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Abstract

In this thesis I defend an account of analyticity against some well known
objections. I defend a view of analyticity whereby an analytic truth is true
by definition, and that logical connectives may be defined by their inference
rules.

First I answer objections that the very idea of truth-by-definition is
metaphysically flawed (things are true because of the world, not definition,
it seems).

More importantly, I respond to objections that no theory of definitions
by inference rules (i.e. implicit definitions) can be given that does not al-
low spurious definitions (e.g. the ‘definition’ of Prior’s connective tonk). I
shall argue that demanding normalisation (a.k.a. harmony) of definitional
inference rules is a natural and well motivated solution to these objections.
I conclude that a coherent account of implicit definition can be given as the
basis of an account of analyticity.

I then produce some logical results showing that we can give natural
deduction rules for complex and interesting logical systems that satisfy a
normal form theorem. In particular, I present a deduction system for classi-
cal logic that is harmonious (i.e. deductions in it normalise), and show how
to extend and enhance it to include strict conditionals and empty reference.
Also I discuss two areas where our reasoning and classical logic appear not
to match: general conditional reasoning, and reasoning from contradictions.
I present a general theory of conditionals (along the lines of Lewis’ closest-
possible-world account) and I suggest that the logic of conditionals is not
entirely analytic. Also, I discuss issues surrounding the ex falso rule and
conclude that everything really does follow from a contradiction.

Finally I suggest a positive theory of when and how the implicit defini-
tions are made that define our logical language.
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Chapter summaries

In chapter 1 I give rigorous definitions of all the technical logical terms.
I think it should not be difficult for anyone with a passing acquaintance
with Prawitz natural deduction systems to understand most of the techni-
cal aspects of this thesis without reading this chapter (except perhaps the
relevance logic of chapter 12). Nevertheless, the chapter is there to resolve
any confusion that might arise. Perhaps section 1.5 is important to read.

In chapter 2 I outline the historical context of the truth-by-definition
theory of analyticity, which I intend to support. I suggest what I think a
theory of analyticity should look like (where logical connectives are defined
by their inference rules), and I outline three familiar lines of objection to
it. The objection I regard most serious is the objection that a theory of
definitions by inference rules cannot be made to work as it allows spurious
definitions.

In chapter 3 I describe how normalisation may be used as a technical
solution to the objection that a theory of implicit definitions allows spurious
definitions. I argue that demanding harmony (a term from Dummett) solves
the problem in a non ad hoc way.

In chapter 4 I discuss in more detail the objections to theories of ana-
lyticity. I respond to objections of Boghossian [?] that a truth-by-definition
account of analyticity is metaphysically flawed. I outline objections of Hor-
wich [?] that no theory of implicit definitions is possible and note that requir-
ing that systems of implicit definitions normalise resolve these objections.

In chapter 5 I discuss two attempts at providing a theory of the meanings
of the logical constants (with a view to an account of analyticity). I object
to Peacocke’s realist position and have little to say about Dummett’s except
that his position need not be taken as antirealist one if we can show that
classical logic, a logic that has the law of excluded middle as a theorem, is
harmonious (i.e. normalises).

In chapter 6 I present some rules as an initial postulate for the definitions
of the logical connectives.
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In chapter 7 I discuss suggestions by Stephen Read and Ian Rumfitt for
presenting a harmonious system for classical logic. I present some worries
about the the possibility of these systems fitting into a program of giving
entirely proof theoretic accounts of the meanings of the logical constants.
That is, I argue that the suggestions of Rumfitt and Read do not fit into
my program for providing an account of analyticity.

In chapter 8 I present my favoured deduction system for propositional
classical logic that satisfies a normal form theorem, it uses a rule I call the
restart rule.

In chapter 9 I present another normalising deduction system for classical
logic in terms of Sheffer stroke.

In chapter 10 I show how we can extend the deduction system for classical
logic to include strict implication and retain normalisation.

In chapter 11 I extend the deduction system further to include first order
connectives and show that we may even allow for empty referring terms
(retaining normalisation).

In chapter 12 I discuss the ex falso rule (by which anything follows from
a contradiction) and conclude that it is a correct rule of inference. My view
of it is that it is an admissible rule, i.e. nothing follows directly from a
contradiction, but it is that case that any inference of a contradiction may
be used also to infer everything (so if a contradiction is inferred, anything
follows from that inference).

In chapter 13 I discuss in more detail what the logic of natural language
implication is like. I conclude that a theory along the lines of Lewis’ closest-
possible-world theory is correct. I also argue that the truths of this logic are
not entirely true by definition. But I suggest we may identify an analytic
core by distinguishing the parts of the logic that are in harmony from the
parts that are not (and also from the philosophical theory of conditionals I
present).

In chapter 14 I postulate a theory of how the definitions are made that
determine the meaning of our logical language. I claim that my postulated
account gives us a good account of the epistemology of our basic logical
knowledge.

In appendix A I discuss the limitations of first order logic and suggest
how it can be extended to a higher order logic (maintaining normalisation). I
also discuss how we should interpret higher order logic and for what purposes
it is required.

Finally there is an index containing references all terms defined in this
thesis.



Chapter 1

Logical Preliminaries

This is a reference chapter, I think it perfectly possible for those with basic
knowledge of natural deduction systems to read the thesis without looking
at this chapter in much detail. In the index there is a reference to each
technical term defined in this chapter.

1.1 Prawitz natural deduction

Much of the literature surrounding my topic is written using Prawitz natural
deduction. Furthermore the logical results I wish to obtain are easier to
prove and understand in Prawitz natural deduction. Consequently I shall
use Prawitz’ system throughout this thesis.

My personal philosophical bias (and considerations of chapter 14) pro-
vide a motivation for a less rigid natural deduction system. Consequently I
shall formulate the Prawitz deduction system in a roundabout way so that
it becomes evident that it is similar to a more natural deduction system
which I outline in section 1.2.1

1.1.1 A brief explanation of the system

There are distinctions to be made between

1. An belief and a hypothesis. An belief is not discharged, a hypothesis
is a temporary assumption that gets discharged at some point during
the deduction.

1The deduction system of 1.2 is a more plausible candidate for formalising actual
reasoning than the Prawitz deduction system.

13



14 CHAPTER 1. LOGICAL PRELIMINARIES

2. A piece of reasoning and a deduction.

Traditionally a Prawitz natural deduction system does not make these
distinctions. In a traditional Prawitz natural deduction there are only as-
sumptions, discharge is the removal (i.e. deletion) of assumptions: we apply
inference rules and obtain a deduction tree (call it a Prawitz tree) that looks
like the deduction trees scattered throughout this thesis. There is no dis-
tinction to be made between a hypothesis and a belief. Also, there is no such
thing (on the traditional understanding) as an invalid Prawitz tree. Any tree
that is not constructed in accordance with a particular set of inference rules
is not a Prawitz tree (on the traditional interpretation of natural deduc-
tion). Consequently there is no Prawitz reasoning that is not a deduction,
we cannot construct a Prawitz tree that is not a valid deduction (anything
that looks like a Prawitz tree that is not a deduction is not a Prawitz tree).

Put simply (and loosely) I wish to separate, on a formal level, what
counts as a piece of reasoning (i.e. an inference) from what counts as a
deduction. An inference, on my view (following the natural language use of
the term) is a sequence of inference steps. A deduction is a sequence of valid
inference steps. A logical deduction is sequence of inference steps each of
which is in accordance with a logical rule. Since I shall be interested in this
thesis only with logical deductions I shall call them simply ‘deductions’.

Furthermore, I wish to interpret the discharge of formulae differently
from the traditional way. On my understanding we decide, in advance of
constructing a deduction, what formulae will be discharged. We mark them
as discharged in advance. For the deduction to be valid, we must use these
to-be-discharged formulae as premises of some rule that requires a formula to
be discharged. The to-be-discharged formulae that are marked as discharged
in advance may be called hypotheses. The distinction between an belief and
a hypothesis is not unfamiliar. Marking a hypothesis (as discharged) in
advance is like beginning a sub-deduction (e.g. in a Fitch natural deduction
system), where the deduction as a whole is not complete until the sub-
deduction is completed so that the discharge-in-advance is justified.

I claim that with these minor reinterpretations we obtain a natural de-
duction system that is more similar to actual reasoning. I believe that in
actual reasoning there is a difference between a belief and a hypothesis (that
is not believed, but temporarily hypothesised).

I define a deduction system below that may be interpreted as I have
described above, but nevertheless looks like what Prawitz deduction tradi-
tionally look like. The definition of the deduction system I give is quite
formal and is more a description of tree structures than deductions (and so
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not quite as intuitive as it could be). I present the reason for the highly
abstract characterisation of a deduction in section 1.2.

My strategy for defining a deduction is to define what counts as a stretch
of reasoning (what is a deduction tree). And then define what conditions a
strech of reasoning must meet in order to be a deduction (i.e. what properties
a deduction tree must have to be a genuine deduction).

1.1.2 Prawitz Trees and top and bottom nodes

I now define inductively what I call a Prawitz tree.

1. A single occurrence of a formula

A

is a Prawitz tree, and that occurrence of A is at a top node of the tree.

2. This is also a Prawitz tree
A

and has no formula at its top node(s).

3. If Φ1 . . .Φn are Prawitz trees then so is this, call it Ψ:

Φ1 . . .Φn

A

where A is (an occurrence of) any formula. Furthermore any formula
at a top node of a Φi is at a top node of Ψ.

4. If Φ is a Prawitz tree and Ψ is obtained from Φ by crossing out some
formulae at top nodes in Φ and superscripting them with exactly one
integer, then Ψ is also a Prawitz tree.2

5. A Prawitz tree must be finite in length. That is, every Prawitz tree
may be constructed by a finite number of applications of 1–4.

Call any part of a Prawitz tree of this form:

A1 . . . An

B

2All crossed out formulae in a Prawitz tree must have exactly one superscript. The
crossing out of a formula indicates it as a hypothesis rather than a belief.
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an inference step. Say that B is the conclusion of the inference step and
that the Ai are the immediate-premises.

As I have defined a Prawitz tree, there is only one occurrence of a formula
in a Prawitz tree that is not an immediate-premise of any formula. Say that
such a formula is at the bottom node of the tree.

Example:

A
B ¡¡C1

D

is a Prawitz tree. The formulae at top nodes are A and C, and the formula
C has been crossed out. D is at the bottom node.

1.1.3 Above, Below and sub-dependence

• Say that an occurrence of A is above an occurrence of B if there is
a sequence of occurrences of formulae A1 . . . An such that A1 = A,
An = B and Ai is the immediate-premise of an inference step the
conclusion of which is Ai+1.

It is easy to see that that A is above B in this technical sense exactly when A
occurs physically above B in the Prawitz tree and A and B are in a common
branch.3 In example 1.1.2: A is above B and D; and A is not above C.

• Say B is below A when A is above B.

• Finally say that B sub-depends on A (in a Prawitz tree) when A is at
a top node of the tree and is either above B, or is the same occurrence
as B (that is, every occurrence of B sub-depends on every top node
in the same branch as B).

So in 1.1.2: D sub-depends on A and on C; B sub-depends on A but not on
C; and A sub-depends on A. Also C sub-depends on C.

1.1.4 Inference rules and side-conditions

A Prawitz natural deduction system is identified by its inference rules.
Prawitz deductions are Prawitz trees that are constructed only in accor-
dance with the rules.

3Where the branches are identified by following the horizontal lines.
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An inference rule is a schema for inference steps. Every instance of an
has this form:

A1 . . . An Φ1 . . .Φm

B
R [side-conditions]

where the Ai are formulae and the Φi are Prawitz trees. The side conditions
are extra conditions of the structure of the Prawitz tree as a whole, which
must be met in order for the inference step to be an instance of R.

The Ai and Φi the premises of the rule; the Ai are (also) the singular
premises of the rule; B is the conclusion of the rule; and R is the name of
the rule.

For example one of the rules for conjunction is this:

A B
A ∧B

∧I

where ‘∧I’ is the name of the rule. There are no side conditions on the rule
AI. Another rule is this:

¡¡A....
B

A→B
→I

In this rule the premise
¡¡A....
B

denotes any Prawitz tree Φ, the bottom node of which is B, and where
there may be some occurrences of A at top nodes of Φ that are crossed out.

Inference rules of this sort permit instances of A to be crossed out. An
inference rule like ∧I does not permit anything to be crossed out.

In chapter 9 I will use this rule:

¡¡A ¡¡B....
⊥

A|B |I

the premise of this rule is a Prawitz tree the conclusion of which is ⊥ and
where occurrences of A or B at a top nodes are permitted to be crossed out.
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What constitutes a legitimate side-condition?

In some of the inference rules I present later in the deduction the side condi-
tions are quite long. Notice that the side conditions I present simply specify
a decidable property of the premises of the rule. For example, here is a
legitimate side condition for a hypothetical rule for a connective Con:

A
Con(A,B) ConI provided that A does

not depend on B4

it is a decidable matter, purely about the structure of the Prawitz tree,
whether this side condition is met. Furthermore, the only way we have of
expressing that inference rule for Con is by utilising a side-condition. All
the side conditions I use in this thesis, no matter how complex, describe
decidable syntactic properties of a Prawitz tree.5 I claim therefore that
there is nothing illegitimate about my side-conditions.

An example of a side-condition I think is illegitimate is this:

B
A

R provided A follows from B in
deduction system X

where X is some deduction system. Firstly it might not be decidable whether
the side condition is met. Secondly, in general, the side-condition of an
application of R does not express a property of the tree containing that
application. That is, we would have to look outside the Prawtiz tree to
see if the side condition is met (i.e. to see if the Prawitz tree is a Prawitz
deduction, see 1.1.8).

1.1.5 Rule applications

In a Prawitz tree, some inference steps may be labelled. Call an inference
step a rule application when:

1. it is labelled by the name R of some inference rule.

2. it has a conclusion of the same form as the conclusion of inference rule
that R names.

3. it may, or may not, also be labelled by some integers that are super-
scripts only of crossed-out formulae of the type permitted to be crossed
out by the rule named R.

4See 1.1.6 for a definition of dependence.
5Except one, see the side condition for anaphora on page 148.
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For example, this:
B

A→B
→I(1)

is a rule application only if ‘1’ superscripts only crossed out occurrences of
A above B.

Say a rule application R occurs below an occurrence of A when A occurs
above an immediate-premise of R.

Say a rule application R occurs above an occurrence of A when the
immediate-premises of R occur above A.

1.1.6 Dependence

Dependence is a very important relation that can be defined only for Prawitz
trees where every inference step is a rule application.

An occurrence of a formula B depends on an occurrence of A when

1. B sub-depends on A, and

2. either

(a) A is not crossed out

(b) A is crossed out and is superscripted by n, and there are no rule
applications above B that both permit A to be crossed out and
are labelled by n.

The supercripts and labels of rules applications indicate where a formula is
discharged. More colloquially the definition above says that A depends on
B when the labels do not indicate that B has been discharged by the time
the deduction has reached A.

We can say generally that an occurrence of A depends on B, when that
occurrence of A depends on an occurrence of B.

An occurrence of a formula B depends on a particular rule application
when that rule application occurs above B.

Dependence here is not significantly different from dependence on the
traditional interpretation of Prawitz trees. For both interpretations: an
occurrence of A depends on B if B occurs undischarged at a top node in the
deduction tree when the deduction has progressed as far as A.
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Example

Here is a Prawitz tree using the two rules given above (∧I and →I):

¡¡A1 A2

A ∧A
∧I

A→ (A ∧A)
→I(1)

A2

(A→ (A ∧A)) ∧A
∧I

A→ [(A→ (A ∧A)) ∧A]
→I(2)

Here are some facts about dependence in this deduction:

• The occurrence of (A → (A ∧ A)) ∧ A (in the second line from the
bottom) depends on A, in particular it depends on the occurrences of
A superscripted by 2.

• A→ (A∧A) depends on only on the occurrence of A superscripted by
2.

• (A∧A) depends on the occurrences of A superscripted by 1 and by 2.

• The bottom node of the tree depends on nothing.

Since all the side conditions on each inference rule are met (there are
none to meet anyway), this Prawitz tree is a Prawitz deduction.

1.1.7 Dominance

The relation of dominance between occurrences of formulae is very impor-
tant to natural deduction systems. I define it now specifically for Prawitz
trees. One of the advantages of the Prawitz system is that the relation of
dominance is quite simple.

• The immediate premises of an inference step dominate its conclusion.

• If Φ is a Prawitz tree, and the formula at the bottom node of Φ is
the immediate premise of an inference step, then Φ dominates the
conclusion of the inference step.

Effectively, any formula below a horizontal line in a Prawitz tree is domi-
nated only by the formulae and deductions that occur immediately above
the horizontal line.
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The horizontal line is ambiguous

The horizontal line of the inference rules do not mean quite the same as the
horizontal line of the Prawitz tree. The horizontal line of the inference rule
indicates a relation of dominance, whereas the horizontal line of the Prawitz
trees indicates a relation of succession.

The way I have defined things, the premise of an inference rule may be a
Prawitz tree, but the immediate premise of a rule application is a formula.

In a Prawitz natural deduction, the conclusion of an rule application is
dominated only by its immediate-premises and deductions the conclusions
of which are its immediate-premises. In a sense this means that the his-
tory of the deduction is forgotten at each step as the conclusion of each
rule application is derived only from its immediate predecessors (i.e. its
immediate-premises). This gives the system much power and simplicity
from the meta-logical point of view, and aids us greatly in defining and
proving the necessary formal results.

1.1.8 Prawitz deductions and deduction-trees

A Prawitz deduction is a Prawitz tree Ψ such that

1. Every inference step is a rule application

2. The conclusion of every rule application is dominated by formulae and
deductions of the same form as the premises of the inference rule by
which it is labelled. Call such formulae or deduction the true-premises
of the rule application.

3. The side conditions for each inference rule R are met at all the inference
steps labelled by (the name of) R.

4. For every crossed-out formula A (or more precisely ¡¡An) there is a rule
application that occurs below A that both permits A to be crossed out
and is labelled (in addition to a label naming a rule) by n.

5. No two rule applications are additionally labelled by the same integer.6

6. All rule applications are additionally labelled by at most one integer.7

6We could do without this condition, but to do so would lead to unnecessary compli-
cations.

7This condition is for simplicity and is not necessary, I add it here to neaten up the
deductions. If I were writing a more general thesis on Prawitz deductions I would not
include this clause.
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The conclusion of the tree is the formula at the bottom node. The
premises or assumptions of a Prawitz tree are formulae at top nodes of the
tree that are not discharged. A hypothesis is a formula at a top node of a
tree that is crossed out (and superscripted).

If C is at the conclusion of a Prawitz tree then any formula on which C
depends is an assumption, any crossed out formula on which C depends is a
hypothesis (crossed out formulae on which C does not depend are discharged
hypotheses).

Some important simplifications of the language

1. From the way a Prawitz deduction has been defined, a true-premise A
of a rule application is one of its immediate-premises, and a true-
premise Φ of a rule application is such that one of its immediate
premises is the bottom node of a deduction of the form/type of Φ.

In other words, every rule application has the same form as the infer-
ence rule by which it is labelled.

For this reason I shall use ‘rule application’ and ‘inference rule’ in-
terchangeably (unless confusion may arise). Also I shall use ‘premise’
and ‘immediate premise’ interchangeably. I shall do this only in the
context of Prawitz natural deductions (outlined above).

2. If C is the conclusion of a Prawitz tree and C depends on A, then call
that Prawitz tree an inference from A to C. If C does not depend on
any formula then that Prawitz tree may simply be called an inference
of C.

3. If an inference from A to B that is also a deduction may be called a
deduction from A to B.

The distinction between an inference and a deduction becomes important in
later proof theoretic work where deductions are manipulated by rearranging
their parts. The parts of a deduction are Prawitz trees and often they are
deductions themselves, but not always (in the presence of assumptive rules
such as the restart rule they may not be deductions). It is convenient to
use a word similar to ‘deduction’ to describe these parts, I choose the word
‘inference’.
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1.1.9 Legitimate and illegitimate rule applications

Say a rule application is illegitimate when it occurs in a Prawitz tree if its
conclusion is not dominated by premises of the same form as the premises
of the inference rule by which it is labelled. A rule application is legitimate
otherwise.

1.1.10 Appending Prawitz trees

I will refer to the appending (or adding) of one Prawitz tree to the end of
another. Suppose Φ and Ψ are Prawitz trees, and suppose the conclusion of
Φ is A. Then we may append Ψ to the end of Φ to obtain Ψ′ by the following
procedure:

1. If every occurrence of A at a top node of Ψ is crossed out (or there are
no such occurrences at all) then Ψ′ = Ψ. Otherwise,

2. Obtain Φ′ by replacing uniformly all the integers occurring in Φ (as
superscripts and additional labels) with integers that do not occur in
Ψ.

3. Replace every occurrence of A at a top node in Ψ that is not crossed
out with a copy of Φ′.

Usually Ψ′ is a deduction if Ψ and Φ are, but not always (see section 11.1.3).

1.1.11 Discharge and empty discharge

Say that any rule application that permits the crossing out of A discharges A.
We may talk also of particular occurrences of A being discharged by a rule
application. Which occurrence of A is discharged depends on the labelling.
For example, if an application of →I is labelled additionally by ‘1’ then
that application discharges all occurrences of A that are superscripted by
‘1’. Notice that there is no requirement that a rule application be labelled
by any number, in such a case the rule application does not discharge any
occurrence of A in the Prawitz tree. We may, however, still talk of A being
discharged by such a rule application, more specifically we say that A is
empty-discharged.

For rules such as these:

A ∨B

¡¡A....
C

¡¡B....
C

C
∨E
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¡¡A....
B

A→B
→I

at least one premise is a certain form of Prawitz tree rather than a single
Prawitz formula.

For example a Prawitz deduction may contain rule application such as
this: ....

B
A→B

→I

since the rule application is not labelled it does not matter whether or not
there are any occurrences of A at top nodes above B.

