejptrant the method they
recommend for belief revision. We think this argamrests on a simple mistake,
which we will discuss in section 8 when we talk abBayesian conditionalization.
She also hopes to model the surprisingness of eetdey P(e|-h) — a proposal she
describes but proposes to develop elsevfress that counting surprising evidence as
good evidence does not count against demandingoB(egh. In addition on this
front she points out that with LR>1 as the critarias opposed to P(h|e) > P(h), e can
still discriminate even if it has probability 1.inglly she provides an alternative
interpretation to some examples of Peter Achindteahwere supposed to provide
cases where ‘it is the very improbability of e thakes it evidence for h’ (p.176).

All these are arguments that show either that Réell not be small or that it is no
harm for it to be big. These are exactly in lingwthe view that follows from her
own definition of evidence, that the probabilityeofs irrelevant to whether e is
evidence or not. A positive argument is still negd for the claim expressed in the
odd add-on to the definition, that ‘high P(e) ..ideal’. That seems to be left to her
third line of defense.

The positive argument for high P(e) is woven in anlamong the discussion of the
Bayesian account of surprising evidence and elsendred has little explicit
statement. But here are a few: ‘it would, | thibk,inappropriate to say that a subject
“has” evidence e when she does not have a bebekt(p.153). Or ‘... in a case
where | have a very low degree of belief that euomd, what reason could there be to
think that e is evidence of anything for me?’ (@L7Or later ‘...if the indication
condition is fulfilled in the ideal way with P(e)gh, that will tell us that e is evidence
for something’ (p.176). The idea seems to be that nothing astevidence unless
there is more reason to believe it rather thaopsosite. But why?

One ground for this seems to be her own central ildat having evidence gives one
reason to believe: if | didn’t believe e, how coeldive me reason to believe anything
else? This looks, however, more like a verbal tslan an argument since the task
Roush undertakes is to define ‘e is evidence fonbt what it is for a subject to have
evidence for h. We could easily agree that whieawvé evidence e for h thenhave
reason to believe h. So in order for méawe e, my assessment of P(e) should be
sufficiently high; | can’'t use e as a reason famtess P(e) is high for me. This can
be perfectly true without jeopardizing the anteceddéea thaFC1 andFC2
characterize a notion of what makes e evidench.fdndeed this fits nicely with
Roush’s own idea of leverage. If | want to assleedruth of h and | am fairly
ignorant of the facts surrounding it, | don’t wantstart collecting information at
random since collecting information is costly. dwld like some criteria — a
characterization of evidence — that tells me whats would be reasons for h. Then |
go out and try to ascertain the probability of #hon this discussion we have
supposed that it is this antecedent notioavadence that Roush is trying to

8 See Roush (forthcoming).



characterize. One can then of course add as aadrgmod reason: do not believe h
on the basis of e alone unless P(e) is high.

We conclude then that Roush’s ground for high Bg¢ean ideal for something to
count as evidence is not strong on any of the thioegs we have identified. There is,
however, another strategy that starts with RousWs insistence that evidence
provides reason to believe and makes a strongerfeakigh P(e). Indeed when
P(elh) = 1 (which we noted is one standard wayddehdeductive-nomological
explanation) P(e) must be greater than %2. Théeglyanvolves strengthening FC2,
which we shall argue should be done anyway to espRoush’s demands better. We
turn to this strategy now.

6 Evidence and reason to believe the hypothesis

A key desideratum for Roush is that evidence shptddide reason to believe a
hypothesis when the evidence is taken into accotihis desideratum, ‘reason to
believe’, is supposed to be met in Roush’s detingiof evidence by the indication
condition. For some evidence P(h|e) > 0.5 mugt.h&$ Roush sees it, this ensures
that one has some reason to believe h (rathertthaflternative -h) when one has
evidence e. In the case of good evidence it meighé case that P(h|e) > b for some
large b appropriate to one’s threshold for haveason to believe h. As she puts it,
‘... we do not have good reason to believe, or ewenesreason to believe, a
hypothesis is true, if we have no assurance tlegpdisterior probability [P(h|e)] is
greater than 0.5’ (p.165).