Also worth noting is that this is a deduction:

¡¡A1

A→A
→I(1)

to see that this is a deduction note that A (occurring at a top node) depends
on itself and the rule application of→I below it is labelled by its superscript.

Empty discharge becomes less mysterious, if we add this structural rule:

A1 . . . An

Ai
S

and now we can make this deduction:

¡¡An

....
B

B
S

A→B
→I(n)

and the premise of the rule application →I more obviously has the appro-
priate structure. I shall not use any structural rules like S because they
are not necessary and add only tedious length to deductions and the formal
results I shall obtain for Prawitz deduction systems.

1.1.12 Prawitz logical consequence

When using a Prawitz natural deduction system we may write Γ ` A to
mean that there is a Prawitz deduction the premises of which are among Γ
and the conclusion of which is A.
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So for example this
B

A→B
→I

is a deduction witnessing that B ` A→ B and that Γ, B ` A→ B for any
Γ. And this:

¡¡A
A→A

→I

is a deduction witnessing that Γ ` A→A for any Γ (even empty Γ).
If Γ is empty then we may write ` A instead of Γ ` A.
Finally, if Φ is a Prawitz tree that is a deduction that witnesses that

Γ ` A, I shall call Φ a deduction that Γ ` A. That is, I shall write ‘deduction
that. . . ’ as short for ‘deduction witnessing that. . . ’.

1.1.13 Further remarks

Traditionally Prawitz deductions are not defined as I have done. I have
given rules for generating a Prawitz tree and specified how the tree must
be labelled and match the inference rules to be a deduction. Usually no
distinction is made between Prawitz trees and Prawitz deductions, and the
inference rules are given as rules for generating Prawitz deductions.

I define deductions in the more complicated way partly to make it easier
to relate it to the deduction system of 1.2, and also so that the side conditions
on the restart rule (chapter 8) make sense.

1.2 More natural deduction

1.2.1 Unnatural deduction

The branching structure of the Prawitz system can be a disadvantage if we
wish to assert that it is matches the structure of actual deductions people
make. To see why consider this deduction:

(A ∧B) ∧ C

A ∧B
∧E

A
∧E

(A ∧B) ∧ C

C
∧E

A ∧ C
∧I

Notice that A∧ (B ∧C) is used twice, once to deduce A and once to deduce
B ∧C. This is not itself a problem, the problem is that in order to be used
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twice, it appears twice in the deduction. It would be more natural for the
deduction to progress like this:

(A ∧B) ∧ C

A ∧B
∧E

A
∧E

C
∧E

A ∧ C
∧I

where the true premise of the lowest application of ∧E is (A ∧B) ∧ C.

1.2.2 Dominance again

This difficulty is easily resolved by using a less restrictive notion of domi-
nance.

First a definition:

if this is an inference step of a Prawitz tree

A1 . . . An

C

then (the occurrence of) A1 and every (occurrence of a) formula
above it is to the left of Aj and every formula above Aj for i < j.

Now we may define a more subtle dominance relation.

• An occurrence of A dominates an occurrence of B when

1. The occurrence of A is either above the occurrence of B, or it is
to the left of the occurrence of B.

2. There is an occurrence of some C, below both A and B, that
depends on everything that A depends on.8

• If Φ is a Prawitz tree, and the formula at the bottom node of Φ is
the immediate premise of an inference step, then Φ dominates the
conclusion of the inference step.

Dominance is extended only with respect to occurrences of formulae domi-
nating other occurrences.

8I say ‘everything’ rather than ‘every formula’ as later I shall extend the notion of
dependence so that occurrences of formulae may depend on rule applications as well as
other formulae (see page 104 for a discussion of assumptive rule-applications).
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With this more general definition of dominance the deductions can be-
come more elegant. For example here is a deduction witnessing that `
[A→ (B → C)]→ [(A→B)→ (A→ C)]:

A→ (B → C) ¡¡A1

B → C
→E

»»»»A→B2

B
→E

C
→E

A→ C
→I(1)

[A→ (B → C)]→ [(A→B)→ (A→ C)]
→I(2)

The occurrence of B is dominated both by the occurrence of A→B above it
and the occurrence of A in the other branch. Therefore we may apply →E
to A→ B without bothering to rewrite the A. To see that A dominates B
note that C depends on A (A itself is everything that A depends on) and is
below both A and B. Other examples are these deductions witnessing that
B ∧A ` A ∧B:

B ∧A
A

∧E
B
∧E

A ∧B
∧I

B ∧A
A

∧E

B
∧E

A ∧B
∧I

where B is dominated by B ∧A.
The new dominance rule allows us to recall things into branch Φ which

we have already deduced in branch a Φ′ to its left. Think of a Prawitz
deduction being generated from the top left, the deduction then proceeds
downwards. Sometimes we begin a new subdeduction on the right which
eventually meets below with the main stem (which began to its left). The
dominance rule allows us to recall formulae we have deduced in a main stem
into any subdeduction on the right. The condition on dominance itself is
quite natural, although it can be tricky to formulate.

1.2.3 Why I stick with Prawitz

Although I think that the deduction system with the more general domi-
nance condition is a better model of actual reasoning, I shall use Prawitz
natural deduction (with the strict dominance condition of 1.1.7). I do this
for three reasons

1. The difference between the two systems is not that great. With the
more general dominance condition we can recall formulae deduced else-
where. But we can do similarly in the Prawitz system, instead of re-
calling a past deduction we must re-deduce it. The difference between
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the two is purely aesthetic as far as this thesis is concerned.9

2. The formal results I require are easier to formulate and prove in a
Prawitz natural deduction system

3. Much of the literature to which the formal aspects of this thesis relates
(e.g. Dummett’s work) uses a Prawitz natural deduction system.

1.3 Other deductive concepts

1.3.1 Introduction and elimination rules

Let Con be some arbitrary connective.
An introduction rule for Con is an inference rule any application of which

must contain Con in the conclusion, but need not contain any connective in
any of the premises.

An elimination rule for Con is an inference rule any application of which
has least one singular premise that contains Con, but need not contain Con
in the conclusion.

For example, let ∨ be a binary connective and ¬ be a unary connective,
then if this is a rule:

©©¬A....
A

A ∨B

then it is an introduction rule for ∨, it is not an elimination rule for ¬. A
rule of the form

A ∼A
B

is an elimination rule for ∼. A rule of the form
C

∼A ∨ C

is an introduction rule for ∨ and for ¬. Finally, a rule of this form

©©∼A....
A
A

9There are logical systems, e.g. that count the number of times a formula is ‘used’ in
the deduction, for which the different dominance conditions make a significant difference.
We shall not consider any such systems in this thesis.
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is neither an introduction nor an elimination rule for anything.
There is a convention to label an introduction rule for Con as Con I,

and to label an elimination rule Con E.

1.3.2 Major and minor premises

An elimination rule for Con has this form:

A1 . . . An B1 . . . Bn Φ1 . . . Φm

C

where the Ai are singular premises that contain Con and the Bi and Φi are
other premises that need not contain Con.

The Ai are the major premises and the Φi and Bi are the minor premises.
For example in this famous elimination rule for disjunction:

A ∨B

¡¡A....
C

¡¡B....
C

C
∨E

the major premise is A ∨ B and the minor premises are

¡¡A....
C and

¡¡B....
C. Also, in

this elimination rule for →:

A A→B
B

→E

the major premise is A→B and the minor premise is A. In the elimination
rules for conjunction, e.g.

A ∧B
A

∧E

there are no minor premises and A ∧B is the major premise.

1.3.3 Maximal formula

In a Prawitz tree, a maximal formula is a formula that occurs both as the
conclusion of an introduction rule and as the major premise of an elimination
rule. For example if a part of a Prawitz tree looks like this:

A B
A ∧B

∧I

A
∧E

then that occurrence of A ∧B is a maximal.
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1.3.4 Inconsistency

I shall define inconsistency only for logics the languages of which contain
the special atomic formula ⊥. A collection of formulae Γ is inconsistent iff
Γ ` ⊥.

In some cases it is possible to define inconsistency without reference to
⊥ or any connective, but since all the systems I shall examine make use of
⊥ I shall stick with the simple definition of inconsistency in terms of ⊥.

1.4 Some formulaic concepts

1.4.1 Subformula

If A is atomic then A is a subformula of itself.
If Con is an n-ary connective then the subformulae of Con(A1 . . . An)

are Con(A1 . . . An) and the subformulae of each Ai.
More formally:

Sub(A) = {A} A atomic

Sub(Con(A1 . . . An)) = {Con(A1 . . . An)} ∪ Sub(A1) . . . Sub(An)

1.4.2 Degree

The degree of a formula A is the number of occurrences of any propositional
connective or quantifier in A.

For example if A is atomic then its degree is 0, but A→ (A→ (A ∧ A)
has degree 3.

1.5 Notation and quotation

It is convenient to use the letters A,B, C . . . as variables over things that
express propositions (i.e. thoughts and sentences, or more generally: utter-
ances) rather than propositions themselves. I shall not discuss the nature
and ontology of propositions.

I will use ‖A‖ to abbreviate ‘the proposition expressed by A’.
I shall occasionally use these little dots ‘. . . ’ within quotation marks, for

example:

‘if. . . then. . . ’

clearly I do not intend to quote the dots, I use them merely as a way of
abbreviating this
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the binary sentential connective ‘if then’ taking its arguments
immediately before and after the part ‘then’.

I will use square quotation marks when using syntactic variables (A,B . . . )
within a quotation. So I write

pifA thenBq

to abbreviate

the utterance obtained by concatenating A and B appropriately
with ‘if. . . then. . . ’

When presenting formal deductions, or writing sentences of a purely
logical language, I shall omit the square quotation marks.
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Chapter 2

Introduction

2.1 Historical analyticity

2.1.1 Leibniz’ legacy

Kant’s characterisation of an analytic truth was initially given in terms of a
relation between concepts. An analytic judgement, for Kant, is a judgement
where the concept of the predicate is contained in the concept of the subject.
This idea is present also in Leibniz. If we can identify the predicate in a
part of the subject then a judgement is analytic. An example of Leibniz’ is
that it is analytic that the part is less than the whole. The argument runs
thus (note that when Leibniz writes ‘part’ he means ‘proper part’):

The part is equal to the part of the whole (for by an identity
axiom, anything whatsoever is equal to itself). But that which
is equal to a part of the whole, is less than the whole (by the
definition of less). Therefore the part is less than the whole.1

This quotation presents an early formulation of the idea that the analytic
truths follow from basic logical laws by applications of definitions of the
relevant terms. So, by applying definitions relating to the terms ‘part’ and
whole to a basic law identifying a part to itself we obtain the general truth
that all parts are less than the whole.

A similar idea may be found in an alternate characterisation of analytic-
ity given by both philosophers. An analytic truth is one the denial of which
entails a contradiction. Definitions of this form are inherently circular as

1See page 340 of [?], the quotation is translated from Couturat ed. Opuscules et
fragments inédits de Leibniz, 1903.

33
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the only deductions of contradictions appropriate to this characterisation
are deductions that do not depend on any synthetic truths (i.e. depend only
on analytic truths). Of course, we can remove this circularity by defining
a deduction that is independent of synthetic truths recursively, but this is
tantamount to characterising the analytic truths in terms of deductions from
basic analytic truths (which go without explanation).

The lack of a rigorous formal logic prevented Leibniz and Kant from
formulating their view in a general and clear way. It was only until Frege’s
concept-script and the development of first order logic thereafter was the
view more clearly expressible. The account of analyticity we derive from
Frege and Carnap is essentially the same as that of Leibniz and Kant, es-
pecially in that it treats analyticity mostly in terms of a relation between
concepts. The phrase ‘the predicate is contained in the subject’ is replaced,
in Carnap’s work, by talk meaning postulates and logic. The grounding
of analyticity in concepts is brought to an extreme by Carnap in that he
regards analyticity as being relative to a language, languages with different
meaning postulates have different analytic truths. For Carnap, analyticity
is a property of sentences rather than propositions.

In modern thinking more is made of a sharp distinction between sen-
tences and propositions. Only propositions bear truth values and since we
talk so frequently of ‘analytic truths’, it is natural to regard analyticity as a
property of propositions rather than sentences. This poses a problem if we
wish to maintain the traditional Leibniz-Kant view of analyticity as arising
from a relation between concepts, in modern terms the Leibniz-Kant view is
that analyticity arises from a relation between meanings (hence the catch-
phrase ‘an analytic truth is truth virtue of its meaning’). The problem lies
in the fact that propositions are independent of meanings and concepts, no
matter how we structure our concepts or choose our meanings, the situations
where a proposition is true remains unchanged. A modern problem for a
theory of analyticity is to provide a method of reconciling the intuition that
an analytic sentence is ‘true by meaning’ with facts relating to the inde-
pendence of meaning and propositions. Boghossian’s attempt (in [?] among
other works) at this is to treat analyticity as an epistemological property, an-
alytic propositions are ones which can be known to be true only by knowing
the meanings of the terms. In section 4.2 I object to Boghossian’s position,
in particular I object that analyticity is not an epistemological property.
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2.1.2 Wittgenstein

This brief discussion of the history of analyticity would not be complete with-
out at least mentioning the view provided by Wittgenstein in the Tractatus.
The approach to characterising analytic truths followed by Kant, Leibniz,
Carnap and many modern philosophers has a strong syntactic flavour. That
is, the analytic truths are those that are deducible from basic analytic truths
(e.g. logic) and definitions of meaning (e.g. Carnap’s meaning postulates).
Wittgenstein’s characterisation is semantic, in 4.46 he defines a tautology
as a proposition that ‘is true for all the truth-possibilities of the elementary
propositions’.2 Interestingly, Wittgenstein was the first, as far as I am aware,
to provide some explanation (other than an appeal to the light of reason) of
why the basic axioms of logic are analytic (at least, he can account for why
they are tautologies):

The sign which arises from the co-ordination of that mark “T”
with the truth-possibilities is a propositional sign. (4.44)

So a symbol is defined by its truth table and the tautologies are those propo-
sitions the truth functional structure of which is such that they are true on
all combinations of truth values for the atomic propositions. From this
Wittgenstein concludes that a tautology is senseless in that it provides us
with no information.

Wittgenstein’s account is problematic mainly because truth tables are
insufficient for handling the vast body of logical truths expressible only in
first (or higher) order languages. A more advanced account that follows the
semantic line is given by Peacocke in [?]. In addition of specific objections
to Peacocke’s position, I have a general worry about approaches that, like
Wittgenstein’s, characterise analytic truths in terms of a semantics: I worry
that assuming a semantics begs the question of which sentences are ana-
lytic. For example the only appropriate interpretation for disjunction and
conjunction on a truth-table semantics yields the law of excluded middle as
a tautology. Indeed, the law of excluded middle, if genuinely a logical law, is
a prime candidate for being analytic. So it seems that in assuming a seman-
tics in order to explain what the analytic truths are, we come dangerously
close to assuming, in advance of the explanation, what the analytic truths
are.

2I take my quotations from Ogden’s translation [?], a hypertext of which can be found
at www.kfs.org/ jonathan/witt/tlph.html
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2.2 Criticisms of Analyticity

I wish to provide at least part of a defence of the truth-by-definition account
of analyticity in the tradition of Leibniz, Kant and Carnap. There are two
main lines of criticism to such an account (I consider them all in detail in
chapter 4).

1. Firstly, there are objections to what the tradition takes analyticity to
be. Philosophers (e.g. Harman and Boghossian) have taken the true-
by-definition approach to be highly objectionable, the basic objection
being that propositions are not true or false depending on meaning (nor
definition), they are true or false depending on the way the world is. I
outline these objections in more detail in section 4.2. Such objections
are easily answered by noting that the Leibniz-Kant-Carnap tradition
takes analyticity to be strictly speaking a property of sentences that
express propositions and not the propositions themselves. It is not
propositions, or truths, that are analytic but the sentences that express
them. If a sentence can be deduced from the rules that define (some
of) its terms then it is analytic, and furthermore since the rules are
definitional, it will express a true proposition. The exact details of
how this is to work are the subject of the second sort of objection.

2. Secondly there are more serious objections about the possibility of
giving a coherent account of definitions. The two main questions posed
by such objects ask for an account of how and when these definitions
are made, and what exactly counts as a definition.

(a) Quine’s famous objection (in [?]) to the analytic-synthetic dis-
tinction applies mainly to a theory of analyticity that follows the
lines of Carnap and Frege. Quine objects that there is no way to
tell what the definitions are (the reason there is no way to tell,
Quine concludes, is that there never were any such definitions
made).
Quine charges the theory of Carnap with a circularity similar to
that I outline above against the alternative Leibniz-Kant charac-
terisation of analyticity (in terms of a denial entailing a contra-
diction, see page 34). Quine argues that the question of which
truths are analytic includes the question of which sentences re-
ally are the meaning postulates. For example, if we try to identify
the meaning postulates in terms of synonymy then we had bet-
ter explain how these synonymies arise otherwise we may as well
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leave the notion of analyticity unexplained. Effectively, Quine
challenges Carnap’s account of analyticity to state what the facts
are that determine which meaning postulates are appropriate to
a certain language. Quine argues that this cannot be done with-
out relying on a notion, such as synonymy, that itself cannot be
explained without giving a theory of analyticity. Quine concludes
that there is no fact of the matter as to which meaning postulates
are correct, and ultimately that there is no fact of the matter as
to which sentences are analytic and so that the whole analytic-
synthetic distinction distinguishes nothing.3

Although Quine does not argue specifically against the idea that
at least logical truths are analytic we can easily extend his ar-
guments. We can question when the axioms of, say, first order
predicate logic with identity were set as definitions of the mean-
ings of the logical terms. If no such definitions were made there
is no reason to suppose them as analytic.

(b) A more serious objection questions the reliability of making def-
initions. At least, the reliability definitions that do the work
needed to derive the consequence relation of a basic logic.
We can, the objection goes, reliably define new terms by intro-
ducing one new term to mean another. For example we might
introduce a new word splurg as follows:

(†) x is splurg iff x is unmarried and x is male

And now ‘splurg’ means the same as ‘bachelor’ by definition. But
to carry out such a definition we need a logic to understand the
terms ‘iff’ and ‘and’ and perhaps even ‘x’. But it is exactly such
a logic that the truth-by-definition account of analyticity is at-
tempting to explain. So a non-circular account of analyticity
cannot base itself on definitions like †. But, the objection contin-
ues, there is no other way of making definitions that is reliable.
Other apparent ways of defining terms (e.g. by writing axioms
for them) unreliably allow pretty much any sentence to be defin-
able as true, not just any axiom is a legitimate definition. For
example we do not define ‘bachelor’ further by laying down (in
addition to them being unmarried men) an axiom that all people
are bachelors, certainly this would neither make ‘all people are
bachelors’ analytic nor true.

3By stronger arguments Quine reaches his thesis that meaning itself is indeterminate
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2.3 The beginnings of an answer

The theory of implicit definitions is a more modern attempt to answer this
objection. The idea is that logical terms may be defined implicitly by their
inference rules. Since we draw inferences all the time the theory of implicit
definition hopes to answer both the question of what a definition is and the
question of how and when the definitions are made.

The implicit definition theory requires us to identify the basic logical
laws not in terms of axioms but in terms of inference rules. For example,
we commonly reason with these inference rules:

A B
A ∧B

∧I
A ∧B

A
∧E

A ∧B
B

∧E

and somewhere along the line these rules define the connective ∧. Anything
deducible from rules that implicitly define terms may then be said to be
analytic. For example, we can use the rules that implicitly define conjunction
and negation to deduce that not-(A and not-A.

For such a theory to work we must respond to the objections: how are
the implicit definitions made?4 And how does the account rule out spurious
definitions?

For one thing it is to be explained why the inference rules above, for
conjunction, is definitional but this inference rule is not:

x is a mammal
x has a liver

After all, the inference that something is mammal from it having a liver is
truth preserving and perhaps made without much thought by people with
some knowledge of biology. To respond to Quinean objections, the implicit
definition theory much be able to give an account of the difference between
an definitional inference rule and an inference that happens to be truth
preserving.5

More seriously, defining a term by inferential practices seems highly un-
reliable, not just any inferential practice will make for a satisfactory defini-
tion. A famous illustration of this is Prior’s connective tonk which has these

4I shall argue that one way of fleshing out the theory of implicit definitions, in terms
of inferential roles and practices, fails to answer this question adequately.

5A natural line is to make some metaphysical or semantic distinction between a mere
inference pattern and a rule. The inference patterns for conjunction are rules but the
pattern for mammals and livers are not rules. But exactly what a ‘rule’ is that distinguishes
it from any other inference pattern is hard to define. Indeed, arguments discussed in in [?]
suggest that such a distinction is impossible.
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inference rules
A

A tonk B
tonk I

A tonk B
B

tonkE

The problem is that these rules allow anything to be deduced from anything.
So if the tonk rules were definitional then anything could be deduced from
anything by definition.

This problem of reliability applies to any theory of analyticity that relies
on inference rules to define the meanings of logical terms.

2.4 The spirit of inferential roles, my goal

Almost all attempts at providing an account of analyticity of which I am
aware base themselves on the idea that a set of inference rules for a logical
connective can define it in some way. To make such a theory workable we
must give an account of how these definitions are made, and more impor-
tantly, what inference rules can count as definitions.

The objection to these theories that I will spend most energy answering
is this:

The only frameworks for making definitions reliably (so that no
spurious definitions arise), are explicit definitions that merely
define one term to mean another (usually a significantly more
complex and descriptive one). Such definitions already require
a logical language to work, and so are incapable of accounting
for the analyticity of logic (without being circular). The theory
of implicit definition solves the circularity problem, but it is not
reliable, spurious definitions arise.

To respond to this objection we need to give an account of what inference
rules make for legitimate definitions, when we present such an account we
must give some reason to believe that it rules out any spurious definition.

Mainly I shall be concerned with the logical consequences of a famous
proof theoretic account of what inference rules can make a genuine definition.
I present and motivate this account in chapter 3. The account is that any
inference rules that are in harmony, in Dummett’s sense,6 may be used as an
implicit definition. At least for the main work of the thesis I shall not argue
that only harmonious inference rules are useable as implicit definitions, but
I shall suggest that inference rules that are not harmonious are suspect.