In this section we argue that the desideratumgelP¢h(.5, is not sufficient for there to
be reason to believe in the hypothesis when thdeece is less than certain. This has
implications for Roush’s theory of evidence. Adkhiag the problem requires either
an elaboration on what it meandave evidence, or a strengthening of Roush’s
second criteria for evidence to P(h) > 0.5.

In her paper Roush presents the example of Maty {p172) to illustrate how high
P(e) and high LR are sufficient for high P(h|e)erélwe consider the similar case of
John, who may also be suffering from a disease Jbhn is suffering from a number
of symptoms that suggest a blood test for a matkeelated to the disease is
appropriate. We let

h: John has disease D.

e: The marker d is in John’s blood.
Suppose it is known that in a population of pedigke John when a patient has
disease D then d is also present, so P(e|h) krdoiwn. Suppose also that condition d
is uncommon when the disease is absent, specgjfisafipose that it is known that LR
= 3. Now suppose John is given the test 20 tamekit comes up positive 13 times,
from which it is inferred that P(e) = 0.65. Gividans one can calculate that P(h|e) =
0.73 usingA.. This example exactly parallels Roush’s Margraple though
differing in the numbers just enough to make ounpabout P(h) versus P(h|e). Itis a
case where e is some evidence for h and if onesstiold for good evidence is 0.73
or less then e is good evidence for h.

Following the way Roush discusses the Mary exangihee e is some evidence for h,
e provides some (and possibly good) reason tougehen the case of John. But just



what does this mean in the John example? For Rbisks formalised by P(h|e)
being sufficiently high. And it is clear that $heondition is met in both the Mary and
John cases. But in the case of John, if all wenkiscexactly what has been stated, do
we have reason to believe h? It seems difficudtrgpue this since it is easily
calculated that P(h) = 0.475Therefore, in John’s case the correct infereadhat he

is more likelynot to have the disease. So it seems counterintudicéaim that e

gives us reason to believe John has the diseagedube we have more reason to
believe that John does not have the disease.

More generally whenever LR > 1 (the discriminatcmmdition for evidence) it
follows that P(h|e) > P(h). Thus, a lower boundPgh|e) need not imply a sufficiently
high P(h), even to a level where the hypothesisbeaimferred to be more likely than
its alternative.

Of course this example appeals to an intuition #ghiatver bound on P(h) is a more
natural criterion for there being reason to beligvk than a lower bound on P(hle), as
adopted by Roush. This intuition can be justifiedher by looking carefully at what
P(hle) must represent in Roush’s framework. UrlieBayesians Roush explicitly
adopts objective probabilities. Therefore, despitametimes slipping into Bayesian
language of priors and posteriors at points inctiepter, P(h) and P(h|e) cannot be
prior and posterior probabilities of the hypothebis P(h) is simply the probability
the hypothesis is true for an arbitrary membehefgopulation of interest and P(h|e)
is the probability the hypothesis is true for abitaary member of the sub-population
in which e is true. In the John and Mary exampl@y is the probability that an
individual with symptoms like those exhibited byndqor Mary) has the disease. In
contrast P(hl|e) is the probability that an indiabwith symptoms like those of John
(or Mary) who also has the marker in their blood tie disease. But, as Roush
herself emphasisé&P(e), the probability that John (or Mary) hasnharker, need

not be one. When P(e) is not one, P(h|e) anddi(Bjge. Moreover, in the cases
Roush is interested in, P(e) is generally not o&ven that P(h|e) is the probability
of the hypothesis if e is true, it seems countaiiive to adopt this as giving reason to
believe h when the evidence is less than certain.

There is an immediate reply that may seem natufah. cases like the John and Mary
examples, a sufficiently high threshold on P(h)et is desirable for having reason
to believe h, then what role does evidence playnaly seem that we are ignoring the
useful information evidence provides, since wefacesing on the probability of h in
the whole population independently of whether drevadence is true for the

different members of the population. There israsean which this is correct. In the
John case P(h) gives the probability that an inldial like John (i.e. with the same
symptoms, with the same dispositions in relatiotheoblood test) has the disease.
But evidence still plays a role, the reason to diwkn the blood test is to infer P(e)
for this population. Yet it is an inferent@ John only in the sense that it is assumed
that he is randomly drawn from this population.eTihference of P(e) is then useful
because it allows one to infer P(h) for the popatabf John-like individuals via
Roush’s formul&.. This is then useful for making inferences abwliether John

has the disease.

? Since P(e|h) = 1, P(h) = P(hle)P(e) = (0.73)(06B)1475.
19°0r as Roush puts it in her Mary example: ‘one fpastest does not a positive tester make: it could
have been a fluke’ (p.171).



So in the John case, e is evidence — following Rsusvo criteria — that John has the
disease, but e fails to provide reason to belibaelohn has the disease. Therefore, it
fails to meet Roush’s desideratum for reason tebel

Now one might retort that in the John case tha\ertheless provides reason to
believe the hypothesis if ommad it. This re-interprets the John example as a case
where there is a failure to have evidence rattem tine where there is a failure of the
evidence to provide reason to believe the hyposheBhis also reads Roush’s
comments that the evidence should provide reasbelieve the hypotheswghen it is
taken to account'* as a requirement that the evidence would giveoress believe the
hypothesis were it tru€. However, the problem remains that the evidendhifcase
implies that John is more likely not to have theedise. If one attributes this problem
to a failure to have the evidence, and one warntshe such that in a case where the
evidence were had — so to speak — the hypothesikle more likely than not
(unlike the John example), then one needs an angiimat shows that evidence
provides reason to believe the hypothesis whereeidence and when one has the
evidence. Roush does not provide such an argunfarhaps a proof can be given
that shows that the hypothesis is probable wharegidence and it is sufficiently
probable (taking this as what it means to havesthgence). However, in the
appendix we prove that if e is some evidence tiehP%2(P(e|-h) + P(e|h)) <=>
P(h) > %2** This is worrying since the lower bound on thebatuility of evidence,
sufficient for the hypothesis to be probable, deisern the hypothesis. This is
unsatisfactory if one assumes, intuitively, thavimg’ a proposition should depend
solely on how likely that proposition is. So havihg evidence should not depend on
its relationship with the hypothesis, as it doethia simple attempt to provide a proof
to support this response to the problem in the &lample. Therefore, further work
seems to be required to make this approach work.

An alternative approach to deal with the problenoistrengthen the definition of
evidence. This approach takes it that evidenages gne reason to believe h, that is,
ensures P(h) > 0.5, in virtue of it being evidentéis move, unlike the approach
above, has the additional advantage that it imphiasevidence must be sufficiently
probable for it to be evidence. We now consider diption.

7 A possible revision to Roush’s definition of evience?

Given the discussion above a natural revision tosR® desideratum for having
reason to believe is.

There is some reason to believe h if and onlyhf B 0.5
&
There is good reason to believe h if and only(f)P b, where b>>0.5.

" Roush uses this language when describing theefesian of having reason to believe. She writes ‘I
will also identify a second kind of condition that puts a lower bound on the posterior probability...,
that is, the probability that the hypothesis i®tance the evidencetiaken into account.” (p.158,
emphasis added).

2 This makes sense of the criterion that P(h|e}> 0.

13 See theorem 2 in the appendix.



If this revised desideratum is to be met by Rousiie®ry of evidence, then the
indication condition needs to be strengthened k) P0.5 and P(h) > b respectively
for some and good evidence. That is, no e can idemee for h unless there is some
reason to believe h, as characterized above.

But this is obviously problematic, since it undemas the interpretation of the second
condition for evidence as one of the evidence baiggod indicator. Consider P(h|e)
> 0.5 which means that when the evidence is thex h is likely to be the case. This
is a plausible formalisation of what it is for eitalicate h. In contrast P(h) > 0.5
simply means the hypothesis is more likely to be than not in the population. It is
completely independent of e, and thus cannot beartarpretation that it is an
indication conditiorfor e. This suggests a tension between two of Roustsgldrata
for evidence, between her desire to capture theatideness of evidence in her
criteria for evidence and her desire that thesdyirttnat if there is evidence for h then
there is reason to believe h.