6The same idea can be found in writings of Gentzen and Hacking. Readers impatient
for a definition of harmony should refer to the entry in the index.
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The large logical portion of the thesis shows how we can obtain rules for
interesting logics (in particular classical logic, and free logics) all satisfying
a harmony constraint.

I shall not spend much space answering the question of when and how
implicit definitions are made. In chapter 14 I shall postulate a theory of how
an inferential definition could actually be made, but I shall not discuss it
deeply. It is interesting to note that it follows from theory I give in chapter 14
that only harmonious inference rules can make for implicit definitions.

2.5 A theory of analyticity

Here is definition of analyticity that I hope this thesis goes some way to
defending.

My aim is to revive the catchphrase ‘analytic sentences are true by def-
inition’ or ‘analytic sentences follow from definitions alone’. I interpret the
catchphrase in this way:

Analytic sentences, by definition, express true propositions (ex-
press propositions that satisfy the property of truth).

It is helpful to use a more general notion of analyticity so it can be applied
to inferences:

The premises and conclusion of an analytic inference, by defini-
tion, express propositions that satisfy a relation of validity.

I will now clarify how this could be the case.
Let s be a sentence and S be a collection of sentences. Assume also, that

s and the members of S are interpreted on the conventional meanings of the
terms.7

s is analytic for S if there is (in abstract) a deduction such that

1. the premises are in S

2. the conclusion is s

3. every step of the deduction is in accordance with a definition

7So for example if s is ‘grass is green or it is not’ then the words of that sentence
are interpreted as they conventionally are, rather than e.g. such that s expresses the
proposition that snow is white.
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An inference is analytic when its conclusion is analytic for its premises. A
sentence s is analytic when an inference of s from an empty collection of
premises (i.e. no premises) is analytic.

As we shall see, there are two sorts of definition. Some definitions work
by presenting a sentence, e.g.

(†) Anything is a bachelor iff it is an unmarried man

other definitions work by presenting some rules of inference. For example

(‡)
A B

A and B
A and B

A
A and B

B

So ‘every step of the deduction is in accordance with a definition’ comes
down to a condition that

1. every premise of the deduction is in S or a sentential definition (like
†)

2. every inference step of the deduction has the form of an inferential
definition (like ‡).

But why should something that follows from definitions alone in this way
be true? More generally, why should the proposition expressed by s follow
validly from the propositions expressed by S just because s is analytic for
S? The short answer to these questions is:

Because they follow by definition!

a curt response, but not entirely unreasonable when used in conjunction
with an answer to the problems of the reliability of implicit (i.e. inferen-
tial) definitions.8 The longer answer is given by my postulated theory of
chapter 14.

2.5.1 Some facts about the analytic

To help provide an idea of what my view of analyticity is, here are some
claims about analyticity. The claims of this section are not definitive and I
am prepared to be convinced otherwise. I add this section because to help
the reader understand what my broad motivations are and why I develop
the particular logics of later chapters.

8A theory of analyticity which says what a definition is but cannot explain exactly why
they work is better than one which cannot even say what the definitions are.
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• Any instance of the law of excluded middle A ∨ ∼A (provided that
A really does express a proposition) is analytic. It also is true, that
is, it expresses a true proposition. The true proposition that A ∨ ∼A
expresses is not true because of the definitions we make about ∨ and
∼.9 However, the meanings of the terms ∨ and ∼ are such that A∨∼A
expresses a true proposition.

• ‘Analytic’ is a predicate of sentences, and so analyticity is relative to
a language. However, roughly the same propositions are expressed by
analytic sentences of various languages. In particular, the propositions
expressed by logical truths are expressed by analytic sentences in any
language. I claim this is because a speaker could not even develop
an advanced language without defining a basic logical language (‘and’,
‘or’, ‘not’, ‘if. . . then. . . ’ etc.). I postulate a theory to back up these
claims in chapter 14.10

It is perhaps even a truism that there are no analytic sentences of one
language the translations of which into another language are not ana-
lytic. I suspect that it is a condition on something being a translation
that it preserve analyticity. But I am unsure if this is correct.11

• The sentence ‘If Hesperus exists then Hesperus is Hesperus’ is analytic,
for it follows from the logic of identity. However, since ‘Hesperus is
Phosphorus’ does not follow deductively from the definitions or events
that fixed the references of the two names, ‘Hesperus is Phosphorus’
is not analytic.

My theory of analyticity extends, in this thesis, only as far as logical truths.
So I do not address directly the question of how a sentence such as ‘all
bachelors are unmarried’ be analytic, it should however be clear what my
account of such sentences is. ‘All bachelors are unmarried’ is analytic as it

9I cannot provide an explanation of why any particular proposition is true.
10My view is the contrary of Salmon’s claims at the beginning of Appendix B of [?]. I

hold that epistemic and deductive (logical) properties apply primarily to sentences (utter-
ances), whereas semantic properties such as truth and validity apply primarily to propo-
sitions.

11My thought is this, suppose I say ‘I am here’ and consider how this is to be translated
into the language English−I that is just like English except it does not possess any first
personal pronouns (like ‘I’). It seems like a good translation of ‘I am here’ (were I to utter
it) is ‘Gabbay is here’. Perhaps the translation is not perfect and the two sentences do
not express the same proposition, but if they do, then ‘I am here’ is analytic (I claim) but
its translation into another language is not.
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follows from logic and the explicit definition ‘anything is a bachelor iff it is
an unmarried man’.

Here are some further claims about analyticity which shall not figure
in this thesis (except perhaps my belief that ‘something exists’ is analytic,
see 11.3). They are, however, claims form part of a natural extension of my
account of analyticity:

• Not all analytic truths are necessary. This claim does not affect my
thesis as I concern myself to explain logical truths, and these are neces-
sary. However I think that we could, on learning that there is a unique
inventor of the zip, stipulate ‘Julius invented the zip’ and thereby de-
fine the name ‘Julius’. ‘Julius invented the zip’ is analytic but not
necessary.12

• ‘I exists’ and ‘something exists’ are analytic, as is ‘I am here now’.
The analyticity of these have been disputed, cunning counterexamples
are occasionally passed around where someone may utter, seemingly
falsely, ‘I am here’ with an intention to deceive. For example I may,
pretending to be my brother, say ‘I am here’ to get someone to believe
that my brother is here. The thought is that in such a case ‘I’ refers
to my brother and not me, and so ‘I am here’ is false. I am inclined
to deny that, the utterance of ‘I am here’ in such a case is still true,
but its delivery is deceptive. Alternatively I could argue that the use
of ‘I’, in the deception, is not on its conventional meaning.

These claims follow from my considerations in chapter 14 and do not follow
from anything I present before then. I state these claims here because some
of the logics I develop before chapter 14 are designed to be compatible with
the considerations of that chapter. In particular they are designed to be
compatible with the claims I make here.13

12Look at sections 8.1.1and 11.3 for my use of a ‘weak’ inference rules and their relation
to the strict conditional, the stipulation that ‘Julius’ denote the inventor of the zip may
be analysed like this:

someone invented the zip

Julius invented the zip
Julius-I

where the rule Julius-I is weak. Intuitively a weak rule is a rule that implicitly depends on
some contingent fact. In this case the contingency is whoever happened, in actuality, to
have invented the zip (so as to be the object of reference of the rigid designator ‘Julius’).

13Note that I write ‘be compatible’ and not ‘entail’ or ‘be entailed by’.
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Chapter 3

When is a definition a
definition?

3.1 The core of the implicit definition approach

My goal is to provide an adequate basis to make this claim: a logical con-
nective has the semantics it does because it is defined so that it has it. For
example I favour a theory of analyticity that states that e.g. the conjunction
sign is defined so that it expresses the truth function that maps to truth only
when both conjuncts are true.

This sort of account seems open to a charge of circularity: how can we
define ‘and’ to mean what it does without already possessing a conjunction
in our language, how can we have a definiendum without already possessing
a definiens? The answer is that the model of explicit definition of this form
(to use the equality symbol somewhat loosely):

definiendum = definiens1

is only one of at least two ways of making a definition. An alternative
way is to make the definition implicitly by stating some rules or proposi-
tions involving the term to be defined and stipulating that this term express
whatever makes those rules/propositions valid/true. For example we may
present these rules

A B
A ∧B

A ∧B
A

A ∧B
B

and define thereby ∧ to have the (simplest) meaning that makes them valid.

1For example: bachelor = unmarried man.

45
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Such a definition is called an implicit definition and has a definiendum but no
definiens (as opposed to an explicit definition which involves an definiens).2

This is the core of a truth-by-definition tradition of analyticity (a tra-
dition I support) and, as argued above, in order to make it work we must
provide an account of what exactly a counts as a definition. In particular, in
the light of the example of Prior’s connective tonk, we must give an account
of which inference rules can be used as implicit definitions.

It is helpful to begin by discussing explicit definitions and then generalise
to implicit definitions.

3.2 Explicit definitions and conservativeness

Conditions on an explicit definition being successful are not so easy to give.
Consider this explicit definition of the new term ‘splurg’

(†) Grass is blue and x is splurg iff x is a human male

the ‘definition’ does not define ‘splurg’ to mean ‘human male’, it is not a
definition at all. † entails that if anything is a human male then grass is
blue, a conditional such as that cannot be true by definition.

2There is an ambiguity in the phrases ‘explicit definition’ and ‘implicit definition’, the
term ‘explicit’ could either be referring to a property of the definition or a property of the
action of defining. Thus a definition might be called explicit if it an act of defining has
been carried out explicitly.

So there are at least four things a definition could be:

1. An explicit definition made explicitly in our actions

2. An explicit definition made implicitly in our actions

3. An implicit definition made explicitly in our actions

4. An implicit definition made implicitly in our actions

For example, if I write down these rules:

A B
A ∧B

A ∧B
A

A ∧B
B

and say ‘I hereby define ∧ by these rules’, then I have explicitly made an implicit definition.
Alternatively if I simply use the rules without stating explicitly that that they are part of
a definition then I have made (or am making) an implicitly made an implicit definition.3

To sum up, a definition is explicit or implicit depending on whether there is a definiens
(if there is no definiens then the definition is implicit). But a definition may be explicit
or implicit in another sense where the act of making the definition is explicit or implicit
in our actions. As far as I can see, the literature on the subject, at least with respect
to the discussion of inferential roles, distinguishes only between explicitly made explicit
definitions and implicitly made implicit definitions.
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If we were to regard † as a definition then we would be entitled to con-
clude, since I am a human male, that grass is blue. Thus † does not merely
define a new term, it entails a false proposition. The problem with † is that
we can use it to derive new information that has nothing to do with ‘splurg’
that we could not previously derive.

Such considerations have led some philosophers hold that the condition
of legitimacy of a definition is conservativeness. One must be careful with
use of the term ‘conservative’, it is a binary predicate relating a theory T
to an extension of T . For the purposes of our discussion we will have to
define conservativeness more generally as a relation between logical con-
sequence relations, my thesis is about logical consequence relations rather
than theories.

3.2.1 The conservative condition

Let `1 be a logical consequence relation and `2 be a logical consequence
relation that includes `1. That is, if Γ `1 A then Γ `2 A. Since every
consequence in `1 is a consequence in `2 we may call `2 an extension of
`1. Let L1 be the language of `1 and L2 be the language of `2.4 Suppose
further that the formulae in Γ1 and the formula A1 are in the language L1.

Now, `2 is a conservative extension of `1 (or, `2 is conservative over `1)
when, if Γ1 `2 A1 then Γ1 `1 A. In other words, `2 is conservative over t1
when any deduction in t2, which has its premises and conclusion all in the
language of `1, could have been carried out in `1.

Now we can present at least necessary conditions for the legitimacy of a
definition. Let `2 be obtained from t1 by the addition of a new term and its
defining axioms or rules. Then then the defining axioms/rules are legitimate
definitions exactly when `2 is conservative over `1.

3.2.2 A conservative working hypothesis

I postulate that conservativeness is both necessary and sufficient condition
on the legitimacy of definitions because it fits with intuition about what def-
initions do, it is very successful as a formal condition (e.g. see the discussion
of extensions by definition in [?]), and I know of no genuine alternative.

But this alone is of little philosophical value. What we are looking for is
a condition on the definition itself, something about the way the definition

4For example, `1 may not be formulated in a language that contains ‘splurg’, whereas
`2 is an extension of `1 so as to account for ‘splurg’.
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is made, that makes it legitimate. In particular, we wish to find a property
a definition might have that explains why it is conservative.

3.2.3 The philosophically helpful version

Intuitively, if an explicit definition satisfies these criteria then it is legitimate:

(i) the definiendum is not contained in the definiens (i.e. the definition is
non circular)

(ii) the definiendum is a single term of a certain syntactic category5

(iii) the term is totally new to the language.

We can now sketch a proof that this intuitive condition is enough to
ensure conservativeness. I do it here for definitions of the form ‘definiens iff
definiendum’.6 We may always replace the definiens with the definiendum
without loss of validity, thus in any deduction Γ `2 A, where neither Γ nor A
contain the definiendum, we may obtain a deduction that Γ `1 A that makes
no use of the definition and contains no occurrence of the definiendum. We
do this by replacing any occurrence of the definiendum in the deduction by
the definiens. Because of (iii) the only way the definiendum can get into
the deduction is by use of the explicit definition, and so because of (i) our
uniform replacement of the definiendum by the definiens will remove the
definiendum completely from the deduction. Further, because of (iii) the
result of this replacement is that any instance of ‘definiendum iff definiens’
becomes ‘definiens iff definiens’, which is trivially true.

(i), (ii) and (iii) are philosophically more useful conditions than the con-
dition of conservativeness, because they can be given as a general property
of good definitions that anyone can test for. For example, it is more plausi-
ble that we have an innate capacity for making definitions and checking that
(i), (ii) and (iii) hold (thereby coming to know that they are legitimate defi-
nitions), than that we have an innate capacity for checking conservativeness
of extensions. (i), (ii) and (iii) describe simple syntactic properties whereas
conservativeness is a complex one.

5That is, we just present the term on the left and say whether it is a predicate or a
propositional connective etc. and then say what it is to mean on the right (by presenting
a complex from the same syntactic category).

6For definitions of the form ‘definiens = definiendum’ we must either ensure that there
is an additional existence condition on the definiendum, or use a logic that can handle
empty reference (I present such a system in section 11.3).
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I do not conclude from this that satisfying (i), (ii) and (iii) is the only way
by which something may be a legitimate explicit definition. But I suggest
that anything that does satisfy (i), (ii) and (iii) is a legitimate definition, and
that anything that does not is suspect (and we have reason to worry that it
is not). The point of (i), (ii) and (iii) is that it provides us with a way of
differentiating legitimate from potentially illegitimate definitions solely on
the basis of the structure of the definition and not on its consequences. So
for example the fault in the ‘definition’ † above is that ‘human male’ is not
new, it already has a meaning.

If we could build a theory of analyticity based only on explicit defini-
tions that satisfy (i), (ii) and (iii), then we have responded to the reliability
worry (for we can be sure that the only definitions that enter our account
of analyticity are legitimate ones). But of course for reasons that Quine
has famously given explicit definition will not do to ground a theory of an-
alyticty. Firstly, an explicit definition contains the term ‘iff’ or ‘=’, and
those are among the terms for which I seek to give an account. Thus an
appeal to explicit definitions (where definiendum and definiens are linked by
a logical connective) would be of little help. Secondly, in order to define the
definiendum by means of an explicit definition we must already be able to
express something with the same meaning: the definiens. So an explanation
of our acquisition of a logical language in terms of explicit definitions would
presuppose that we already acquired a logical language. This is the essence
of Quine’s argument in Two dogmas of Empiricism.

3.3 Legitimacy of implicit definitions and conser-
vativeness

It is natural then to extend the conclusions of the discussion of explicit
definition that of implicit definitions. If `1 is extended to t2 by means of
an implicit definition, then the extension must be conservative. But once
again, this is unhelpful unless we can find something along the lines of (i),
(ii) and (iii) for implicit definitions.

I think (ii) and (iii) may apply equally well to implicit definitions and
that at least part of the analogue of (i) is that among the rules for the con-
nective in question are introduction and elimination rules for it. But more is
required. The explicit definitions we considered were all single equivalences
or equlaities. So for example, something like this would not do as an explicit
definition of pFq in terms pG1q and pG2q

If x is G1 then x is F
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x is G2, if x is F

unless it could be reformulated into something in the form of

x is G iff x is F

where G is obtained from G1 and G2 (the best way for this to happen is
when G1 and G2 are both G).

Now the inference rules for a connective may be seen as implication
clauses without the ‘if. . . then. . . ’ where the introduction rules are left-right
and the elimination rules are right-left (the new term beign on the right).
We must find a suitable condition that shows we may also think of the rules
collectively as a single ‘if and only if’.

3.3.1 Harmony

A condition that appears to achieve what we want is harmony or normali-
sation. Normalisation is a proof theoretic property. A logic normalises (is
harmonious) when any deduction in that logic can be reduced to a deduc-
tion, with the same premises and conclusion, in normal form. A deduction is
in normal form when it involves no introduction and subsequent elimination
of any logical connective. For example, consider this Prawitz tree:

....
A

....
B

A ∧B
∧I

A
∧E

this involves the introduction and subsequent elimination of a conjunction.
In order to introduce the conjunction both A and B are deduced, the con-
junction A ∧ B is then used to conclude A. It should be easy to see that
this entire deduction can be replaced by the initial deduction of A.

....
A

In this deduction the premises and the conclusion are the same, but the
introduction and subsequent elimination of conjunction has been gone.

‘Harmony’ has at least two senses.

1. A connective may be said to be in harmony when where is a pleas-
ing symmetry to its introduction and elimination rules (like those for
conjunction).
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2. Alternatively a connective may only be said to be in harmony in the
context of logical consequence relation: a connective Con is in har-
mony relative to ` (a logical consequence relation), when any deduc-
tion in ` involving an introduction and subsequent elimination of Con
in a deduction in ` may be replaced by a deduction with the same
premises and conclusion but which lacks that (unnecessary) introduc-
tion and subsequent elimination of Con.

If we add Con to a logical consequence relation ` so that Con is harmonious
in its second sense then Con makes for a conservative extension (defined
below). For if Γ and A do not contain Con then any use of Con in a
deduction that Γ ` A must have been introduced by a rule for Con, and
then it must be eliminated at a later point so that Con does not appear in
A. But since Con is in harmony, this need not ever happen, and so Con
need not appear in a deduction that any deduction that Γ ` A.

If every connective is in harmony in its second sense the logic as a whole
normalises.

I will be concerned only with harmony in its second sense, and since I
will expect every connective in the logics I develop to be in harmony I use
the terms ‘harmonious’ and ‘normalises’ interchangeably. That is I will write
of whole systems of connectives (i.e. logics) being in harmony, meaning that
they satisfy normalisation theorems.

Intuitively, when a connective is in harmony (in its second sense), then
the conclusions we can draw from the use of a connective are no more than
what was required to introduce it. For example, the consequences of a
conjunction are no more than what is required to introduce it: the rules for
conjunction require that A and B be deduced in order to introduce A ∧B,
but from A and be we can deduce only that A and that B (back where we
started). Certainly Prior’s famous connective tonk is not in harmony in any
logic that contains it, (see pages 80, and 93 for the rules and discussion of
tonk).

To verify that the condition of harmony is what we are looking for we
must check that it entails conservativeness, and I think it would be a bonus if
a proof that harmony entails conservativeness uses follows a similar structure
to a proof that (i-iii) entails conservativeness.

3.3.2 Conservativeness and harmony in the first sense

Now, it does not follow that if a connective is harmonious in the first sense
that it will be a conservative addition to a logic.
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For example, the logic with only one connective tonk and these rules:

A tonk B
B

A
A tonk B

is consistent, it has no theorems, but if we extend it by adding ‘if. . . then. . . ’
with its familiar rules (modus ponens and conditional proof) the logic be-
comes inconsistent.7

Another example is how conjunction, when added to relevance logic is
not conservative. Relevance logic distinguishes between this structure:

....
A

and this structure ....
A

....
B

The first is relevant to A but the second is not (as it contains an irrelevant
inference of B). But with conjunction the two structures become inter-
deducible as by adding ....

A

....
B

A ∧B
A

we can convert the second irrelevant (to A) structure into the first (which
is relevant to A).

Perhaps the most infamous example of all is this:

px is in the set of all Fq expresses the local-validity/truth of:
Fx

which, at face value, entails the existence of a certain kind of abstract object
and, more notably, it entails an inconsistency when in the presence of a nega-
tion. The inconsistency is Russell’s paradox, see 101 for a fuller discussion
of this.

7The rules for ‘if. . . then. . . ’ allow a derivation of pif A then Aq and using the rules for
tonk from that there is a two step derivation of anything we like:

if A then A
(if A then A) tonk B

B
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We could look for more conditions to (i-iii) so that the addition of † is
guaranteed to be conservative. For example, that the exact structure of the
deduction (as it may be written down) is not important to the logical con-
sequence relation to be extended (to handle the case of relevance logic). We
could resolve these problems by being very strict on the structural properties
of the logical consequence relations over which we define our connectives,
as Hacking is in [?]. If we go such a root then we must rule out, say, rele-
vance logic, as a possible logic before we even begin analysing what logical
connectives we use. This is too strict for me.