Despite this tension the way out may simply bedopd the stronger P(h) > 0.5 as the
second condition for evidence and to drop its iation interpretation. Though this is
less satisfactory for the indication desideratuat,all is lost, since when the
discrimination condition is met (LR>1) then P(#efP(h). Thus P(h) > 0.5 implies
the old indication condition P(h|e) > 0.5. Sohaiigh the second condition has lost
its indication interpretation, the indication projyeof evidence still follows from a
stronger definition of evidence.

Moreover one can show that there are lower boumdsR and P(e) which are
sufficient for a lower bound on P(h) and develamanterpart ‘roundabout’
formulation as Roush did for P(hfé)AII of this suggests the following revised,
stronger definition of some evidence.

e is some evidence for h if and only if
FCL LR>1
FC2*: P(h)>0.5°

A similarly stronger definition of good evidenceubd be constructed. Also, since
LR>1 => P(hle) > P(h), these revised definitions\atience imply Roush’s original
counterpart definitions.

This revised definition has another advantage thesoriginal definition of evidence.
It provides better support for Roush’s argumensworprising evidence. To see this
advantage, reconsider the earlier example, whereasing LR and decreasing P(e)
by lowering P(e|-h) led to an increase in P(hJé)e case was problematic for Roush
because it showed that one need not have higHd?(e)o be some evidence. It was

4 We prove this in the appendix as Theorem 3.

!> There may be a mild concern that the revised reqent for e to evidence for h lays down a
demand on h alone, not just on some relations letweand h. This should not be a problem from
Roush'’s point of view, though, since she wantsadhe same with e. Recall that fulfilling the
indication condition with P(e) high ‘tells us thais evidence fosomething’ (p.174, italics original).
Similarly here one can say that fulfillifgC2* shows that h can evidenced by something. In any
event, as proved in the append#G2* can be replaced by P(e) > %2 P(e|h) + % P(e|+ige sihen
FC1 holds, this is equivalent to P(h) > %2..
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also a case where better evidence was achievbdtloeriteria bylowering P(e) by
lowering P(e|=h). The revised definition has theasdage that lowering P(e) in this
way need not raise P(h).

To see this reconsider the example presented eaflfeere it was assumed that P(e|h)
= 1 and it was derived that

F. P(hle) = P(h)/[ P(h) + P(e|-h)P(=h)]
and
G. LR = 1/P(e|=h).

Thus, lowering P(e) by lowering P(e|h) leads taranease in P(hle). But what about
P(h)? Well in deriving the increase in P(h|ayais assumed that P(h) was fixed. So,
although lowering P(e) by lowering P(e|-h) led maracrease in P(h|e) in the
example, it was not accompanied by a change in Fthis shows that requiring the
stronger second condition on evidence, that ispet bound on P(h) rather than on
P(hle), weakens the criticism presented above asRs theory of evidence, since
with the revised definition of evidence, an inceeasP(e) by lowering P(e|h) need
not increase P(h).

More generally, with the revised definition of egitte, it is possible to have a lower
P(e) and a lower P(e|-h) with either a decreasega@se or no change in P(h). This
can be seen — again restricting ourselves for sirhpto the case where P(elh) =1 —
from the following, easily derived equation for P(h

H. P(h) = [P(e) — P(e|-h)l/[1-P(e[-h)]

Here lowering P(e) and P(e|-h) may lower P(h), wliee decrease in P(e) is
sufficiently greater than that in P(e|-h). A des®in P(e), provided it is offset by a
sufficiently large decrease in P(e|=h), can alad I® an increase in P(1).Also H.
implies that P(hx P(e). Therefore, a lower P(e) implies a lower mmaxn possible
value of P(h).

Importantly P(hx P(e) implies P(e) > ¥ givdRC2* . So in the case where P(e|h) =1,
P(e) > %2 is necessary for e to be evidence unéestthnger, revised definition of
evidence. A similar result holds generally. Evdmew P(e|h) is not onEC2*

implies a non-trivial lower bound on P(e). In #qgendix we prove that for LR > 1,
P(h) > a <=> P(e) > a P(e|h)+(1-a)P(e[~h)So for the revised definition of
evidence, since P(h) > ¥ itmscessary that P(e) > %2P(e|h) + ¥2P(e|-h). Thus, unlike
Roush’s definition of evidence, the stronger défam has the desirable feature — from
Roush’s perspective — that evidence must be seifilyi probable in order for it to be
evidence.

Nevertheless, these results do not imply that Id¥e) is never better for achieving
high P(h). As noted above, it is possible to loRé), lower P(e|-h) and increase
P(h). So, as with Roush’s definition of eviderités possible to raise P(h) and LR by
lowering P(e) and lower P(e|-h). However, unlileuBh’s definition, in the stronger

1% For example when P(e) = 0.955 and P(e|-h) = Be®y P(h) = 0.55. If P(e) is lowered to 0.9 and
P(e|=h) lowered to 0.75, then P(h) increases to 0.6
1" See theorem 2 in the appendix.
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definition, lowering P(e) and P(e|-h) need not l&adn increase in P(h). In addition,
since P(e) is bounded from below by ¥2P(e|h)+%2P)epfie cannot lower P(e) ‘too
much’. Thus, the revised second condition for Bplies that evidence must be
sufficiently. It also avoids the problematic céseRoush’s theory of evidence in
which lowering P(e) by lowering P(e|-h) necessdeaads to better evidence. In sum
the revised definition of evidence appears preteritbm a Roushian perspective.

8 Keeping Roush’s and the Bayesian approach sepaeat

The revised definition of evidence combined wite groposed new condition for
having reason to believe also helps to clarifyrapartant difference between Roush’s
approach to evidence and the Bayesian approadnforoation.

The revised definition of evidence takes as a lesyderatum that evidence imply a
sufficiently high probability of the hypothesis.hdrefore, in the situations in which
there is evidence the probability of the hypothesisbe high. This will also tend to
be the case for Roush’s theory of evidence (ireggithe John example above)
because it can be shown that a lower bound on)R{lsf@implies a lower bound on
P(h)!® In contrast in the Bayesian approach P(h) neetedigh, it represents the
prior probability of the hypothesis, the degredelief in a hypothesis given some
limited prior information. This may well be low dmndeed it will be wherever
hypotheses are initially taken to be unlikely.

To analyse the differences with Bayesianism, canrdiue following simple schema
for how Bayesians interpret belief revision. Ledéhote the prior probability, P’ the
posterior probability after observing e. Initiatlye observers’ degrees of belief are
given by P(h), P(h|e), P(e).... Now suppose therobsgobserve e. At this point
having observed e the observers believe e is e aad update their degree of belief
in eto 1, sothat P'(e) = 1. How do the obserugdate their other beliefs? Well the
observers adopt as posterior probabilities, thear probabilities on all other
statements conditioned on e. Thus, updating fgmpaoposition f follows the rule:

P’(f) = P(fle)
This is reasonable because these prior probabiléeresented the observers’ prior
degrees of belief if e was the case. Now thatseén to be the case, observers
replace their priors with posteriors equal to tipeiors conditioned on e. In this way
Bayes Rule for updating given by

P(fle) = P(elR(f)

P(e)

is seen naturally to make refererurdy to prior probabilities. It is simply mistaken to
read P(e) in the formula as needing to refer tgptisterior probability of e, as Roush
argues by claiming that P(e) must be high eveheBayesian analysis. Simply put
this is because the act of adopting a high degdrbeel®f in e on observing e is itself
an updating act, where P’(e) is set to P(e|e) foktumately it appears that Roush is
mixing her view, where P(e) ideally should to bghior it to be evidence for
anything, with the Bayesian view where P(e) isdbgree of belief in e prior to
observing it.