3.3.3 Conservativeness and harmony in the second sense

The solution, I think, is to look at how conditions (i-iii) entail conservative-
ness in the case of explicit definitions. To show that an explicit definition
satisfying (i-iii) is conservative we argued that the definiendum may be re-
placed throughout by the definiens in a deduction that Γ `2 A. Suppose
that the definiendum does appear in the deduction that Γ `2 A. Remember
we are assuming that Γ and A do not contain any use of the definiendum.
With this assumption in mind it follows that the only way the definiendum
could appear in the deduction is if it were introduced by appeal its explicit
definition (as the definiendum does not appear in Γ). Furthermore, since
the explicit definition is, by assumption, the only rule that deals with its
definiendum, the only way the definiendum could, subsequently, fail to ap-
pear in the conclusion A is if it was removed (i.e. eliminated) by another
appeal to its explicit definition. Thus, in order to show that the explicit
definition that extends `1 to `2 makes for a conservative extension we must
show that

if we introduce the definiendum, only to eliminate it later in a
deduction, then we never needed to introduce it in the first place.

but that should be a familiar phrase, it is similar to the definition of harmony
(in its second sense) above. This is the sense I shall work with.

A connective Con is legitimately defined when it is defined so
that any introduction of it, and subsequent elimination (using
the definition of Con) can be removed.

For example, suppose that, during a deduction, we reason that

¡¡A....
B
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and then, appealing to the introduction rule for ‘if. . . then. . . ’ (see 6.1), we
introduce pifA thenBq. Suppose that later in the deduction pifA thenBq is
used, by appeal to its definition, to legitimate a deduction of B from A. In
such a case we did not need to introduce pifA thenBq in order to legitimate
a deduction of B from A because we already had a deduction of B from A
(the deduction we used to introduce pifA thenBq). More formally

¡¡A....
B

ifA thenB

....
A

B

may be replaced simply by this:8

....
A....
B

and the introduction and subsequent elimination of pifA thenBq has been
removed.

I conclude from this that harmony in this second sense entails conserva-
tiveness and serves as a good condition on the legitimacy of implicit defini-
tion. The way that harmony (in the second sense) entails conservativeness
is similar to the way (i-iii) entail conservativeness for explicit definitions.9

Henceforth when I write of a connective being in harmony I use the term
in its second sense.

8By tacking the inference of B from½A onto the inference of A.
9This in itself is of little significance except that if the proofs of conservativeness were

very different then we would have a reason to worry that (i-iii) to explicit definitions is
not what harmony is to implicit definitions.



Chapter 4

Analyticity and its critics

In this chapter I shall discuss in more detail the objections to analyticity
I have already described. I shall discuss and reject objections of Boghos-
sian that there is a fundamental incoherence with the truth-by-definition
approach. I shall discuss Quine’s objection that there is no fact of the
matter about what definitions have been made and reject an attempt at a
solution to this objection in terms of inferential roles and practices (I shall
not present my own solution to this objection in this chapter, I postulate
one in chapter 14. Finally I shall discuss in more detail the objection that
there is no coherent theory of implicit definition that does not allow spuri-
ous definitions. My response to this final objection is that all the examples
used are not in harmony and that the harmony requirement filters out the
known problem cases (and that, since harmony entails conservativeness, we
have reason to believe there are no problem cases that satisfy the harmony
requirement).

4.1 What analyticity does

A theory of analyticity is gets us much of the to way answering this question:
why, what and how is a priori knowledge?1 An analytic sentence is true by
its very meaning, knowledge of meaning (in such cases) is an a priori affair.2

and so we can know that analytic sentences are true simply by understanding
them.

1If there is such a thing as synthetic a priori knowledge then we must have some idea
of what analytic knowledge is to make a coherent distinction.

2As the sort of experience we wish to rule out when we say ‘a priori knowledge is
knowledge without experience’ is not the experience of possessing a language.

55
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As I stated in section 2.5 my account of the analytic is in terms of
definitions. A sentences is analytic if it can be deduced from the definitions
of its terms. Questions of truth/validity, knowledge and meaning of analytic
sentences/inferences are answered by emphasising different parts the phrase
‘because we defined the relevant terms such that they do’:3

• Why are the sentences/inferences true/valid? Because we defined the
relevant terms such that they do.

• Why are the sentences/inferences known? Because we defined the
relevant terms such that they do.

• Why do the relevant terms have the meaning they do? Because we
defined the relevant terms such that they do.

The simplicity and intuitiveness of this account is its most attractive feature.
Furthermore it provides a nice link between metaphysical and semantic

notions (e.g. truth and meaning) on the one hand, and epistemic and psy-
chological notions (knowledge and information content) on the other. The
truth of an analytic sentence is determined (and explained) by its mean-
ing, (the relevant aspect of) its meaning is determined by the definitions of
(some of) its terms, the (lack of) information content is explained by the
definitions of its terms, and our knowledge of analytic truths is explained
by their easily acquired information content.

4.1.1 The lines of criticism

The sort of account of analyticity I have presented has high aims, it is the
same sort of account as the original theories of Kant and Leibniz. My ac-
count attempts to achieve these by the familiarly contested means of Leibniz,
Kant and Carnap (in terms of definitions).

There are two main lines of criticism that have been raised against such
accounts:

1. It is often argued that the aims are too high, in particular it is argued
that analyticity can explain only the a prioricity of some truths and not
why they are true. In other words, it is suggested that it is incoherent
that truth can be determined or explained by meaning.

3The relevant terms are the terms used in the deduction of the sentence or inference
rule in question, so the relevant term in an instance of modus ponens (when worrying
about its validity) is ‘if. . . then. . . ’.
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2. Quine famously argued against the means by which the aims are to be
achieved. Quine attacked the idea that meaning could be determined
or explained by definitions.

4.1.2 Some preliminary remarks on definitions

When I come to discuss the epistemology of definitions I shall go into more
detail about what a definition is. I take the making of a definition to be an
event or collection of events whereby a new term is added to a language.
The new term may be

• explicitly defined by some pre-existing construction. For example, we
can already express ‘unmarried man’ and, at some point, there is an
event where we add a new term ‘bachelor’ and stipulate that it is to
be logically equivalent to ‘unmarried man’.

As Quine suggested, it is rare that a word of English be defined ex-
plicitly in this way. When, Quine might ask, was the event where
‘bachelor’ was defined by pre-existing words ‘unmarried’ and ‘man’?
The answer is plausibly never. Indeed, in order for a majority of our
words to have been acquired in this way we must have had a com-
parable expressive power before having obtained a language. That so
much innate verbal power should exist is doubtful.

• implicitly defined by accepting some uses of it. The classic example
is conjunction. A speaker might not have a word corresponding to
conjunction, but he can obtain one. It is obtained by the speaker
stipulating that the introduction and elimination rules for conjunction
are valid. Or, as suggested by an inferential role theorist, by the
speaker using the term in a certain way over a period of time.

An explicit definition can be made only if there already is a term (com-
pound or simple) that expresses what the defined term is to express. How-
ever an implicit definition allows us to increase our expressive power, and
there are many examples of how this can lead to disaster.4 It seems that an
implicit definition is legitimate (or is genuinely a definition) provided it does

4Prior’s connective tonk is famous example of this. Here is a simpler example. I might
implicitly define the term ‘splurg’ by accepting that

people are splurg and only cats are splurg

it follows from this that all people are cats, an empirical and a posteriori sentence if ever
there was one.
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not entail anything false. If this is true then the project of using definitions
as the basis of analyticity collapses.

4.2 Boghossian’s criticism

4.2.1 Metaphysical or Epistemic? Metaphysical!

Boghossian [?] distinguishes between metaphysical and epistemic analyticity.

• A sentence is metaphysically analytic when it is true merely in virtue
of the meanings of (some of) its terms.

• A sentence is epistemically analytic when a mere grasp of its meaning
is sufficient justification for believing it (is true).5

Despite Boghossian’s objections to the coherence of a dogma of metaphysical
analyticity, I claim that the logical truths are analytic in its metaphysical
sense.

Boghossian’s objection to the metaphysical theory of analyticity is this:

How could the mere fact that S means that p make it the case
that S is true? Doesn’t it also have to be the case that p?

and

what is to prevent us from saying that the truth expressed by
“Copper is copper” depends in part on a general feature of the
way the world is, name that everything is self identical.6

Boghossian then discusses and rejects, correctly, a response to this objection
on the lines that the meaning of S makes it the case that p. Unsurprisingly
there are strong objections to this response, for it encapsulates all that is
worst about antirealism.

Looking at Boghossian’s objection, and trying to make sense of the ques-
tion ‘doesn’t it also have to be the case that p’, the variable p, presumably,
ranges over facts or propositions.7 The objection appears to me to presume
the following picture:

5Note this immediately suffers from problems when we ask how it applies to very
complicated sentences the meaning of which is beyond our grasp.

6This is a quotation from Harman and is extracted from Boghossian’s paper.
7If p is a sentence variable like ‘S’ then I cannot understand the quotation as an

objection.
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The meaning of a sentence determines what proposition/fact it
expresses. A sentence is true when its expressed proposition/fact
is true/existent. The truth of a proposition or existence of a fact
is mind and meaning independent.

since the truth of a sentence depends on something that is meaning indepen-
dent, the metaphysical approach to analyticity cannot succeed. This picture
may be rejected, in particular by someone who rejects the coherence of facts
or propositions.

Let us assume the picture of truth in terms of propositions or facts. Now
suppose that the terms of sentence S are such that whatever proposition S
expresses, it express a true one. That is, solely in virtue of the meanings
of some terms of S, S cannot express a false proposition. Such sentences
are analytic. Moreover, they are metaphysically analytic. Metaphysical
analyticity is consistent with the view that a sentence is true only because
the proposition it expresses is true (or because it expresses some fact). A
sentence is true merely because of its meaning when it cannot fail to express
a true proposition only because of the meanings of its terms.

For example

(†) If rice is white then rice is white

is true, it cannot express a false proposition. Which true proposition it ex-
presses exactly depends on what ‘rice is white’ expresses. However does
not (and cannot) express a false proposition because of the meaning of
‘if. . . then. . . ’ (and the structure of the sentence). With analyticity seen
this way (as it was always intended to be seen) a response to the quotation
from Harmon is ‘nothing (in the theory of analyticity) is to prevent you
from saying it, and to say so is consistent with the metaphysical theory of
analyticity’.

I think Boghossian and Harmon’s mistake is to read this formulation of
the metaphysical thesis literally

an analytic sentence is one where the meanings of the terms
makes it true.

As far as I can tell the use of the phrase ‘makes it true’ in describing the
metaphysical thesis of analyticity of Boghossian’s origin. No surprise then
that he has little trouble refuting it. The correct thesis about metaphysical
analyticity is that, a sentence has some terms with certain meanings, and
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for some sentences the meanings of some of the terms are such that any
sentence of the same form is true.8

Suppose a new term ‘splurg’ is defined. We are told that at least all men
are splurge, by definition. We know then, that I am splurg (knowing that I
am male). We might ask why ‘Gabbay is splurg’ is true. The answer might
be that ‘Gabbay is splurg’ expresses a proposition/fact that is true/exists. I
find this answer unsatisfactory for it neglects to show how ‘Gabbay is splurg’
came to express that proposition/fact. Since the extension of ‘splurg’ has
not been defined it is not clear how it could come to express any particular
proposition/fact. Notice that the indeterminacy does not just infect the
extension of ‘splurg’. It may also be indeterminate whether ‘all men are
splurg’ is intended to be defined for this particular time or over all times
and possible situations. That is, if a new male is born, is he also splurg?9

None of these questions need to be resolved in order to know that ‘Gabbay
is splurg’ is true, but (it seems to me) they must be resolved in order to
know what proposition ‘Gabbay is splurg’ expresses.10

Since ‘Gabbay is splurg’ follows from the information that Gabbay is
male, and that ‘all males are splurg’ is a (metaphysically) analytic truth in
the present context,11 it is true. This simple explanation is not open to one
who denies metaphysical analyticity.

Furthermore I find epistemic analyticity unsatisfying, being justified in
believing something does not entail its truth. For example:

(†) that man is a man

anyone understanding the meanings of the terms (and knowing that ‘that’
has a reference) is justified in believing it. However, at least according the
theory of indexicals found in [?] † might be false. Anyone knowing the

8This presumes a notion of form and typing of sentences, I take it that such a pre-
sumption is unproblematic.

9If there is an answer to this and it and it is ‘no’ then, at the time of the definition ‘all
men are splurg’ is analytic, a priori, but not necessary.

10It is coherent to argue that ‘Gabbay is splurg’ expresses no proposition, or expresses
an indeterminate proposition, or indeterminately expresses a proposition, or expresses a
very general proposition, or is supervaluated over a certain extension and anti-extension
of propositions, or whatever, provided that ‘Gabbay is splurg’ comes out as true. In all of
these cases some truth conditions of ‘Gabbay is splurg’ are obtained prior to it expressing
any particular proposition. This, I think, is enough to make my point. My point is that
some sentences can be true only because whatever proposition they express, if they come
to express one at all, they express a true one, and that this can happen by a stipulation.

11For example if the definition of splurg was not made too long ago, for otherwise we
might not be sure which men it was being defined over (all men ever, or just the men at
the time of definition).
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meaning of numbers on a digital clock display is justified in a belief about
the time (to a certain degree of accuracy), but that belief could be false.12

Perhaps justification is meant in its stronger sense, so that

S is analytic when knowledge K of the meanings of some terms in
S is sufficient to provide a justification of the truth of S, where fal-
libility in this justification derives only from fallibility in knowl-
edge K.13

this rules out the examples above, ‘that man is a man’ and a statement
about the time is not epistemically analytic because the justification pro-
vided is not infallible enough. I think this will not do, it is too strict. Often
justification of a complex proposition derives not simply from the knowledge
of the meanings of its terms but also from a deduction of it from sentences
which we can already see to be true. A complex proposition (e.g. that
there is no greatest prime number) is arguably analytic, but it is not jus-
tified merely by knowledge of the meanings of its terms, it is justified also
by a deduction. But then, according the epistemic definition, these complex
propositions are not analytic. A response to this from a supporter of the
epistemic view might be to modify the definition. For generality I assume
now that ‘analytic’ applies to inferences as well as sentences.

1. S is atomically analytic when knowledge K of the meanings of some
terms in S is sufficient to provide a justification of a belief that S is
true (or that S is valid, if S is an inference), where fallibility in this
justification derives only from fallibility in knowledge K.

2. S (a sentence or an inference) is analytic when it is derivable from
(or reducible to, in the case of an inference) only atomically analytic
sentences by means of atomically analytic inferences.

and then complex propositions and inferences may be epistemically analytic.
Notice that the second clause is not epistemic, it requires the possibility of
a derivation. I do not doubt this provides a correct account of analyticity,
however it assumes a notion of justification which I would like to explain
away. If we have a metaphysical approach then the justification for believing
an analytic sentence falls out of knowledge of meaning of some terms in S,
since the meaning of S determines that S is true.

12Perhaps there is a distinction to be made here between meaning and significance, I
shall not discuss it any further here.

13In other words, the justification is fallible to only to the extent that the knowledge of
the meaning S is fallible.
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4.2.2 Conclusion

All in all the metaphysical approach, it seems to me, can do everything the
epistemic approach can do, all without assuming a notion of justification.
Furthermore everything is so much simpler, the corresponding metaphysical
definition of analyticity

1. S is atomically analytic when it is true/valid virtue in of the meanings
of some of its terms.

2. S is analytic when it is derivable from only atomically analytic sen-
tences by means of atomically analytic inferences.

simplifies greatly. This is because ‘. . . is true solely in virtue of meanings of
some terms of . . . ’ is transitive, ‘atomically’ and the entire second clause is
redundant:

S is analytic when it is true/valid virtue of the meanings of some
of its terms.

I conclude that Boghossian’s objections to the metaphysical implications of
a theory of analyticity are successful only if the theory treats analyticity as
a property of propositions. Boghossian’s objections have no force if, as I
have done, we treat truth as a property of propositions and analyticity as a
property of sentences.

4.3 Inferential roles and the criticisms of Quine
and Horwich

4.3.1 Two dogmas

I now consider a famous rejection of the analytic-synthetic distinction from
Quine.

Boghossian notes well of Quine’s famous paper [?] that it is not clear
whether Quine is arguing that

(NF) No coherent, determinate property is expressed by the predicate ‘is
analytic’. . . consequently, no coherent expression is expressed by sen-
tences of the form ‘S is analytic’ and ‘S is synthetic’.

(ET) There is a coherent, determinate property expressed by ‘is analytic’,
but, with the exception of those instances that are generated by stip-
ulational mechanisms, it is necessarily uninstantiated.14

14See [?, p340-2].
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Either of these theses is damaging to my proposal. Since there is question
as to which of these is Quine’s is conclusion I shall assume (for the purposes
of rejecting the argument) that the conclusion of Quine’s argument is

If there is a coherent, determinate property expressed by ‘is an-
alytic’, then, with the exception of those instances that are gen-
erated by stipulational mechanisms, it is necessarily uninstanti-
ated.

and argue that show how Quine does not establish this.15

Initially Quine writes as if his argumentation does not apply to my
project, my project concerns the logical truths, whereas Quine writes that

the major difficultly lies not in the first class of analytic state-
ments, the logical truths, but rather in the second class which
depends on the notion of synonymy.16

The first class is my primary concern, the second class of sentences contains
analytic truths such as

All bachelors are unmarried
A vixen is a female fox.

Quine’s arguments are against a claim that these sentences (of the second
class) are analytic, not a general claim that there is no notion of analyticity
altogether. For example, if an explicit definition has been made in the past
then Quine has no problem, for

. . . the definiendum becomes synonymous with the definiens sim-
ply because it has been created expressly for the purpose of being
synonymous with the definiens. Here we have a really transpar-
ent case of synonymy created by definition; would that all species
of synonymy were as intelligible.

Perhaps what has confused so many in the past is that Quine suggests later
in the paper, after his main arguments, that in the web of belief even the
logical truths are subject to empirical revision, no statement is immune to
revision, Quine notes that the revision of the law of excluded middle has

15Boghossian himself argues that (NF) and (ET) entail a global meaning scepticism
akin to that of Word and object. He then takes the responses to Quines indeterminacy
thesis to apply to the argument of Two dogmas.

16This is the last sentence of section I in [?].
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been proposed for Quantum mechanics. Whatever is to be made of this
comment it is not argued for by the preceding arguments.

The master argument of the paper is that - aside from explicitly defined
synonymy and the logical truths – any account of synonymy presumes an
account of analyticity and vice versa. For example, dictionary definitions of
synonymy are discovered empirically and are subject to revision, furthermore
differing interpretations of the linguistic data are available (there is no true
dictionary). Quine then notes that Frege’s account of analyticity presumes
synonymy (or at least, he notes it of a theory he calls ‘Frege-analyticity’).17

The argument against Carnap’s account of synonymy is a little more
complicated. Carnap divides a language into a basic logic and a set of
meaning postulates, if Ln is a particular language then Carnap can defini-
tion being ‘Ln-analytic’ as following from the logic and meaning postulates
of Ln. Quine’s objection to this is that our language is not an Ln language,
to presume such would be to presume the existence of a set of meaning pos-
tulates. This presumes a fixed account of synonymy (on which the account
of analyticity depends). Effectively Quine is objecting that there is no fact
of the matter about which truths we try our hardest not to revise are mean-
ing postulates and which are simply empirical truths that we happen to find
impossible to refute.

I think the argument of Two dogmas of empiricism is best understood
as a challenge to find the meaning facts.

I shall respond to this by finding the meaning facts, I look for them in the
realm of definitions. Quine discusses definition briefly in section II and in
more detail in Truth by convention. Here is a quotation from Two dogmas.

In formal and informal work alike, thus, we find that definition
– except in the extreme case of explicitly conventional introduc-
tion of new notations - hinges on prior relations of synonymy.
Recognising that the notion of definition does not hold the key
to synonymy and analyticity, let us look further into synonymy
and say no more of definition.

I take it that this comment, if it is true to the remainder of the text, renders
Quine’s paper outdated with respect to its discussions of definition. The
theory of definitions and other meaning fixing events has advanced signif-
icantly to render such a dismissal unwarranted now. Nevertheless, as we
shall see, Quine’s point is easily extended to the more modern theories of
definition.

17The account is that analytic statements are derived by substituting synonymous ex-
pressions into logical truths.
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Modern worries about definitions lie in whether conditions can be given
for the more subtle types of definition that Quine does not discuss, implicit
definitions, to ensure the definition really defines something meaningful (e.g.
Prior’s connective ‘tonk’).

4.3.2 Inferential roles

Quine’s arguments, although not originally applied to logic, may be ex-
tended. We may ask what the meaning facts are that give the logical con-
stants their unrevisable status. Are they simply so deep in our web of belief
that they are hard to refute empirically to the point of appearing paradigms
of analyticity? An attempt to resolve this worry, at least for logical truths,
is to enrich the account of definitions.

What is apparent from our reasoning is that some terms are used by us
such that they fulfil an inferential role. For example, conjunction fulfils a
role of allowing each conjunct to be inferred from it. Perhaps, the terms are
used in order to fulfil these roles.18 In this case terms may be defined such
that they fulfil inferential roles. It is claimed that such definition, provided
that there is a role to be discerned, is as unproblematic as the extreme
cases of explicit definition that Quine chooses to ignore. Such definitions
are commonly called implicit definitions.

For example the word ‘and’ may be implicitly defined by using it to fulfil
the following inferential role:

From the premises A,B infer that C(A, B)

From the premise C(A,B) infer the conclusions A,B

where C stands in for a concept or a word or whatever an inferential role is
a role of.

A sentence is analytic, on an inferential role theory, when it is derivable
from the inference patterns that are its inferential roles. For example, the
inferential role of ‘if. . . then. . . ’ includes the inferences modus ponens and
conditional proof and using them we may infer pifA thenBq. Consequently
pifA thenAq is analytic and a priori (since knowledge of the inferential roles
is a priori, after all, they are our implicit definitions), and also necessary (as
to use the terms otherwise, so that pifA thenAq is not derivable, is to use
them not in those inferential roles and thus so they have different meanings).

The two worries with inferential role theories can be summed up by these
two questions:

18Or to label concepts that fulfil these roles.
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1. Which rules are being followed anyway? This is the Kripke-Quine
worry about indeterminacy.

2. Which rule following is meaning constitutive? There are some rules
that appear to have no meaning (e.g. Prior’s rules for tonk). Perhaps
an answer to this cannot be given without presupposing an account of
analyticity.

4.3.3 The Quinean worry of determinacy

A serious problem for an inferential role theorist is to give an account of
what fact of the matter there is that determines precisely what role we are
fulfilling with our inferences. For example we may see a speaker reasoning,
apparently in accordance with these rules, for ‘and’

From the premises A,B infer the conclusion pA and Bq
From the premise pA and Bq infer the conclusions A,B

it seems that ‘and’ is used to fulfil an inferential role and is thereby defined
to have a certain meaning. The same speaker also reasons as follows

From the premise that A infer ‘God knows that A’

From the premise ‘God knows that A’ infer that A

the speaker may make these inferences on the basis of a religious experi-
ence or through religious education or simply because he finds a belief in
a supreme omniscient being compelling. Intuitively ‘God knows that. . . ’
is not fulfilling any inferential role. Certainly these inferences do not fix
the meaning of the expression ‘God knows that’ such that the inferences
above are valid.19 One might argue that the difference (between ‘God knows
that. . . ’ and ‘. . . and. . . ’) lies in other beliefs the speaker might have about
the nature God. ‘God’ comes as part of a large religious doctrine, whereas
‘and’ is a single logical connective which is thought of only in terms of the
inference patters above. However a speaker may have many beliefs about
the nature (e.g. the logical properties) about conjunction which are part
of large philosophical doctrines (e.g. the speaker may believe, among other
things, that ‘and’ is a paradigm of an implicitly defined connective).

Any data on what rules a speaker is following with regard to a certain
term underdetermines the exact nature of the rule (as the data will not cover

19A proof of divine existence should not come so easily.
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every case). If truth conditions and meaning depend on the rule then the
data underdetermines the truth conditions and hence the meaning of the
term. The term could be applied to an infinity of cases whereas the speaker
will have used it in only a finite number of cases. Looking at the data on
the speakers’ linguistic practices there is not enough to determine what rule
exactly the speaker is following. For example every speaker (of a certain
class of languages) living at around now uses connectives, denote them by
⊕ and ⊗, that follow these rules

A B
A⊕B

⊕I
A⊕B

A
⊕E

A⊕A
B

⊕E

A....
B

A⊗B
⊗I

A A⊗B
A

⊗E





before 1000 A.D.

A B
A⊗B

⊗I
A⊗B

A
⊗E

A⊗A
B

⊗E

A....
B

A⊕B
⊕I

A A⊕B
A

⊕E





after 1000 A.D.

I take it that nobody has spanned the millennium, so everyone has been
following these rules. That is, everyone has been following a rule that is
extensionally identical to this rule (though not necessarily extensionally
equivalent). This of course does not mean that people have been follow-
ing those particular rules. However, if all there is to following a rule is to
accept some inferences as true (i.e. to act such that certain data holds) then
there is no difference between following one rule and following one exten-
sionally identical rule. Put in a different way, the inferential roles of ‘and’
and ‘if. . . then. . . ’ are no different than of ⊗ and ⊕.

Compare with Quine’s argument for the indeterminacy of reference.
Quine takes meaning to be no more than the providing of a translation man-
ual, by a scientist of the topic. Since no scientist can ever collect enough
data to determine his theory, translation hence meaning is underdetermined.
Since there is no more to meaning (for Quine) than providing a scientific
theory of it, the underdeterminacy becomes indeterminacy. Similarly for
Kripke and his connective Quus. The assumption is that the meaning of a
term like + consists only in using it in a certain way, following a rule. But
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the actual use always underdetermines the extension, since actual use is all
there is to following a rule, the underdeterminacy becomes indeterminacy.

A theory of meaning or truth conditions that entails some indetermi-
nacy is not necessarily false. There is reason to suppose that there is some
indeterminacy in meaning (e.g. in vague cases). However the extent of the
indeterminacy outlined above is I believe severe. In general, any theory that
requires meaning or truth conditions to be determined by behaviour suffers
from a similar indeterminacy.

Consider the following cases. It seems that an inferential role theorist,
having only behaviour to observe, cannot discern errors.

• A speaker may use a term with one meaning but following the wrong
rule. For example a speaker may mean ‘and’ but eliminate it as if it
were ‘or’.20

• A speaker may use a term incorrectly with a certain meaning. For
example, committing an arithmetical error.

• A speaker may use a term with a certain meaning without knowing
any rule to apply to it. For example when learning new terms.

The third perhaps can be explained in terms of intentions, a term can have
meaning (or truth conditions or reference) if we hear it from someone else
and use it with the intention of it meaning the same. However the first two
are not so easily accounted for.

It has yet to be explained what fact there is that distinguishes a deviation
from a certain rule from the following of a different rule. If inferential role
is determined by actual inferences and inferential role is all there is to the
truth conditions (or meanings) of the logical connectives then there is no
fact that distinguishes an error from a different inferential role.21

No doubt a principle of charity and radical interpretation will, to some
extent, reduce the indeterminacy in what rules satisfy the data obtained to
date. However this will be of little help with projections into the future,
many rules which differ greatly from each other meet the criterion of the

20In this case the elimination rule for disjunction is valid for conjunction, the speaker
will not be acting inconsistently.

21Not all errors cause inconsistencies, appeal to consistency is not sufficient here. Ap-
peals to consistency (e.g. to rule out tonk) seem somewhat circular to me in the case of
logical connectives as the system we get from defining the connectives is what we use to
determine consistency (unless we allow for the power of logic to be present already in some
sense, which I argue it is above, in which case we have something better than behaviour
to determine the truth conditions of our connectives).
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radical interpretation. We could supply a theory of projectibility of rules
(like providing a theory of what predicate are projectible in inductions) but,
as the Quine of Two Dogmas would be quick to retort, this is tantamount to
assuming analyticity beforehand. On what basis are these decisions made?22

It is too much implicitness to have the implicit definitions made implicitly
by a speaker’s actual inferences. This puts too much of a priority on a
speaker’s behaviour.23

A possible response

The problem of indeterminacy need not be framed against a functional role
theorist. Even if the implicit definition is made explicitly there is argument
to be made that it does not define a term with unique meaning or truth con-
ditions. There may be many candidates that satisfy the inference rules. Here
is another example: although conjunction (. . . and. . . ) satisfies the usual in-
troduction and elimination rules, so does something more complicated like
‘. . . at the same time as. . . ’, or even ‘. . . and. . . while 1+1=2’.

A natural answer is to take the ‘simplest’ candidate, or class of can-
didates (treating members of such a class as synonymous). We can give
a more rigorous account of simplicity here, one meaning a is simpler than
another meaning b when, if someone has the capacity to obtain b then he
has the capacity to obtain a.24 In appendix 14.3 I suggest conditions that
are the minimum required for a agent to be able to reason (these conditions
allow the implicit definition of the logical connectives), being able to han-
dle arithmetic, identity and time is fundamental to thought, but not the
minimum. Thus ‘. . . and. . . ’ is simpler than ‘. . . at the same time as. . . ’.
The usual meanings are clearly candidates for the logical connectives (im-
plicitly defined by our introduction and elimination rules). This handles the
uniqueness problem and the indeterminacy.

This response is not open to a inferential role theorist, what functional
role a connective is filling depends on how the speaker is using it. The sense
of simplicity for inferential roles would be that a is simpler than b if whatever
capacity a speaker requires to have a connective filling role b also fills role

22I think an antirealist can provide an answer to this: the conservative rules are pro-
jectible and they are the ones that yield analyticity, regardless of what the speaker thinks
he is doing. I have no objection to this other than that this makes analyticity a mere
epiphenomenon of the way a speaker happens to be using his language. Perhaps such a
conclusion is part of the point of antirealism, so much the worse for an antirealist I think.

23Either in his public or mental life, not all errors or sentences are spoken to others (or
spoken at all).

24‘Obtain’ here means ‘express terms with the meaning of’.
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a. But given the date, the usual ‘and’ and ⊗ have the same inferential role,
neither is simpler than the other. Moreover, since the term has only been
used in a finite number of cases, at any time there is an infinity of different
rules all fulfilling the same role just for those cases, no one of them can be
said to be simpler that any of the others.

A response to the indeterminacy in terms of simplicity is applicable if
the implicit definition is made explicitly, for then we can ask what goes on
in the speakers mind for him to make such a definition, we can ask what his
intentions were. The answer ‘the simplest thing’ becomes more reasonable.
I see more future therefore in ground analyticity not in implicit implicit
definitions (is the inferential role theory does) but in explicit implicit defi-
nitions (i.e. theorise that there was a time and a place where the inference
rules were used, explicitly, as deifnitions). I postulate an account of how
this might work in chapter 14.

4.3.4 The worry of reliability

The second question (of section 4.3.2) is asked bearing in mind that not
just any inferential roles yield a meaning, some roles are inconsistent (e.g.
tonk). It is natrual to say that such roles do not make for legitimate implicit
definitions, but this requires a condition on legitimacy that does not assume
an account of analyticity.

The worry behind the question comes from the fact that an implicit
definition defines meaning or at least the truth conditions of a term by
stipulating sentences containing that term as true, or certain inferences in-
volving that term as valid. Much of the problems with implicit definitions
centre around this stipulation, e.g. it is not such an easy thing to stipulate
that something is true, especially if it already has some degree of substance.

A natural scientist of the late 17th-century may have introduced the
term ‘phlogiston’ by implicit definition

Phlogiston is released when combustion occurs.

this implicit definition requires a great deal of other beliefs about the nature
of combustion to understand it (as that historical theory). The meaning of
‘phlogiston’ is then dependent on what we already take to be true. With a
modern theory of combustion behind us we cannot understand ‘phlogiston’,
by the implicit definition above, to mean as the 17th-century chemist did. As
modern chemists we may understand ‘phlogiston’ by the implicit definition
above with the additional clause that the definition is to be taken with
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certain 17th-century chemistry. Alternatively we may interpret the 17th-
century term ‘phlogiston’ in our own theory and refer to it with the same
syntax.

Since we now consider phlogiston theory to be false, this kind of example
implies the following about implicit definitions.

1. An implicitly defined term might change its meaning as our back-
ground beliefs change.

2. We may later discover that a sentence with the same truth conditions
to be false (e.g. Lavoisier observed ‘phlogiston exists’ is false).

3. If the background beliefs are false then there may be no, or insubstan-
tial, meaning to the implicitly defined term.

An example of the third is the following definition of the term ‘peaceday’

Peaceday was when I stopped beating my wife.

The famous, false (in my case) presupposition stops this from being a suc-
cessful implicit definition, for the sentence is not true and stipulating oth-
erwise will not change this. We may avoid this by applying the Ramsey
technique and having the following implicit definition:

If there was a day I stopped beating my wife then Peaceday was
when I stopped beating my wife.

which can be taken as true (even if the conditional is not material) without
any fear of falsity.

This is adequate for cases where a defining clause is expressed already in
the implicit definition (here ‘whatever day I stopped beating my wife’) for
then we may place it in a conditional with an appropriate antecedent (e.g.
‘if there is a day I stopped beating my wife. . . ’). However, it is not clear how
to do this for logical connectives, where we cannot assume that a defining
clause is expressible to be put in the antecedent. Further, it would not do,
in giving an account of how we come to define ‘if. . . then. . . ’, to require that
we must already have a conditional to make the implicit definition.

Note that the implicit definitions above involve the implicit definition
of a term through the use of other highly substantive terms. For example
‘peaceday’ and ‘phlogiston’ were defined using the terms ‘beating’, ‘wife’
and ‘combustion’. These terms bore substantive background beliefs, e.g.
beliefs about the basic composition of substances in the case of phlogiston.



72 CHAPTER 4. ANALYTICITY AND ITS CRITICS

In the case of peaceday these background beliefs may be required even to
understand the definition.

Thus we cannot be sure that an implicitly defined term has the meaning
we wished, is true, or even means anything at all. This is an unpleasant
setback to the program of defining and justifying logical connectives and
inferences by means of implicit definitions (as is shown by Prior’s connective
tonk).

We encounter similar problems if we expect to obtain any significant new
knowledge from implicit definitions. An implicitly defined term, ultimately,
relies on a stipulation (the definition is the stipulation). As we have seen
above not just any stipulation is legitimate.25 But, as the examples above
suggest, it requires a significant amount of knowledge to know that an im-
plicit definition is legitimate. Indeed, it seems to require as much knowledge
as we ‘gain’ from the definition. Further, in many cases, the knowledge of
legitimacy is an a posteriori affair; for example we later learned that the
background beliefs behind phlogiston theory were not true.

The charge is that implicit definition is not a reliable mechanism for
defining terms. We cannot guarantee that the sentence we take to be true,
or inference we take to be valid, actually is true or valid. The implicit
definition is subject to revision and change as we learn more and make new
discoveries. If this is the case, then we should not expect anything derived
from implicit definitions to be a priori or even true.

My suggested response

The best response, I think, is to show how the harmony (normalisation)
requirement filters out all the bad cases in a non ad hoc way.

It should be clear that implicit definitions made within a revisable frame-
work are themselves subject to revision and are no more a priori than the
framework itself; this is true of any term or sentence that requires the frame-
work to be understood. Further, an implicit definition that itself adds to
the framework is no more than an unjustified stipulation and will not add
to our knowledge even if it happens to be true.

For an implicit definition to have the a priori nature we require we must
ensure that

25Horwich has another good example, the implicit definition of f such that

snow is green and moon is f

is true, is not a legitimate definition.
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1. it is made from within a true (if it contains any assumptions) and
unrevisable framework

2. the implicit definition adds no new information that does not involve
the defined term.

But how is it best to understand the phrase ‘adds nothing new’? An implicit
definition adds nothing new if we can always eliminate it without affecting
our reasoning or knowledge. That is, an implicit definition of t is eliminable
when it is not necessary for achieving knowledge of any proposition that does
not involve t.26 But this is exactly the requirement of harmony (see 3.3.1),
if our deductions normalise (the connective is in harmony) then the new
connective is eliminable. Also note the identity between these ideas and
much of the discussion of conservativeness in 3.3.1.

26The definition in Horwich’s counterexample is not eliminable, for we may use it do
deduce something new: snow is green. Further the implicit definition is necessary for the
deduction of this.



74 CHAPTER 4. ANALYTICITY AND ITS CRITICS



Chapter 5

Other responses to worries
about reliability

The theories discussed here are not primarily responses to the Quinean scep-
tical worry outlined in section 4.3.3, although finding what response they
would give is not difficult. I discuss two attepts at responding to the worry
of section 4.3.4.

One form of response, by Peacocke, is to use a semantics to discern a
genuine inferential role from a non genuine one. For example a semantics
does not necessarily contain an element ‘God’, but it does contain truth
value assignments. Thus conjunction obtains meaning by fulfilling a role
underpinned by truth value assignments whereas ‘God knows that. . . ’ has
no primitive semantic element to give it its meaning (so as to refer to a
supreme being), so it is not analytic.

Another response, by Dummett, is to give syntactic considerations on
what rules are legitimate (being an antirealist, semantic considerations do
not come so easily to Dummett).

I shall reject Peacocke’s account and not object greatly to Dummett’s
account. I discuss the two accounts here for two reasons. Firstly it is inter-
esting to see how both accounts, coming from different sides of the realism
vs antirealism debate both rely on something like the harmony requirement
to work. Secondly I think a rejection of Peacocke’s strategy helps motivate
(by a the-alternatives-fail argument) the strategy I employ in chapter 14.

5.1 Peacocke’s realism

Peacocke’s realist approach may be found in [?]. Peacocke argues that

75
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1. The famous rules for the logical connectives are primitively obvious

2. Finding such inference rules primitively obvious is partially constitu-
tive of understanding it [the logical connective].

3. The semantic value of a logical constant is the function on semantic
values on which the constant operates which ensures that

(a) the principles the speaker finds primitively obvious for it are truth
preserving

(b) any maximal set of limiting principles for the constant are truth
preserving.

The limiting principles clause is to allow Peacocke to justify the existential
elimination rule which is certainly not primitively obvious. Peacocke uses the
notion of limiting principles to validate elimination rules for logical constants
for which only the introduction rules are primitively obvious, in particular
the existential quantifier.1 The existential quantifier may be introduced like
this:

Fa
∃xFx

and a speaker may find only rules of this kind primitively obvious. Basically,
the limiting principle for ∃ is an elimination rule that is validated by the
strongest semantic assignment to ∃ that validates the introduction rules.
Peacocke claims that the classical interpretation of the existential quantifier
is the only such principle and so a maximal set of limiting principles contains
only it.

I shall discuss now the idea behind the limiting principle clause. The
idea is this, take the strongest semantic assignment for the introduction
rules and then find an elimination rule for which it is also the strongest
assignment. Any speaker is then justified in using this elimination rule.
Why the strongest semantic assignment? Let the canonical grounds (Pea-
cocke’s terminology) be the premises on which the connective is introduced,
a speaker may then realise that his introduction rules exhaust the range of
canonical grounds for the connective and that there are no others. If the
introduction rules do exhaust the canonical grounds for the connective then
it should be assigned the strongest semantics. Why? Peacocke does not say,

1In my discussion of first order logic I shall use an elimination for the existential
quantifier which far simpler than Peackocke’s and is, I think, obvious.
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neither does he say where the ‘range’ of canonical grounds comes from aside
from the introduction rules supplied for the connective.

Perhaps the range of canonical grounds derives from the semantics and
that the actual canonical grounds derives from the syntax. That is, the
semantics tells us in what cases we may introduce an certain connective,
and if these are exactly the cases considered by the (premises of the) intro-
duction rules for the connective then the connective should be assigned the
strongest semantic value satisfying the introduction rules and from this we
may justify an elimination rule (even if no speaker can work out what that
rule is exactly). This works only if the connective in question has already
been assigned a semantics, to assume this begs the question entirely for we
seek to answer how each connective obtains its semantic value, we cannot
simply assume that it already has one.

Perhaps the range of canonical grounds is not obtained from the seman-
tics, then I do not see how it could differ from the premises of the introduc-
tion rules, in which case the introduction rules trivially exhaust the range of
canonical grounds for a connective. Peacocke’s suggestion might be that if
certain introduction rules are all the introduction rules then the connective
should be assigned the strongest semantics so as to ensure that no other
potential introduction rules are validated (so that the introduction rules are
the only valid rules for introducing the connective). But then, in the case of
the existential quantifier, I do not see how this justifies the classical elimina-
tion rule. The strongest semantics that validate the existential introduction
rules is not the classical use. Consider what I shall call the independent
existential quantifier, this is where ‘something’ refers to something in the
domain rather than quantifying.2

A semantics for the independent existential quantifier is easily obtained.
Let a model M consist of a domain D and an interpretation I of the pred-
icates and constants,3 Let v be a valuation that assigns elements of D to
variables as with usual semantics and Formulae are be satisfied by pairs con-
sisting of a valuation and a set of variables. Also, as in the usual semantics
for classical logic, formulae may be satisfied by a valuation alone (not in

2For example, Peter might see Jane in a state of extreme anger and say ‘someone is
not a happy bunny’. Or perhaps the reading of ‘everyone loves someone’ where it is the
same ‘someone’ being loved. This reading may not, as usually characterised, be a matter of
scope, but in fact be a matter of the word ‘someone’ having a particular reference. Whether
there really is such a use of the term in English is beside the point for a semantics can be
defined for it, if English does not possess an independent existential quantifier, so much
the worse for Peacocke as his thesis, it seems to me, entails that it (or something even
stronger, if there is such a thing) is the correct semantics for the existential quantifier.

3I assigns sets of n-tuples of elements of D to n-ary predicates etc.
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pair). Let U be a set of variables

• v(⊥) 6= T

• 〈U, v〉(P (t1 . . . tn)) = T iff every valuation v′ that agrees with v on
everything except perhaps on what is assigned to the variables of U is
such that v′(t1) . . . v′(tn) belongs to P I .4.

• 〈U, v〉(B ∧ C) = T iff 〈U, v〉(B) and 〈U, v〉(C) are true

• 〈U, v〉(B ∨C) = T iff v′(B) or v′(C) is true for every valuation v′ that
agrees with v on everything accept perhaps the members of U .

• 〈U, v〉(∼B) = T iff v′(B) is not true for every valuation v′ that agrees
with v on everything accept perhaps the members of U .

• 〈U, v〉(∀xB) = T iff 〈U ∪ {x}, v〉(B) is true.

• 〈U, v〉(∃xB) = T iff 〈U, v′〉(B) is true for some valuation v′ that agrees
with v on everything except perhaps on x.

Γ ² A when for any model, v(A) = T whenever v(Γ) = T .5 Also we may
show, by induction on the degree of A, that 〈U, v〉(A) = T iff v′(A) = T
for every valuation v′ that agrees with v on everything except perhaps the
variables in U .

In this semantics the ‘value’ of the existential quantifier is an element of
the domain that does not depend on any universal quantifiers that contain
it (the existential quantifier) in their scope. The usual inference rules are all
validated by this semantics.6 In this semantics, ∀x∃yA is interchangeable (in
any formula) with ∃y∀xA,7 but also ∃xA is interchangeable with∼∀x∼A. So
the semantic assignment above is clearly stronger than the classical semantic

4Note that v(B) has the same value as 〈∅, v〉(B)
5This semantics does not involve truth value gaps, an induction on the degree of A

shows that v(A) 6= T iff v(∼A) = T . Thus if U is empty then the semantic definitions
above are equivalent to the usual classical ones.

6By induction on the length of a deduction Γ ` A we must show that if v(Γ) = T then
v(A) = T is true. For example if the last step in the deduction is ∼I then by induction
hypothesis if v(Γ ∪ {B}) = T then v(⊥) = T , thus v(Γ ∪ {B}) 6= T v(∼B) = T .