18 See theorem 1 in the appendix.
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This can be seen in Roush’s contrasting descriftidhe process of Bayesian
conditionalization. She says ‘your degree of liétiee prior to the conditionalization
is just P(e), so high P(e) is (almost) sufficiemtyou to take e as evidence for
whatever happens to be positively relevant, thabisonditionalize upon it ... If ...
P(e) is your degree of belief as far back as befoteobserve e, then you have no
justification for strict conditionalization on e d¢mise you do not have confidence that
e is true. It seems to me inescapable that inrdodehe value of P(e) that precedes
Bayesian strict conditionalization to justify Bajasstrict conditionalization P(e)
must be high’ (p. 174).

It is as if Roush supposes that Bayesians haveea-8tep process. Observers begin
with degrees of belief represented by the ‘antecegeobability P. At the first step
they observe e. At the second they decide on #ssslthat the probability of e should
be 1. Because the probability of e is 1 they aséfjad in the third step, changing
their degrees of belief to those represented bypibsterior’ probability P’, where for
any f, P’(f) = P(f/e). But of course Bayesians ax take three steps but only two.
They observe e at the first step and at the secenide their probabilities in one fell
swoop to P’, which among other features sets thbalility of e to 1. Indeed for a
Bayesian, nothing else is possible: BayesiansRoash herself characterizes them —
always assign degrees of belief to every well-fatffeemula so one cannot just
revise one’s degree of belief in one fact #msh conditionalize to set the rest of one’s
degrees of belief.

This is the usual and familiar story, a story s justification at a different point
from where Roush proposes to put it. For the Bayeiie new probability is justified
by the observation of e, not by the fact that oag Ilecome confident of e (i.e.,
already set the probability of e high). The posteprobability is an expression of
one’s confidence, not a justification of it. TheyBaian is far more objective here than
Roush would have it: it is observations that jystew degrees of belief, not simply
one’s antecedent degrees of confidetice.

The revised definition of evidence also keeps atdéaonfusion with the Bayesian
reading by replacing the desideratum of havingaeas believe the hypothesis with
high P(h). Roush’s desideratum of a high P(h|épnty invites confusion with the
Bayesian desideratum of a high posterior probawulith but also seems misguided
given her interpretation of probabilities. Thissashown by the John example above.

Importantly the revised definition of evidence ahd Bayesian approach use the
same probability calculus but dot directly conflict?® In the revised definition of
evidence the desirable case is that in which R(@)L& are sufficiently high to place

a lower bound on P(h). Though high P(e) is noessary for this, it certainly helps,
for essentially the reasons that Roush preseBiscontrast in the Bayesian approach
the aim is to update on e’s to confirm/disconfitre hypothesis. In this case, as the
Bayesian’s examples of surprising evidence anddo@ter-example presented above
(for low P(e) to be necessary for some evidenceyvstow P(e) can undoubtedly be
helpful. In this case the low P(e) tends to beassed with a low P(h) and a high

9 Roush also mentions Jeffrey conditionalisatiort $he doesn't discuss it so neither will we.

2 They obviously conflict in many other ways, inithieterpretations of inferences and probabilities
for instance. The point here is that the conflioés not lie in the formalisations, as Roush appear
suggest by arguing from formal considerations &ines that P(e) ought to be high for high P(h|e).
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P(hle), which fits precisely with Bayes rule. Bete, unlike in the Roush or revised
framework, low P(h) is not an issue. It reflectsial scepticism about h, which is
revised in the face of an unexpected e, represdnytéalv P(e). Just as one would
expect when one is surprised by the evidence.

9 Conclusion

Roush’s arguments for high P(e) if e is to be ‘lde@dence that are based on
formulaA. and the associated graphs are weak. They relyeatirig the two criteria
she offers for evidence asymmetrically for no gosason and they show only that
high P(e) is sufficient for the second criteriorbemet given that the first is, not that
it Is necessary. Both criteria can be met maxiyreatid P(e) still take any value at all.
On the other hand, her independent motivation iigih PP(e) is better met, we have
argued, by insisting that for any e to be evidemmeonly must P(h|e) be high, so too
must P(h). This fits far better with her demanat #vidence provide reason to
believe.