7To see this we need only verify that 〈U, v〉∀x∃yA = T iff 〈U, v〉∃y∀xA = T :

〈U, v〉(∀x∃yA) = T iff 〈U ∪ {x}, v〉(∃yA) = T iff 〈U ∪ {x}, v′〉(A) = T iff
〈U, v′〉(∀xA) = T iff 〈U, v〉(∃y∀xA) = T
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assignment of the existential quantifier, and supports this rule in addition
to the usual rules: ∀x∃yA

∃y∀xA
∃P

If talk involving limiting principles is necessary to Peacocke’s thesis then
he does not obtain the logic he wishes as classical first order logic is not the
logic that satisfies his conditions (it is not based on the strongest semantics
for which the introduction rules are sound).

Problems with limiting principles aside, I think Peacocke’s approach
suffers from a problem which arises from his reliance on semantics. I think
the question of what a correct semantics is like should be at least in part
answered by the question of what rules govern the logical connectives. Since
a major part of the semantics is derived from the logic, I claim that it is
begging the question to assume a certain semantics when explaining why
certain logical inferences are valid.8

In Peacocke’s discussion of classical negation. The negation of A is,
according to Peacocke, the weakest ‘condition’ (Peacocke’s terminology)
incompatible with A.9 This then justifies the famous inference rules for
negation. Furthermore Peackocke claims, without argument, that the dou-
ble negation elimination rule follows from these considerations, i.e. that
A follows from not-not-A. It follows from this that A and not-not-A are
equivalent. But without the double negation elimination rule not-not-A is
weaker than A, so it seems that without the double negation elimination rule
negation is weaker. So if not-not-A is the weakest condition incompatible
with not-A we should not allow it to be as strong as A if we can avoid it.
In other words we should not accept double negation elimination.

The problem inherent in the discussion above is that there is a shift
from a semantic sense of weakness to a proof theoretic sense of weakness.
Proof theoretically speaking, classical logic is stronger than intuitionistic
logic as classical logic has more theorems. However semantically speaking,
intuitionistic logic is stronger.10 Peacocke clearly intends ‘weakest’ to be

8Perhaps this does not apply to Peacocke if he rejects my claim that syntax is prior
to semantics. If this is so and such a position is tenable, then Peacocke does not beg the
question, although I cannot adopt his theory in view of my belief that syntax comes first.

9On p164 Peacocke has to change his definition of a limiting principle to the weakest
semantic assignment, why the limiting principle for negation requires the weakest assign-
ment whereas for the existential quantifier it requires the strongest assignment is not
explained.

10Take any semantics for intuitionistic logic, the conditions by which ¬A is true entail
the conditions under which A is not true, the ‘not’ in italics is of a classical meta-language.
There are well known problems with trying to characterise this ‘not’ in the object language
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in its semantic sense. But what is the semantics? Not every semantics
allows for an easy addition of a classical negation, there are semantics for
intuitionistic logic where the weakest condition incompatible with A does
not support the classical rules. Peacocke seems to have assumed a truth
functional semantics for his entire discussion.

Peacocke responds to a general objection that the weakest condition
incompatible with A need not validate the rules of classical negation, he as-
sumes that anyone levelling such an objection is an intuitionist. His response
is that an intuitionist means something different by ‘incompatible’ from a
classicist. Apparently, in order to be an intuitionist one must be a verifica-
tionist, Peacocke claims that an intuitionist means by incompatibility that
‘the supposition that A and B are both verified leads to absurdity’.11

Even if Peacocke is correct that an intuitionist must mean something
different by such terms (which he is not), I still do not see why negation must
be classical, unless Peacocke has assumed that there is a correct semantics
and that it is classical.

It becomes more apparent that Peacocke has made such an assumption
in his discussion of tonk. Let us denote tonk by tonk and the rules for tonk
allow that A tonkB follows from A, and B follows from A tonkB. Any logic
containing tonk either has no theorems or no non-theorems, the challenge
posed by tonk is to explain why it cannot be defined into existence. Peacocke
disallows tonk as a genuine logical connective on semantic grounds:

The semantical objection to tonk is that there is no binary func-
tion on truth values [of the sentences tonk connects] which vali-
dates both its introduction and elimination rules. (p167)

as it stands this is fine objection to tonk for it shows that no semantics
could support it.12 But this constraint does also rules out connectives like
the existential quantifier, the existential quantifier cannot be interpreted as
a truth function on the truth values of any of its subformulae.

Perhaps I am reading his semantical objection too literally. Earlier he
formulates the semantic constraint whereby a new connective with certain
laws is legitimately introduced when ‘there is a semantical value for it which

(the two negations collapse into one classical negation).
11This perhaps is a common supposition, although intuitionistic logic is often motivated

with an appeal to verification or grounds for assertion, I see no reason that an intuitionist
necessarily be a verificationist.

12On the condition that the semantics allows all four combinations of truth values for
any two atomic formulae. If, in the semantics, no proposition is ever false, then tonk is
unproblematic.
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makes those laws necessarily truth-preserving’. Here he refers to ‘semantic
value’ which need not be a truth function but an appropriate element of the
semantics. Peacocke then claims that this semantic constraint ensures that
the addition of new logical constant (connective) is a conservative extension.

• Suppose we have a strict conditional → with the introduction an elim-
ination rules of intuitionistic logic, we do not wish [(A→B)→A]→A
to be necessarily true as → is the strict conditional (the conditional of
entailment). We then add the classical conditional ⊃ with its famil-
iar inference rules (which allow the deduction of [(A ⊃ B) ⊃ A] ⊃ A).
Famously there is a function on truth values that validates ⊃. The
result of this addition is that the strict conditional → collapses into
the classical conditional ⊃: for example, [(A→B)→A]→A becomes
deducible. Something has gone wrong, this should not happen for the
addition of the classical conditional allows us to prove things that are
not true of the strict conditional. But Peacocke’s requirement is met
for the classical conditional, there is a function on truth values that
validates its rules, more so, there is a function on truth values that is
completely characterised by the classical conditional. Not only should
nothing be wrong but according to Peacocke the addition of ⊃ should
be a conservative addition (p168 for a ‘theorem’ to this effect).

• Let us define the connective Ex such that
A[x/t]
ExA

EI
ExA

A[x/a] EE
where a is a fresh constant13

Ex is the independent existential quantifier. Adding Ex to a first
order logic results in the existential quantifier collapsing into the in-
dependent existential quantifier. Since there are fewer restrictions on
Ex and the introduction rules for ∃x and Ex are the same, we can
turn instances of ∃x into Ex, profit from the weaker restrictions and
then turn Ex back into ∃x.14

13a is fresh when a does not appear in any assumptions on which ExA depends, a does
not occur in any premises of the deduction as a whole, and a is introduced by applications
of EE only with the premise ExA.

14Here is a sample deduction:

∀x∃yFxy

∃yFxy
∀E »»Fxc1

EyFxy
EI

EyFxy

Fxa
EE

∀xFxa
∀I

∃y∀xFxy
EI

∃E(1)
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Since no collapse occurs in natural language we must show what is
wrong with such a simple addition. It is not enough to appeal to
the nonexistence of any semantic valuations to rule it out, I give a
semantics for Ex above.

These two examples cast doubt on the claim that Peacocke’s semantic con-
straint does ensure a conservative extension, or that it ensures an appropri-
ate logic.15 Certainly if his constraint is what I think it is, then it does not
ensure a conservative extension, neither is it in general applicable (e.g. to
the existential quantifier).

Perhaps what has gone wrong is that I have not interpreted Peacocke’s
semantic constraint properly, perhaps Peacocke’s semantic constraint really
requires that the semantics should already be able to interpret the additional
connective. In this case the addition will be conservative and Peacocke’s
‘proof’ that it ensures a conservative extension really is a proof. However
what connectives and rules a semantics is able to interpret depends on the
semantics. An intutionistic semantics cannot interpret classical negation
(hence the collapse when one is added), and many classical semantics (e.g.
the usual truth functional semantics) have no way of interpreting a non-
truth functional connective except as a truth function. Peacocke’s semantic
objection to tonk either requires a semantics to be fixed prior to what rules
and connective we have (I say this begs the question) or it does not work.

Maybe the semantic constraint could be cashed out this way. If logic L
is sound and complete for semantics S and S′, then if L′ (an extension of
L) is also (sound and) complete for S′, L′ is a conservative extension of L.
To see this suppose that A is in the language of L and is provable in L′,
then it is true in S′, but since L is complete for S′ it is provable also in L.
But considerations of conservative extensions are not enough, by itself tonk
is not inconsistent and has a semantics.16 Negation is not a conservative
extension over tonk, but that does not rule negation out as illegitimate.
Certainly if negation is necessarily added before tonk is added then tonk is
illegitimate, but why that ordering is so special is yet to be explained.

The problem is the reliance on semantics, either we must assume a par-
ticular semantics and beg the question, or we cannot provide adequate con-

15A logic with only an existential quantifier that allows ‘someone is a parent of everyone’
to be deducible from ‘everyone is a child of someone’ is not appropriate, the independent
existential quantifier allows this and we must show how its addition so as to collapse the
existential quantifier is not legitimate.

16The models of tonk semantics have no interpretation of ⊥ and assign T to every atomic
formula. Tonk then may be interpreted as the truth function ‘and’ or ‘or’.
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straints on which connectives are legitimate.

5.2 Dummett’s antirealism

Dummett rejects the idea that the meaning of a term is given in terms
of truth conditions. The basic objection is that such a theory requires us
to know the meaning of some sentences the truth conditions of which are
beyond our ken.

Dummett’s account of meaning is given in terms of verification. The
meaning of a sentence is given by the means of verifying it. Conjunction
obtains its meaning by its verification conditions. The inference rules for
conjunction tell us that a verification of pA and Bq consists of a verification
of A and a verification of B. In Dummett’s language, what we know when
we know the meaning of conjunction is that exactly the verifications (or
warrants) for (believing/asserting etc.) A and B are the verifications (or
warrants) for (believing/asserting etc.) pA and Bq. Also for ‘if. . . then. . . ’:
any verification (or warrant) for inferring B from A is warrant (or verifica-
tion) for (believing/asserting etc.) pifA thenBq.

The intuition for the replacement of truth conditions with verifications
derives from an analogy with mathematics and proofs. Dummett rejects
that any mathematical statement is to be understood in terms of truth con-
ditions (on the grounds that the truth conditions may be too complicated, or
inaccessible in the case of undecidable statements, for a speaker to grasp).
A mathematical statement is understood in terms of what is involved in
proving it. The understanding of the logical constants derives from the
constructive semantics for mathematics (on which intuitionistic logic basis
itself), where mathematical statements are understood in terms of construc-
tions (proofs) rather than truth. The non-mathematical analogue of a proof
for Dummett is verification or perhaps more generally warrant.

A fundamental worry for Dummett is that the account of the meanings
of the logical connectives in terms of verification seems circular. Consider
the explanation of the conditional, a (verified/warranted) conditional allows
us to turn an arbitrary verification/warrant of its premise into a verifica-
tion/warrant of its conclusion. The seems to entail that

we must, in some sense, be able to survey or grasp some totality
of constructions which will include all possible proofs of a given
statement.17

17[?, p390]
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The problem arises because the addition of the logical connectives, together
with their inference rules, has enhanced what it is to be a proof (verifica-
tion). If we introduce the conditional such that a verification pifA thenBq
involves a verification P of the consequent from (an assumption of the an-
tecedent), then, what counts as a verification is expanded so that P may
involve conditional reasoning.18 But this seems circular, for the meaning of
the conditional appears to depend on a notion of a verification that itself
depends on the introduction of a conditional. What constitutes a verifica-
tion (a proof) depends on what terms are introduced (what they mean), and
(the meanings of) what terms are introduced depends on what constitutes
a verification (or proof). Not all circularities are vicious, apparent circu-
larity in many conditions may be removed by reformulating the conditions
in terms of a recursive condition. Dummett eliminates the circularity using
standard methodology: to structure sentences into a hierarchy of increasing
complexity and define a verification (a proof) recursively on the levels. For
example

• there are atomic verifications

• a verification of pA and Bq or pifA thenBq etc. depends only on a
relation between less complex verifications of A and of B.

and so when introducing a new term, if a verification of it can be defined
only in terms of less complex verifications then its definition is not viciously
circular. We need only to find the location of a sentence involving the new
term on the hierarchy of complexity and to find its verification conditions
we follow its dependencies down to the atomic cases.

Dummett must fear any form of holism for, on a holistic picture, the
addition of new terms could cause a change in meaning in previously used
terms. This would mean that a verification of a complex expression need not
depend only on verifications of its parts, so the circularity cannot be removed
by an appeal to a hierarchy of complexity of sentences (formulae).19 The
requirement Dummett puts on a theory of meaning is that the addition of a
term of the language to any part of the language not containing that term

18This is because everything depends on use in a Dummettian theory of meaning, what
counts as a verification also, in part, depends on how the terms of the language are used.
Dummett, being an antirealist, does not wish to appeal to objective truth or validity
conditions.

19Such considerations also lead Dummett to make his ‘fundamental assumption’ in [?]:
A can be justified only by an application of the introduction rule for its main connective.
Since I assume an innate concept of an objective truth, I am free from such worries about
verification and do not require the fundamental assumption.
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must constitute a conservative extension. The meaning of the new term must
depend on its relation to the old terms without altering their meanings.20

The response to the sceptical worries for Dummett is quite simple. An
implicit definition is legitimate if it conservatively extends an inference sys-
tem. Put in terms of inferential roles, the genuine inferential roles are the
ones that yield conservative extensions when a connective is added to ful-
fil them. Conservativeness can be characterised partly in terms of a proof
theoretic property, what Dummett calls harmony.

I have shall give little objection to Dummett’s account in this thesis,
except perhaps its apparent reliance on inferential roles (which I have already
discussed in a previous chapter). I do not wish to get involved in a discussion
of what exactly Dummett’s philosophy of language is, so I shall not engage
Dummett much further. In later chapters I suggest methods by which we
may obtain harmonious rules for classical logic, in particular a logic that
contains the law of excluded middle. This suggests that one may maintain
Dummett’s verificationism and still be a realist in accepting bivalence (or at
least the law of excluded middle), and so Dummett’s philosophy need not
be taken (on Dummett’s on grounds) as an antirealist one. But I shall not
push this point much in the thesis, my main concern now is to see how much
logic we can get maintaining the demand for harmony.

I think it is interesting to note that considerations starting from op-
posing philosophical positions (realism and antirealism) both have a similar
condition on the legitimacy of an implicit definitions. Dummett explicitly
uses harmony (and is lead there by his verificationalism), and Peacocke’s
realism leads him to a demand for ‘limiting principles’ which is close to a
demand for harmony (the fact that is is not a demand for harmony causes
Peacocke his problems).

5.3 Concluding remarks

The demand for harmony has an elegance that should not be overlooked.
Harmony is a proof theoretic property and does not depend on a semantics.
Therefore the problems of assuming a pre-existing semantics that Peacocke
suffered are avoided. Furthermore the demand for conservativeness guaran-
tees us that the addition of the new term will not allow us to infer any new
theorems of the old language. That is, when we add the new term there is
no possibility of allowing us to infer something new that might be subject
to empirical refutation. Of course, it might allow us to infer some old belief

20If it did then the definition of the new term would be viciously circular.
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(that we could infer before making the definition) more easily,21 but since
the new term (and its definition) was not necessary for this inference, any
problems with this old belief are not the fault of the definition.

Suppose t is a new term that has been introduced conservatively, and
that the sentences P and C do not contain t. Since the addition of t (and its
rules) is conservative it follows that if there is a truth preserving deduction
of C from P using the term t (in the body of the deduction) then there is
a truth preserving deduction of C from P without use of the term t at all.
This means that we are free to stipulate that the rules of t preserve truth, a
case of this stipulation leading us to a false belief that we did not already,
at least tacitly, posses cannot arise.

What does this stipulation amount to? Here is a realist picture due to
David Lewis.22 A language has meaning and truth conditions in terms of sets
of possible worlds (the famous picture), our conventions dictate which lan-
guage we come to possess. So I claim that on Lewis’ picture we may regard
the stipulation of the rules of new term serves as part of the specification of
which language (or languages) we possess (or in Lewis’ terminology, which
languages are those in which we place our trust). Since t is a conservative
extension there really is a language that contains it together with all our old
terms.23

21This is my answer to the question of what use deduction is, if there is a sense in which
it provides us with no new information.

22See Languages and Language, collected papers Vol I.
23The problem of legitimate implicit definitions may be reformulated, on Lewis’ picture,

as the problem on which stipulations are guaranteed to have languages that satisfy them.
Lewis’ picture is good enough for me, although I shall say nothing about the nature of
propositions.



Chapter 6

A first postulate for the rules
of logic

Now that we have discussed some objections and replies to an implicit def-
inition theory of analyticity, it is necessary to suggest what the definitions
might be. The usual natural deduction rules for classical logic are a good
start.

6.1 The rules

Here are some famous natural deduction rules:

A ∧B
A

∧E
A ∧B

B
∧E

A B
A ∧B

∧I

A ∨B

¡¡An
....
C

¡¡Bn
....
C

C
∨E(n) A

A ∨B
∨I

B
A ∨B

∨I

A A→B
B

⊃E

¡¡An
....
B

A⊃B
⊃I(n)

⊥
B
⊥E
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∼∼A
A

DNE

where ∼A is A⊃⊥.
If we leave aside the rule DNE then the system as a whole normalises,

that is, all the connectives are eliminable in the sense above. In other words,
the introduction an subsequent elimination of a formula in any deduction
may be removed (or reduced). Any part of the deduction like this

....
A B
A ∧B

∧I

A
∧E

may be replaced simply by the Prawitz tree at the beginning:
....
A

Any part of a deduction like this:
....
A

A ∨B

¡¡Am
....
C

¡¡Bm
....
C

C
∨E(m)

may be reduced by appending the Prawitz tree

A....
C (obtained by removing

the crossing-out and superscript of p¡¡Amq) to copies of the initial Prawitz

tree

....
A, the whole thing is replaced by:

....
A....
C

A part like this:

A

¡¡An
....
B

A⊃B
⊃I(n)

B
⊃E
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may be replaced by appending the Prawitz tree

A....
B (obtained similarly by

removing crossings-out and superscripts) to copies of the Prawitz tree

....
A:

....
A....
B

there is no case to consider for ⊥ as it has no introduction rule.
Now consider any formula X that is the conclusion of an introduction

rule and is the conclusion of a minor premise of ∨E, and is not the conclusion
of the deduction:

A ∨B

¡¡An
....
X

¡¡Bn
....
X

X
D

?
∨E(n)

X is the conclusion of ∨E and is then used in some other rule. We replace
such a section of a deduction by:

A ∨B

¡¡A....
X
D

?

¡¡B....
X
D

?

D
∨E

by repeatedly making these replacements we ensure that no conclusion of
an introduction rule which is not the conclusion of the deduction is also the
conclusion of the minor premise of an application of ∨E.

Now let X be a formula in a deduction that is (i) the conclusion of an
introduction rule, (ii) is not the conclusion of the deduction, and (iii) has at
least as high a degree (see 1.4.2) as any other formula satisfying (i-ii). This
formula X is must be eliminated next step as any introduction rule increases
degree (and we have shown above that it is not used in the deductive premise
of a ∨E). Applying the simple reduction cases above this introduction and
subsequent elimination may be removed. By induction on the degree of
X it follows that a deduction may be normalised (all introductions and
subsequent eliminations of the same formula may be removed).

The problem here is that we proved normalisation for a system without
DNE, which is a classically valid rule and is not derivable from the other
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rules. In the system postulated above there are introductions and subsequent
eliminations of ⊃ that we cannot remove:

©©∼An
....
⊥

∼∼A
⊃I(n)

A
DNE

and we cannot use the inference from ∼A to ⊥ to obtain a direct inference
of A. Consider this example:

¡¡A2

A ∨ ∼A
∨I

»»»»»»∼(A ∨ ∼A)1

⊥ ⊃E

∼A
⊃I(2)

A ∨ ∼A
∨I

»»»»»»∼(A ∨ ∼A)1

⊥
∼∼ (A ∨ ∼A)

⊃I(1)

A ∨ ∼A
DNE

and we cannot reduce this to a direct deduction of A ∨ ∼A without the
introduction and subsequent elimination if ∼∼ (A ∨ ∼A).

Scrapping the rule DNE allows normalisation but deprives us of clas-
sical logic. I will turn to my chosen method of obtaining normalisation for
classical logic in chapter 8.

6.2 A summary of the story so far

I say that we may define a connective by making an implicit definition. I
have not stated by what means the definition is made, though I suggest a
theory of it in chapter 14.

The condition on a legitimate implicit definition of a connective or a
system of connectives is that of harmony.

The requirement of harmony extends only to logical connectives that
are defined entirely by their inference rules. Not all connectives have this
property, for example temporal connectives obtain their meaning, in part,
by our perception of of time (and perhaps also change). Thus the content
of a temporal or special operator is not entirely a logical matter. Conse-
quently we should not be surprised if the logic of temporal operators is not
harmonious (or conservative over our basic logic).
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We should be surprised (if I am correct about implicit definitions) if our
basic system of deduction and entailment is not harmonious. At the moment,
this claim derives from an intuition on my part, I see no other general
condition of legitimacy on implicit definitions and I believe the implicit
definition account of analyticity is correct.
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Chapter 7

Normalisation for classical
logic: other attempts

In response to Dummett’s demand (and the seemingly general need that
any implicit definition theory has) for normalisation of deductions (a.k.a.
harmony) Rumfitt presents an enhancement to the standard Prawitz natural
deduction structure so that classical logic normalises. A good, if not the only,
reason to demand normalisation is to ensure consistency, however, I show
that with Rumfitt’s enhancements normalisation does not entail consistency.

7.1 Why normalisation

One response to problems of the justification of deduction is that the logi-
cal connectives are implicitly defined by their introduction and elimination
rules. The deductive inferences are valid because logical connectives are im-
plicitly defined so that they are valid. However, not all implicit definitions
are legitimate. Prior’s connective tonk is implicitly defined so that

A
A tonk B

tonk I
A tonk B

B
tonkE

are valid. But in a system with these inference rules all propositions become
equivalent.

A natural response notes that since B is a consequence of A tonk B
we should expect B to be necessary for introducing it. Think of A tonk B
as a package containing some data, according to the elimination rule it
contains B. We should expect then that B should have been required for
the production of the package A tonk B. But it was not. Compare this with

93
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conjunction
A B
A ∧B

A ∧B
A

A ∧B
B

the consequences of A∧B are part of (in this case exactly) what is required
to introduce it. Similarly with implication:

¡¡A....
B

A→B
A→B A

B

the consequence of A→B is that we can infer B from A, and this is precisely
what we need to introduce it.

A suggested requirement on a system of implicit definitions (of logical
connectives) is then that deductions in it normalise. That is, no connective
is required to be introduced and then later be eliminated. If this is the case
then we can be sure that the elimination rules for the connectives allow us
to infer only what was required by their introduction rules. If the system
normalises in this way then it is consistent. To see this, suppose Γ ` A where
A is atomic and Γ contains only atomic propositions. If deductions normalise
then there is a deduction of A from Γ which involves no introduction and
subsequent elimination of any connective. Since the deduction that Γ ` A
begins with atomic premises and ends with an atomic conclusion there is a
deduction of A from Γ involving no logical connectives at all.1 But in Prawitz
natural deduction systems (assumed to be the framework for deductions)
such a deduction can occur only if A ∈ Γ.

7.2 Principle of indirect proof

A well known way of retaining normalisation of classical logic is to include
the Principle of indirect proof PIP :

¬A....
⊥
A

The formal theory behind this rule may be seen in Prawitz’s book [?] and
Stalmark’s paper [?].

1Since any connective introduced must then be eliminated (so that the conclusion is
atomic) there is a deduction in which no connective is introduced.
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In [?], Stalmark proves Strong Normalisation for the formulation of clas-
sical logic that uses a more general version Prawitz’ classical absurdity rule
(i.e. the principle of indirect proof, PIP ).

Dummett considers this rule in [?, p296-300] and concludes that it cannot
be a rule that defines negation (or any other connective) at least within his
theory of how logical connective obtain their meaning. The basic problem
for Dummett is that with PIP , the logical connectives can no longer be
said to be defined by only their own inference rules. For example we can
use PIP , a rule for negation and absurdity only, to deduce the Peirce’s law
((A→ B)→ A)→ A. Indeed, in the systems of Stalmark and Prawitz we
must use PIP to deduce ((A→ B)→ A)→ A. But in Dummett’s view, if
((A → B) → A) → A is a theorem of our basic logic, it must be deducible
from only the structural rules of deduction and the rules for → (the only
connective that appears in the formula in question).

The theory of implicit definition that I have presented so far is not as
rigid as Dummett’s. So far I have demanded only normalisation of the
system of logical connectives as a whole see 3.3. So, given only what I have
argued up to this point, the only objection I have is that the rule PIP is
inelegant (for the same reason that Dummett rejects it, it is an inelegancy
that a negation rule must be used to deduce an implication only formula).

However, in chapter 14 I propose a more detailed theory of what implicit
definitions are and how they are made. I argue that an implicit definition
must consist only of introduction and elimination rules utilising only the de-
fined connective which itself appears only in the premises of the elimination
rules and the conclusions of the introduction rules. My arguments for this
are along the same lines as the arguments given by Hacking in [?].

My problem with PIP is that it is neither an introduction nor an elim-
ination rule (see section 1.3.1 of this book). The significance of this to my
account of implicit definition is that the rule cannot be then said to be defin-
ing negation in terms of some purely structural property of deductions (see
chapter 14).

It is true that Prawitz’ and Stalmarck’s rule can be viewed as an elimi-
nation rule for absurdity. Such an interpretation of the rule once again does
not fit with my thoughts on implicit definitions. The worry is that absurdity,
which features in the negation introduction rule, becomes itself defined in
terms of negation. This makes it hard to argue that each logical connective
is (individually) implicit in the structure of deduction (and the idea that the
logical connectives are already there, waiting to be defined, is important to
my account of analyticity, again see chapter 14).

Since chapter 14 is not till much later in this thesis, I cannot yet object
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to a theory of analyticity that follows mine up to this point, but makes use
of PIP . The most I can object so far is that there is an inelegancy in PIP .
If it is a negation rule then it is inelegant because neither an introduction
nor an elimination rule for negation, but if it is not a rule for negation then it
is inelegant because negation appears in the premise. In chapter 8 I present
the Restart rule which is fully in the spirit of PIP except it is a purely
structural rule (it contains no connectives at all, not even ⊥). The restart
rule is more elegant, but more importantly, being a structural rule, it fits
well with the theory of analyticity I give in chapter 14.2

Indeed, the similarity of the Restart rule (which I shall favour) to PIP
shows that PIP is along the right lines.

7.3 Enhancements of Prawitz natural deduction

The usual deduction rules for classical logic do not normalise. In order to
deduce A ∨ ∼A from empty assumptions we must introduce and eliminate
a negation by deducing that ∼ ∼ (A ∨ ∼A) and then finishing with double
negation elimination.

We can obtain normalisation for classical logic by enhancing the basic
structure of inferences. Read in [?] does so by giving natural deduction
multiple conclusions. Rumfitt in [?] does so by adding signing the nodes in
the deduction tree with + or − and adding special structural reductio rules.3

2And, also because it is structural, the Restart rule will fit better with the theories of
Dummett and Hacking.

3We may play the structural-rule-reductio game another way, here with a more appar-
ently structural property. Allow formulae to be expressed as usual and also by writing
things upside down. We then add the following structural rules:

A

A

B
Abstraction

½

An
....
A
A

Spinning(n)

If we disallow the syntactic variables from varying over formulae the other way up (i.e
interpreting the configuration of the inference rules literally) then every formula will be
either completely the right way up or the wrong way up. Whatever we choose to disallow:

((((A∨∼A 2
½A1

A ∨ ∼A
∨I

⊥ Abstraction

∼A
→I(1)

A ∨ ∼A
∨I

A ∨ ∼A
Spinning(2)
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©©−An
....

+B

©©−An
....
−B

+A
SR(n)

©©+An
....

+B

©©+An
....
−B

−A
SR(n)

In Rumfitt’s system the structural properties of deductions have been
enhanced so that some non-premise circular deductions can be made by
structural rules alone.4 For example the inference

+A −A
+B

by empty discharging −B (with an application of the structural reduc-
tio rule) shows that anything follows from any assumptions that include
{+A,−A} (this is a form of ex falso).

The structural enhancements are not without their problems. For Read a
major difficulty is that people seem to reason in terms of single conclusions
rather than multiple conclusions.5 For Rumfitt’s system the difficulty is
more serious; normalisation no longer entails consistency. In which case
the demand for normalisation is not a sufficient condition on legitimacy of
implicit definitions and we have advanced nowhere. At least, anyone seeking
a proof theoretic justification of the logical constants cannot use Rumfitt’s
system as it stands.

Consider the 0-place connective •, its rules are:

−•
+• •1

+•
−• •2

since • has no introduction rule it can never be introduced and then elim-
inated. Furthermore the rules have a symmetry to them which Rumfitt

is a normalised deduction.
4In a multiple conclusion logic the inference A ` A, B is premise circular as one of the

multiple conclusion is contained in the premises.
5For example the required introduction rule for implication

½An
....

B, C

A⊃B, C
⊃I(n)

is not something I believe I have ever used. The multiple conclusion should be read like a
disjunction so that the introduction rule ⊃I adds that A⊃ (B ∨ C) entails (A⊃B) ∨ C.
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regards as a mark of a well defined connective: each rule is the mirror image
of the other. However:

©©−•1

+• •1
©©−•1

+• SR(1)

©©−•2

+• •1
©©−•2

+•
−• •2

SR(2)

+C
SR

is a deduction of +C from no premises for any C.6 So Rumfitt cannot
argue that normalisation (or a pleasing symmetry to the rules) guarantees
a legitimate implicit definition.

Demanding that the connective appear on only one side of its rules pro-
vides no relief.

+A
−• •I −A

+• •I
+• ±C
±C

•E −• ±C
±C

•E

Clearly introduction and subsequent elimination of • is unnecessary. Nev-
ertheless:

©©+A1

−• •I
+• •I

©©+A1

−• •I
−A

SR(1)

is a deduction of −A for any A, and similarly we get a deduction of +A for
any A. The situation is worse still, consider these rules:

+A −A
−• •I +A −A

+• •I
+•
±A

•E −•
±A

•E

notice that the introduction rules for • are valid by an application of SR in
Rumfitt’s system independently of whether we have defined any rules for •
(as anything follows from {+A,−A}). The elimination rules clearly add no
more than the introduction rules yet:

©©+•1

+A
•E ©©+•1

−A
•E

−• SR(1)

±A
•E

6The final step involves the empty discharge of −C by the rule SR. We could also
empty discharge +C to obtain a deduction of −C.
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is a deduction of +A and −A for any A. It is left for Rumfitt to explain
why rules that are valid independently of any stipulations about meaning
are illegitimate for making an implicit definition.7

A solution to this problem (for Rumfitt’s system) lies in further restrict-
ing what rules can be used to define a connective. The definitional intro-
duction rules should have only a positive conclusion (labelled by +), and
the definitional elimination rules should have only positive minor premises.
So for example the definitional rules for negation are:

−A
+∼A

+∼A +A
⊥

With this restriction normalisation does entail consistency (a proof of this
is not necessary would just take up space here). The problem with this
restriction is that it seems ad hoc, there seems no independent motivation
for such a restriction. After all, it seems to be the point of Rumfitt’s system
that a connective is defined by its falsity as well as its truth conditions (hence
− and + in the structure of the deductions). A second problem may arise
as the rules get more complicated and it becomes less clear exactly how the
restriction is to apply (e.g. when it is not clear what the major premises
are, or where there are rules that are neither introduction nor elimination
rules).

7.4 Conclusion

If we wish to make much use of implicit definitions then it is paramount that
we can rule out the many examples of implicit definitions leading to disaster
(e.g. tonk). A demand for harmony will ensure consistency and provide us
with non-semantic conditions on when an implicit definition is legitimate.
It is important to note that harmony is a property of the structure of an
implicit definition itself rather than of what is defined, i.e. harmony is not
a semantic property, so we are not assuming a semantics when we implicitly
define our logical connectives (and from them our semantics). We then have
the basics of an extremely elegant response to the problem of the justification

7In the usual system (without +,−) we can easily say for what is wrong, the analogues
of the rules are:

A ∼A
∼•

A ∼A
•

•
A

•
∼A

∼•
A

∼•
∼A

and we have added an extra elimination and introduction rules for ∼.
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of deduction: the connectives are implicitly defined by consistent implicit
definitions, a definition is consistent when it yields normalising deductions.
As far as I can see there is no reason to require normalisation other than to
be able to run such a line.

Since in Rumfitt’s system normalisation does not entail consistency we
cannot run such a line, and there is no reason to demand normalisation
anymore. There is also no response to the problems of tonk and • and we
have no criterion for ruling out some implicit definitions as illegitimate (aside
from begging the whole question and assuming a semantics with which to
determine which rules are consistent).

7.4.1 A comment on •
The connective • comes from an ingenious argument in [?], that a form of
symmetry between introduction and elimination rules does not guarantee
normalisation or consistency. Stephen Read presents the connective •.

∼•• •I •

©©∼•n
....
C

C
•E(n)

These rules yield an inconsistency, together with the negation rules. Notice
that • ` ∼• with an application of the elimination rule •E to {•,∼•} and
then discharging ∼•:

• ©©∼•1

∼• •E(1)

so

¢•1
....∼• ¢•1

⊥ ∼E

∼• ∼I(1)

¢•2
....∼• ¢•2

⊥ ∼E

∼• ∼I(2)
• •I

⊥ ∼E

A similar result may be found in the following naive set theoretic prin-
ciples, which more obviously have the pleasing symmetry.

A(a)
a ∈ {x : A(a/x)} SI

a ∈ {x : A(a/x)}
A(a) SE
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Russell’s paradox now follows similarly to Read’s example with •.

(((((((((
{x : x 6∈ x} ∈ {x : x 6∈ x}1

{x : x 6∈ x} 6∈ {x : x 6∈ x} SE

(((((((((
{x : x 6∈ x} ∈ {x : x 6∈ x}1

⊥ ∼E

∼({x : x 6∈ x} ∈ {x : x 6∈ x}) ∼I(1)

(((((((((
{x : x 6∈ x} ∈ {x : x 6∈ x}2

{x : x 6∈ x} 6∈ {x : x 6∈ x} SE

(((((((((
{x : x 6∈ x} ∈ {x : x 6∈ x}2

⊥ ∼E

∼({x : x 6∈ x} ∈ {x : x 6∈ x}) ∼I(2)

{x : x 6∈ x} ∈ {x : x 6∈ x} SI

⊥ ∼E

Notice that in both these examples ∼ is introduced and then eliminated
in the final step. This happens because the rules SI and •I give an alter-
native way of eliminating ∼. So after deducing e.g. ∼• we can eliminate
the negation in an unusual way to obtain • and then reuse ∼• to obtain ⊥
(eliminating ∼ in the usual way).

So, in fact, although the rules officially labelled the introduction and
elimination rules for negation have a symmetry to them, the complete set
of rules governing it does not. If we are liberal with our understanding of
harmony then these are not counterexamples to harmony as a path to con-
sistency. But notice that we are moving away from a harmony understood
as a property of a single connective to a global property about the entire
logic (a property of all the introduction and elimination rules together in
the whose system).
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Chapter 8

Harmony for classical logic:
the restart rule

See [?] for a formulation of this rule in goal directed reasoning.

8.1 The rule

Here is the restart rule for natural deduction.

A
B

restart Provided that A reoccurs below in
the Prawitz tree.

That is, the side condition on a rule application of restart is met if there is
another occurrence of A in the Prawitz tree below that rule application.

The restart rule is unusual in that any application of it depends on what
is below it in a deduction rather than what is above it.

If we add the restart rule to the standard deduction system for intuition-
istic logic we obtain a classical deduction system. Here are two examples of
the restart rule at work.

¡¡A1

B
restart

A⊃B
⊃I(1)

((((((((A⊃B)⊃A2

A
⊃E

((A⊃B)⊃A)⊃A
⊃I(2)

¡¡A1

A ∨ ∼A
∨I

⊥ restart

∼A
∼I(1)

A ∨ ∼A
∨I
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8.1.1 Some important definitions

If the restart rule is applied
A
B

restart

then lower down in the deduction A must be deduced again.

• If A is the premise of an application of restart, and B occurs below
A, but no other occurrence of A occurs between B and A, say that
the application of restart is incomplete at B. In other words, if B
occurs above all occurrences of A that satisfy the side-condition on
an application of restart above B, then that application of restart is
incomplete at B.

• Say any formula occurring below an incomplete application of restart
depends on an incomplete application of restart.

• An incomplete application of restart is an weak rule application. That
is, if a certain application of restart is incomplete at B then it is a
weak rule application at B.1

• Incomplete applications of restart are assumptive rule applications.
That is, if a certain application of restart is weak (or incomplete)
at B, then it is also assumptive at B (i.e. it is an assumptive rule
application at B).2

• All the other rule applications I have defined so far are not assumptive
(so complete applications of restart are not assumptive). 3

• If a term t occurs in the premise of an application of restart we may
say simply that it occurs in that application of restart. If the term is

1An application of restart is a weak rule application as long as it is incomplete.
2Intuitively, an assumptive rule application is a rule application that involves a hidden

assumption that may be discharged (remaining hidden) later in the deduction. Restart is
the only inference rule I shall define here that can have assumptive applications (though
I shall define in 11.3 other rules any application of which are always weak).

3Assumptive rule applications are rule applications that involve hidden, or structural
assumptions. A structural assumption is one where the assumption is a particular formula,
rather it is an assumption of (the validity of) an inference pattern. In the case of restart
the inference pattern is effectively this:

A
⊥

which is generalised by replacing ⊥ by B.
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a variable that is free in the premise, then we may say that it is free
in the application of restart.4

• If an atomic predicate X occurs in the premise of an application of
restart we may say simply that it occurs in that application of restart.

8.2 How to interpret it

In classical reasoning, the inference rule PIP is sound.

©©∼An
....
A
A

PIP (n)

We may discharge the assumption ∼A if we can deduce A from it. With
the assumption that ∼A we may deduce B from a line in the proof con-
taining A (as a conclusion). The restart rule may be seen as making the
implicit assumption that ∼A. This assumption must then be discharged,
for otherwise the inference would not be sound as the assumption is not
explicitly made. The assumption may be discharged by concluding that A
at some later point. Thus the rule is sound. We can make this reasoning
more formal and show than any application of restart may be replaced in
a deduction with an application of PIP . Thus we can think of restart as
being another way of formulating PIP . But I think this is not the best
interpretation of the restart rule for it requires that we interpret it in terms
of another connective, ∼.

I think a better interpretation not that the restart rule makes an implicit
assumption that ¬A, but that it makes an implicit assumption of a structural
form:

A
B

or less generally
A
⊥

the rule then allows this assumption to be discharged when we deduce A
again. On this interpretation the restart rule may still be seen as a form of
indirect proof (PIP ) without interpreting it in terms of ∼. That is, on this
interpretation the restart rule may be seen as a fully structural rule.

4The structural assumption in the application of restart involves A, so we must regard
the free variables of A as free in the structural assumption until it is discharged.
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It is easy to see, therefore, that the restart rule is sound for classical
semantics, for we may replace any instance of restart:

A
B

restart

with this
A ©©∼An

⊥ ∼E

B
⊥E

and then replace the first re-occurrence of A below with

A
A

PIP (n)

After all replacements have been made we obtain a deduction which make
use of PIP and not restart. So anything deducible using restart is deducible
using PIP , since PIP is sound for classical semantics, so is restart.

8.3 Normalisation

In the normal form argument there are new cases to consider Suppose A∧B
is introduced and then eliminated:

A B
A ∧B

∧I

A
∧E

then we may not be able to remove the introduction if A ∧B is introduced
to complete a previous application of restart. For example the deduction
might contain ....

A ∧B
C

restart
....
A

....
B

A ∧B
∧I

A
∧E

and if we reduce this to: ....
A ∧B

C
restart

....
A
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then the inference as a whole may no longer be a deduction as the applica-
tion of restart may remain incomplete. In order to remove the unnecessary
conjunction introduction we must first push the application of restart down
a step in the deduction:

....
A ∧B

A
∧E

C
restart

....
A

....
B

A ∧B
∧I

A
∧E

and now the application of restart is completed by A and not by A∧B, the
introduction and subsequent elimination of A ∧B may then be removed as
usual.

The elimination rules are of the form:

P M1 M2

C

where P is the major premise and each Mi are the minor premises (the
Mi are either formulae or inferences). Suppose that P completes an earlier
application of restart. Then part of the deduction looks like this:

P
X

restart
....
P

....
M1

....
M2

C

we may then we need only change the deduction so that restart is applied
to the conclusion of the elimination rule and not its premise:

P

....
M1

....
M2

C
X

restart
....
P

....
M1

....
M2

C
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and now the application of restart is completed by C and not by P . Not
also the node that completes the restart rule is one deduction step closer to
the conclusion of the whole deduction.

We may therefore ensure that any deduction may be reduced to a de-
duction where no formula both completes an application of restart and is
the premise of an elimination rule. Then the deduction may be normalised
by the usual methods, for if a connective is introduced and then eliminated
we know that the introduction did not serve to complete an application of
restart and may be removed without affecting the legitimacy of the deduc-
tion.

We must still argue that normalisation entails consistency as the restart
rule has, in effect, a structural enhancement. To sketch the argument sup-
pose that atomic A is a conclusion of only atomic premises Γ. Now consider
a legitimate application of restart:

P
C

restart
....
P

(the application is legitimate only if P is deduced later in the deduction) if
none of the premises on which P depends are discharged in between C and P
then the application is unnecessary and the deduction between C and P may
be deleted. Thus of A is deducible from Γ using only applications of restart
then A ∈ Γ. If the other connectives satisfy a normal form theorem then
Γ ` A only if the deduction can be made without use of any introduction
or elimination rules at all (provided Γ and A are all atomic). But with only
restart we can deduce only members of Γ from Γ.

8.4 Remarks

The restart rule might seem initially like clever trick with the syntax that
merely trivialises the demand for harmony. The restart rule is by no means
trivial, it is a way of introducing negative hypothesis to the structure of de-
duction without requiring negation. Thus we may temporarily assume that a
proposition is false simply by applying restart to it. This hidden assumption
is discharged when we complete the restart rule. Certainly we use indirect
proof often in our reasoning, it is a difficult principle to avoid, if assuming
the butler did not do it leads to absurdity then the butler did do it. Restart
allows such reasoning, in particular it allows the negative assumption, to be
structural rather than in terms of rules for the connectives. Thus indirect
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proof (PIP ) may be understood not as essential to the meaning of negation
but as essential to the structure of deduction. The restart rule is a form of
indirect proof that does not require negation or any other connectives to be
formulated.

If we are willing to accept that restart rule is part of actual reasoning
(we need only accept that we sometimes when we apparently use PIP we
are actually using the restart rule but cannot explain our reasoning easily
to others without describing it as PIP ), then we have a harmonious nat-
ural deduction system for classical logic (harmonious in both Dummett’s
senses, see page 50). This means that we may, after all, give a proof the-
oretic account of the meaning of the logical constants (in terms of implicit
definitions) which yields classical logic (rather than the weaker intuitionistic
logic).
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Chapter 9

Sheffer Stroke

I shall now present another method of obtaining a normalisation theorem
for classical logic. The inference rules are presented for a single conclu-
sion Prawitz style natural deduction system. The connectives are defined
holistically in terms of Sheffer stroke. The introduction rule for Sheffer
stroke satisfies the subformula property (the premises are subfomrulae of
the conclusion). However the elimination rule is such that some discharged
assumptions may not be subformulae of the premises or the conclusion of
the deduction as a whole.