In addition it seems that both Roush’s approactablyi revised and the Bayesian
approach make sense of inference in the face deage. The apparent tension
between the two approaches, exploited by Roushttoige the Bayesian analysis, is
illusory. The differences between the two appreadre not at the level of the
probability calculus but lie in the distinctive @mnpretations of probabilities and
inference the two approaches adopt. As a resulsRs criticisms of the Bayesian
analysis are flawed. They appear to rest on heptazh of a high P(h|e) as reason to
believe and a high P(e) as sufficient (but not aeagy) to ensure this given high LR.
As made clear in this paper, high P(h|e) is moop@nly the desideratum for Bayesian
analysis, but in this case, low P(e), as showrhbyekample in section 5, can help
with this goal. In contrast, once one moves tdrgh) as the desideratum for the
Roushian treatment of evidence, high P(e) is mtaesibly helpful for evidence to
give reason to believe.
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Appendix
Before proving the relevant results, first note wgeful formulae.

In her chapter Roush derives the following usedafrfula from the axioms of
probability:

P(hle) = LR - P(e|h)/P(e) @
LR - 1

By Bayes Theorem P(e|h)/P(e) = P(h|e)/P(h) sulisgfthis into (1) yields:

P(hle) = LR - P(hle)/P(h)
LR - 1

=> P(hle)(LR - 1) = LR - P(h|e)/P(h)
=> P(hle)[LR - 1 + 1/P(h)] = LR
So
P(hle) = LR . (2)
[LR - 1 + 1/P(h)]

We can then prove:

Theorem 1. If LR > 1 then for any 0 < b < 1 thédwing are equivalent:
() P(hle) > b
(i) P(h) > b/[b + LR(1 - b)]
(i)  P(e) > P(elh)/[b + LR(1 - b)]

Proof:

Substituting into (1) P(h|e) > b is equivalent to

LR - P(elh)/P(e)> b
LR-1

Since LR >1, this is equivalent to

LR - P(e|h)/P(e) > Db(LR - 1)
<=> P(e|h)/P(e) < LR -b(LR - 1)
<=> 1/P(e) <[LR - b(LR - 1)]/P(e|h)
<=> P(e) >P(e|h)/[LR - b (LR - 1)]
(since O<b<l,LR>1=>LR-b(LR-1)>0)
<=> P(e) > P(e|h)/[LR(1-b) + b]

So (i) <=> (iii)

Now by (2), P(h|e) > b is equivalent to
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P(hle) = LR >b
[LR - 1 + 1/P(h)]

Given LR > 1, this is equivalent to
LR > b[LR - 1 + 1/P(h)]

<=> LR-Db(LR -1) > b/P(h)
<=> P(h)/b>1/[LR-b (LR - 1)]
<=> P(h) > b/[LR(1-b) + b]

So (i) <=> (iii) n

Corollary (Reparametrizations of Theorem 1): If BR, then for any 0 <a <1 (iv),
(v) and (vi) are equivalent and for any 0 < ¢ wil)((viii) and (ix) are equivalent
where

(v) P(hle)>a/la+ (1 -a)LR]
v) P(h)>a
(vi)  P(e) > P(e|n)[a + (1 - Q)/LR]

(vii)  P(hle) > [LR - P(e|h)/c]/[LR - 1]

(viii) P(h) > [cLR/P(e|h) - 1J/[LR - 1]

(ix) P(e)>c
Proof: To prove (iv) <=> (v) <=> (vi), let a = b/ft LR(1 - b)], solve for b in terms
of a, use this to substitute a for b in Theoremedult follows. Likewise to prove (vii)
<=> (viii) <=> (ix), let c = P(e|h)/[b + LR(1 - b)kolve for b in terms of ¢ and use this
to substitute c for b in Theorem 1. The resultdot. =
Theorem 2: If LR > 1 then P(h) > a <=> P(e) > g®(e (1-a)P(e|-h).
Proof: From the corollary if LR > 1 then P(h) xa> P(e) > P(e|h)[a + (1 - a)/LR],
since LR = P(e|h)/P(e|-h), so P(h) > a <=> P(eP%egh) + (1-a)P(e|-hm
Theorem 3: If LR >d > 1 and P(e) > c for c sucitih < c < 1, then

(@) P(hle) > [cd - 1)/[c(d - 1)]
(b) P(h) > [cd - 1]/[d - 1]

Proof: By the corollary P(e) > ¢ => P(h|e) > [LR(e|h)/c]/[LR - 1]

The right hand side is equivalent to
P(hle) > 1 - [P(e|h)/c - 1)/[LR - 1]

=>  P(hle) > 1- [1/c - 1J/[LR - 1] (since P(efh)L}**
=>  P(hle)>1-[1/c-1)/[d-1] (since LR >*d)

# Because P(e|R) 1 => P(e|h)/c - ¥ 1/c - 1 => [P(e|h)/c - 1J/[LR - 1]e [1/c - 1}/[LR - 1] => 1 -
[P(elh)/c - 1)/[LR - 1]Jc> 1 - [1/c - 1)/[LR - 1].
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<=> P(h|e) >[cd - 1}/[cd - C]
So LR >d and P(e) > c => P(h|e) > [cd - 1]/[c@}
This proves (a), the proof for (b) is similar:
By the corollary P(e) > ¢ => P(h) > [cLR/P(e|h)AIR - 1]

=> P(h)>[cLR-1J/[LR-1] (since P(e|k)1)®
<=> P(h)>[c- 1/LR]/[1 - 1/LR]

<=> P(h)>1-[1-c]/[l-1/LR]

=> Ph)>1-[1-c][1-1/d] (since LR >H)
<=> P(h)>[c- 1/d])/[1 - 1/d]

<=> P(h)>[cd - 1)/[d - 1]

So LR >d and P(e) > ¢c => P(h) > [cd - 1])/[d - ljieh proves (b).

Theorem 4: For any 0 <b < 1, there exist 0 <Icand d > 1 such that LR>d & P(e)
>c =>P(hle) > b.

Proof: Forany0O<b<1,d>1,define c by [cd/id - 1] = b, solving for c yields c
=1/d(1-b) + b. Since, 1/d < 1, and 0<b<1, itdalk that 0 < ¢ < 1. Substituting b for
[cd - 1])/[d - 1] in Theorem 3, it follows that fany 0 <b <1, thereexist0<c<1
and d > 1 such that LR>d & P(e) >c => P(hle).>#

Comment: This result and result (a) of theoreme3velnat Roush illustrates with
graphs in the chapter, that a lower bound on LR&igr than or equal to 1) and a
lower bound on P(e) are sufficient for a lower bdbwm P(h|e). Result (b) of theorem
3 extends this, showing that the lower bounds orah& P(e) are also sufficient for a
lower bound on P(h).

Theorem 5: If LR > 1, then for any d > 1, then &hdo not exist b and ¢ such that
P(hle) >band P(e) >c => LR > d.
Proof: Solving (1) for LR yields

LR = [P(e|h)/P(e) - P(h|e)J/[1- P(hle)]
And from this it is easily checked that for anyegiiknon-zero value of P(h|e) as P(e)
tends to P(e|h) LR tends to 1. Therefore imposastyictions P(hle) > b and P(e) > ¢

can not imply LR > d for d > 1, since one can alsveigd a value of P(e) sufficiently
close to P(e|h) so that 1 < IsRd (follows from definition of the limit). m

#ZBecause LR>d=>LR-1>d-1=>[1/c-1)/[LR}<[l/c-1)[d-1]=>1-[l/c-1])/[LR-1]4

- [1/c - 1)/[d - 1].

% Because P(e|R) 1 => 1/P(e|hy 1 => cLR/P(e|h} cLR => cLR/P(e|h) - £ cLR - 1 => [cLR/P(e|h)
-1J/[LR - 1] > [cLR - 1)/[LR - 1].

*Because LR>d=>1/LR <1/d=>1-1/LR>1d%;[1-c][1-LULR]<[1-c]/[1-1/d] =>1
[1-c)[1-LR]>1-[1-c]/[1-1/d].
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