A reason for demanding the subformula property of the introduction rule
is so that it can function as a non-circular definition of the connective intro-
duced. This is perhaps a well motivated demand, although not all circular
definitions are vicious (for example an inductive definition). Dummett also
requires that every formula in a deduction be a subformula of a premise or
the conclusion ([?, p281]). Dummett’s reason for demanding this is what he
calls the fundamental assumption, which even Dummett accepts is a ques-
tionable principle ([?, ch12]). The assumption is that any justification for
a sentence A must ultimately come from introducing the main connective
of A by an introduction rule.1 The assumption, if it is fundamental at all,
is fundamental to Dummett’s verificationist account of meaning and not
to my account of analyticity, so far I have given an account of analyticity
(in terms of implicit definitions) which makes no use of Dummett’s funda-
mental assumption. Consequently I see no reason to adhere to Dummett’s
demand that every formula of a deduction be a subformula of a premise or

1This is highly problematic, as Dummett observes, for example we can know A ∨ B
without having introduced it by means of a prior knowledge of which disjunct is true (as
the introduction rule requires).
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the conclusion.

9.1 The propositional case

In the following sections I show normalisation and completeness for a de-
duction system for Sheffer stroke. Note that the system I construct does not
make any use of the restart rule. Since I shall favour the restart rule as the
preferred method of obtaining normalisation for classical logic, this is the
only chapter of this thesis that does not assume the restart rule.

9.1.1 Sheffer stroke: semantics and completeness

Consider the following connective, called Sheffer stroke (denoted by |). Here
are two natural deduction systems for it, the consequence relations of which
are denoted by `I and `C :

The system Int (`I)

¡¡An ¡¡Bn
....
⊥

A|B II(n)
A|B A B

C
IE

⊥
B
⊥E

The system Clas (`C)

¡¡An ¡¡Bn
....
⊥

A|B CI(n)
A|B

©©©C|Cn
....
A

©©©C|Cn
....
B

C
CE(n)

⊥
B
⊥E

We add rules for conjunction to both Clas and Int:

A B
A ∧B

∧I
A ∧B

A
∧E

A ∧B
B

∧E
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conjunction is not necessary for the proof theory, but it is hard to doubt
that we use conjunction defined directly by these rules rather than in terms
of Sheffer stroke.

It is important to be aware of empty discharging. For example, we may
deduce (A|A)|B from A:

A ©©©A|A1

⊥ IE

(A|A)|B II(1)

which involves the empty discharge of B.

Theorem 9.1.1 If Γ `I A then Γ `C A

Proof: any use of the I-elimination rule (IE)

....
B|C

....
B

....
C

D
IE

may be relabelled as CE to yield an application of CE where D|D is
empty-discharged.

The converse does not hold. Int is sound for the interpretation of A|B
as ¬(A ∧ B) (where ¬ is intuitionistic), whereas Clas is sound for A|B in-
terpreted as ∼(A ∧B) (where ∼ is classical).

Semantics

The interpretation of (classical) Sheffer stroke is given by this truth table.

A | B
T F T
T T F
F T T
F T F

Also called alternative denial Sheffer stroke is true when A is false or B is
false, where classical truth valuations apply (i.e. NAND). Note that A|A is
true when A is false. A reading of | into natural language is perhaps ‘. . . is
(accidentally) incompatible with. . . ’ (accidentally as opposed to necessar-
ily). Classical models are defined in terms of truth valuations satisfying the
above truth table.
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Completness

First we will show that interpreting truth as membership in a maximal
consistent set of Int, call it M ,2 yields a classical model, i.e. that

(†) A|B ∈ M iff A 6∈ M or B 6∈ M .

First see that {A,B,A|B} is a contradictory set by a single application
of IE:

A|B A B

C
IE

this proves the left-right direction of †. Taking A = B, {A,A|A} `I ⊥ and
also {B, A,A|A} `I ⊥, so A|A `I A|B and similarly B|B `I A|B:

A|A ¡¡A1

⊥ IE

A|B II(1)

B|B ¡¡B1

⊥ IE

A|B II(1)

Assume that

(‡) A ∈ M or A|A ∈ M , for any A

then if A 6∈ M or B 6∈ M then either A|A ∈ M or B|B ∈ M and so, by the
deductions above, A|B ∈ M . This shows the right-left direction of †.

‡ follows, by maximal consistency of M , from the fact that

if Γ, A|A `I ⊥ and Γ, A `I ⊥ then Γ `I ⊥

for if Γ, A `I ⊥ then Γ `I A|A by II, but since also Γ, A|A `I ⊥ appending
the two deductions together yields a deduction that Γ `I ⊥.

Theorem 9.1.2 If every classical model for Γ is a model for A then Γ `C A.

Proof: We have shown above that Γ 6`I ⊥ iff it has a classical model,
such a model is obtained by defining truth valuations on a maximal
consistent set containing Γ. So if Γ has no classical model then Γ `I ⊥
and hence Γ `C ⊥. To prove completeness for Clas with respect to
classical models we must show that Γ `C A if and only if Γ, A|A `C ⊥.3

2M is consistent such that for every A either A ∈ M or M ∪ {A} is inconsistent.
3For if every (classical) model for Γ is a model for A then there is no model for Γ∪{A|A}.

But then Γ, A|A `C and so Γ `C A.
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The left to right direction has already been shown. If Γ, A|A `C ⊥
then Γ `C (A|A)|(A|A) by the introduction rule. Now

(A|A)|(A|A) ©©©A|A1

A
CE(1)

is a deduction of A from (A|A)|(A|A) using the rule CE. Therefore if
Γ `C (A|A)|(A|A) then Γ `C A.

9.1.2 A deduction of ⊥ can be normalised

Lemma 9.1.1 Γ `C ⊥ then Γ `I ⊥.

Proof: I show how to convert a deduction that Γ `C ⊥ into a deduc-
tion that Γ `I ⊥:4

1. Relabel all instances of CI as II.

2. Take any instance of CE in a deduction that Γ `C ⊥ involving
empty discharge, and relabel it IE.

3. Take any other instance of CE and rewrite it as an elimination
and subsequent introduction

A|B

©©©C|Cn
....
A

©©©C|Cn
....
B

⊥ CE

(C|C)|(C|C)
CI(n)

so that ⊥|⊥ is (empty) discharged in the elimination rule and
then C|C is discharged in a subsequent introduction rule.

4. The Prawitz tree has changed so that a formula C has become
(C|C)|(C|C), so the Prawitz tree may no longer be a deduction.5

4A semantic proof that this can be done is simple enough. We proved above that
if Γ 6`I ⊥ then maximal consistent sets including Γ are classical models when truth is
interpreted as membership. Now, if Γ `C ⊥ then it has no classical models (by soundness
of Clas) and so Γ is included in no maximal consistent sets which are classical models
when truth is interpreted as membership. Therefore if Γ `C ⊥ then Γ `I ⊥.

5For example:

A|B

(((((((
(C ∧D)|(C ∧D)n

....
A

(((((((
(C ∧D)|(C ∧D)n

....
B

C ∧D
CE(n)

D
∧E
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We must convert the remaining Prawitz tree containing this new
formula (C|C)|(C|C) into a deduction of ⊥.
We need to show that the double Sheffer stroke of the conclusion
of each rule is deducible from the double Sheffer stroke of its
premises. All cases are considered on pages 121 - 124.

5. Repeat these for all instances of CE in the deduction to obtain a
new deduction where all instances of CE involve empty discharge
and have been relabelled CI. This is, we have obtained a new
deduction using only the rules of Int.

So, if Γ `C ⊥ then applying the method above repeatedly we obtain a
deduction that Γ `I ⊥.

Lemma 9.1.2 A deduction in Int may be normalised

Proof: Suppose that ⊥ is introduced and then eliminated:6

A|B A B

⊥ IE

C
⊥E

then we may remove the unnecessary ⊥ by inferring C directly with
the rule IE.

Now suppose A|B is introduced and then eliminated:

¡¡An ¡¡Bn
....
⊥

A|B II(n)
A B

C
IE

gets converted to

A|B

((((((
C ∧D|C ∧Dn

....
A

((((((
C ∧D|C ∧Dn

....
B

⊥ IE

(C ∧D|C ∧D)|(C ∧D|C ∧D)
II(n)

D
∧E

and the final step is not a legitimate rule application. We must show that (D|D)|(D|D)
is deducible from (C ∧D|C ∧D)|(C ∧D|C ∧D).

6The rule IE is the only way of introducing ⊥, unless ⊥ is an assumption, in which
case there is a one step normalised deduction of everything.
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then we may remove the extraneous introduction of A|B and conclude
that ⊥ directly from A and B (which we used to eliminate A|B). We
may then apply ⊥E to obtain a deduction of C:

A B....
⊥
C

Also if A ∧B is introduced and eliminated:

A B
A ∧B

A

then this may be replaced by the deduction of the premise of the
elimination rule A (similarly with B).

Finally, if A∧B or A|B is introduced by IE or⊥E and then eliminated,
then we may infer the conclusion of the second elimination rule directly
from the first, for example:

⊥
A ∧B

⊥E

A
∧E

may be replaced by
⊥
A
⊥E

Normalisation of Int then follows easily. Take any deduction and
choose any formula of highest degree7 that is the conclusion of an
introduction rule and is not the conclusion of the deduction. This for-
mula must be eliminated next step,8 in which case as shown above, the
introduction and elimination can be removed. This procedure may be
repeated until there are no such formulae, in which case the deduction
is normalised.

7Not a subformula of any other formula in the deduction.
8If it is the minor premise of IE then it is not of maximal degree.
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Clas does not so obviously normalise, for suppose a formula is introduced
and then eliminated:

¡¡An ¡¡Bn
....
⊥

A|B II(n)

©©©C|Cm
....
A

©©©C|Cm
....
B

C
CE(m)

We must find a direct deduction of C that we can use to replace this. First
we may remove the introduction to obtain a deduction of ⊥ from C|C.

C|C....
A

C|C....
B....

⊥

9.1.3 A deduction of ⊥ from not-A requires a deduction of A

Lemma 9.1.3 If there is a normalised deduction that Γ, C|C `C ⊥ then
there is a normalised deduction that Γ `C C.

Proof: I argue by induction on the degree of C. The induction hy-
pothesis is that if there is a normalised deduction that Γ, C|C `C ⊥
then there is a normalised deduction that Γ `C C.

Remember that Γ `C ⊥ iff Γ `I ⊥ (theorem 9.1.1), so we may assume
that no application of CE occurs in the deduction.

1. If C is D|E then since

©©©D|En D E

⊥ IE

(D|E)|(D|E)
II(n)

is a deduction of C|C from {D,E} it follows that Γ, D, E `I ⊥
(which can be normalised) and hence Γ `I C with an application
of the introduction rule, and so there is a deduction that Γ `C C
in normal form.

2. If C is A ∧B then we have that

A|A
»»»»A ∧Bn

A
∧E

⊥ IE

(A ∧B)|(A ∧B)
II(n)

B|B
»»»»A ∧Bn

B
∧E

⊥ IE

(A ∧B)|(A ∧B)
II(n)
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are deductions of C|C from A|A and from B|B. We use these
to obtain deductions that Γ, A|A `I ⊥ and Γ, B|B `I ⊥. By
induction hypothesis there are normalised deductions that Γ,`I

A and Γ,`I B and so by ∧I there is a normalised deduction that
Γ,`I A ∧B

3. If C is atomic then the deduction may be changed to a deduction
of C by adding an application of ⊥E, furthermore the deduc-
tion of C from Γ ∪ {C|C} may be normalised as it contains no
application of CE.
There are two cases to consider:

(a) Suppose element of Γ contains an occurrence of Sheffer stroke.
I show that for any deduction in normal form of atomic C
from assumptions Γ∪{C|C} (Γ not containing Sheffer stroke)
there is a deduction in normal form of C from Γ. I argue by
induction on the length of the deduction of C from Γ∪{C|C}.
If the deduction involves no inference rules then C is one
of the assumptions and there is nothing to prove. Other-
wise, since C is atomic the final step of the deduction is an
elimination rule the major premise of which is either an as-
sumption or is itself the conclusion of an elimination rule.
This is because the deduction is in normal form. Thus C is
the conclusion of the last of a sequence of elimination rules,
the conclusion of each is the major premise of the next;9 the
major premise of the first, say P , is an assumption.10

i. If P is C|C then it is used in an application of IE (no
undischarged assumption is used in an application of
CE):

C|C C

X

the minor premises of which involve a shorter deduction
of C from ∆ ∪ {C|C} where ∆ ⊆ Γ and so there is a
deduction that ∆ `I C and thence that Γ `I C.11

ii. If P is A ∧ B then it is used to infer A or B. If we
delete P then we obtain a shorter deduction that A or B

9This is because the deduction is in normal form.
10For there is no introduction rule below to discharge it.
11The minor premises can contain no more assumptions than Γ∪{C|C} as there are no

introduction rules below them to make discharges.
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is an assumption where P used to be. That is, we have
a deduction that ∆ ∪ {C|C} `I C where Γ = ∆ ∪ {A}
or Γ = ∆ ∪ {B}. By induction hypothesis there is a
deduction in normal form that ∆ `I C and since Γ `I A
and Γ `I B with the application of an elimination rule,
there is a deduction that Γ `I C.

(b) Suppose that C is atomic and some formula in Γ contains an
occurrence of Sheffer stroke.
Then successive applications of ∧E will deduce some D|E
from Γ, then Γ, C|C `I ⊥. In particular Γ, C|C `I E and
Γ, C|C `I F , and so there are normalised deductions of D
and E from {Γ, C|C} which we may use to eliminate D|E to
conclude that C.

D|E

©©©C|Cn
....
D

©©©C|Cn
....
E

C
CE(n)

The deduction is still normalised as Γ `C D|E by elimination
rules alone and so was not introduced by an introduction rule.

Theorem 9.1.3 Deductions in Clas may be normalised.

Proof: Any deduction that Γ `C A may be used to produce a deduc-
tion that Γ∪ {A|A} `C ⊥ which can be normalised, and therefore, by
the lemma above there is a normalised deduction that Γ `C A.

9.1.4 Remarks

Looking at the proof we see that Clas does not have the subformula property.
However it comes close, if Γ `C A then there is a deduction that uses at
most subformulae of (a formula in) Γ and A and also ⊥ and C|C where C
is an atomic subformula of Γ and A.
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9.2 The Quantified case

9.2.1 The universal quantifier

Against the spirit of Sheffer stroke, but for simplicity (and plausibility) I
shall add rules for a universal quantifier as well.

∀xA
A[x/t] ∀E

A
∀xA[y/x] ∀I

provided A does not de-
pend on any formulae in
which y is free.

Let Clas1 be the logic obtained by adding the quantifier rules above and
the rule IE to Clas. Let Γ `C1 A mean that there is a deduction in Clas1
the assumptions of which are in Γ and with the conclusion A.

9.2.2 Tree conversions

Lemma 9.2.1 From any deduction that Γ `C1 ⊥, we may obtain a deduc-
tion that Γ `C1 ⊥ in which the major premise of every application of CE is
at a top node.

Proof:

Step 1 Take any instance of CE for which the major premise A|B is
not at a top node in the deduction tree, and rewrite it as an
elimination and subsequent introduction with CI

A|B

©©©C|Cn
....
A

©©©C|Cn
....
B

⊥ IE

(C|C)|(C|C)
CI(n)

so that ⊥|⊥ is (empty) discharged in the elimination rule and
then C|C is discharged in a subsequent introduction rule.

Step 2 The Prawitz tree now has been changed so that a formula C has
become (C|C)|(C|C), and therefore it may not be a deduction.12

(a) If C is ⊥ then:

(⊥|⊥)|(⊥|⊥)
¡¡⊥n

⊥|⊥ II

⊥ IE(n)

12For an example see footnote 5 on page 115.
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appended to the deduction of (C|C)|(C|C) yields a deduction
of ⊥ from (C|C)|(C|C), and the deduction may then continue
as before (as we deduced C from (C|C)|(C|C)).

(b) If C was a premise in an application of ∀E, ∧E, ∧I, or IE
then the original inference step had the form

F G
D

∀E,∧I,∧E, IE

where one of {F, G} is C. Let us suppose that C is G and
that the new, illegitimate step is:

F (C|C)|(C|C)
D

then we may replace this by the following deduction of (D|D)|(D|D)
from F and (C|C)|(C|C):

(C|C)|(C|C)

©©©D|Dm
F ¡¡Cn

D
∀E,∧I,∧E, IE

⊥ IE

C|C II(n)

⊥ IE

(D|D)|(D|D)
II(m)

(c) If C was a premise in an application of CE which has now
become:

(C|C)|(C|C)

©©©D|Dm
....
X

©©©D|Dm
....
Y

D
CE(m)

where C is E|F . Then we may convert it into a deduction
of (D|D)|(D|D) as in case (b) where E and F are taken as
deduction premises:

(C|C)|(C|C)

©©©D|Dm

©©©D|Dm
....
X

©©©D|Dm
....
Y ¡¡Cn

D
CE

⊥ IE

C|C II(n)

⊥ IE

(D|D)|(D|D)
II(m)
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On the other hand, if C was the conclusion of one of the
minor premises:

A|B

©©©D|Dm
....
C

©©©D|Dm
....
B

D
CE(m)

(where C is A) then the problematic inference step is of the
form:

A|B

©©©D|Dm
....

(C|C)|(C|C)

©©©D|Dm
....
B

D
CE(m)

which may be replaced by:

A|B

©©©D|Dm
....

(C|C)|(C|C)

A|B ¡¡Cn

©©©D|Dm
....
B

⊥ IE

C|C II(n)

C
IE

©©©D|Dm
....
B

⊥ IE

(D|D)|(D|D)
II(m)

(d) If C is the premise to an application of ∀I then the old in-
ference step

C
∀xC

has been replaced by:

(C|C)|(C|C)
∀xC

The deduction of (C|C)|(C|C) does not depend on any as-
sumptions in which x is free (for the original inference was
legitimate), so we may replace the problematic inference step
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with:13

»»»»»∀xC|∀xCn

»»»»»∀xC|∀xCn

....
(C|C)|(C|C) ©©©C|Cm

∀xC
IE

⊥ IE

C
CE(m)

∀xC
∀I

⊥ IE

(∀xC|∀xC)|(∀xC|∀xC)
II(n)

where ∀xC|∀xC assumed, used to deduce C and then used
to introduce (∀xC|∀xC)|(∀xC|∀xC). Although this deduc-
tion has added an extra application of CE it is applied to
a formula that is at a top node in the Prawitz tree. The
extra application of CE eliminates ∀xC|∀xC which is an as-
sumption, this assumption is soon after discharged by the
application of II.

Step 3 After applying step 1 we will have produced a Prawitz tree that is
not a deduction of⊥ because an occurrence of C has been changed
to (C|C)|(C|C) (the Prawitz tree may not be a deduction at all).
The new Prawitz tree does, however, have one fewer application
of CE (it has been replaced by CI.

(a) If C was the conclusion of the deduction, then C is⊥ and step
1 has converted the deduction into a deduction of (⊥|⊥)|(⊥|⊥).
After applying step 2 we obtain a deduction of ⊥.

(b) If C was the premise of a rule application the conclusion of
which was D, then after applying step 2 we will have in-
serted a deduction of (D|D)|(D|D) from (C|C)|(C|C). The
new Prawitz tree is now not a deduction of ⊥ because of
(D|D)|(D|D) rather than because of (C|C)|(C|C).

13We cannot follow the previous strategy and use the legitimate application of ∀I to
obtain:

....
(C|C)|(C|C)

»»»»∀xC|∀xCn
½Cm

∀xC
∀I!!

⊥ IE

C|C II(m)

⊥ IE

(∀xC|∀xC)|(∀xC|∀xC)
II(n)

as the side conditions on the rule application of ∀I are not met when C is separated from
the deduction and becomes an assumption.
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Since D is one inference step closer to the conclusion we should
keep reapplying step 2 until we obtain a deduction of ⊥.

Step 4 After applying steps 1–3 we obtain a deduction of ⊥ with one
fewer application of CE to a formula that is not at a top node.
Therefore, we should make successive applications of steps 1–3
until we remove all such occurrences.

Lemma 9.2.2 Any deduction that Γ `C1 ⊥ may be normalised.

Proof: If ∀xA is introduced and eliminated:
A

∀xA[y/x] ∀I
A[y/t] ∀E

then because of the condition on ∀I we may replace y by t in the
deduction of A to obtain a more direct deduction of A[y/t] (which will
replace the introduction and subsequent elimination). The reduction
cases for the other connectives are as in lemma 9.1.2.

Now, take any deduction that Γ `C1 ⊥, by lemma 9.2.1 it may be con-
verted into a deduction where the major premises of all applications
of CE are formulae at top nodes. Now choose any formula of highest
degree14 that is the conclusion of an introduction rule and is not the
conclusion of the deduction. This formula must be eliminated next
step, and is not eliminated by CE (it may be eliminated by IE in-
stead), in which case the introduction and elimination can be removed.
This procedure may be repeated until there are no such formulae, in
which case the deduction is normalised.

9.2.3 A deduction of ⊥ from not-A requires a deduction of A

Lemma 9.2.3 From a deduction of ⊥ from {C|C}∪Γ there is a normalised
deduction of C from assumptions Γ.

Proof: I argue by induction on the degree of C that if there is a
normalised deduction that Γ, C|C `C1 ⊥ then there is a normalised
deduction that Γ `C1 C.

Given the lemmas of the previous section we may convert the deduction
of ⊥ from {C|C}∪Γ into a normalised deduction that {C|C}∪Γ `C1 ⊥.

14Not a subformula of any other formula in the deduction.
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1. The cases where C is D|E or A∧B are considered in lemma 9.1.3
on page 118.

2. If C is ∀xA then choosing y to be a variable that does not occur
free in Γ

(A|A)[x/y]
»»»∀xA

A[x/y] ∀E
⊥ IE

∀xA|∀xA
CI

is a deduction of C|C from (A|A)[x/y], so there is a deduction
that Γ, (A|A)[x/y] `C1 ⊥ which can be normalised and by in-
duction hypothesis there is a normalised deduction that Γ `C1

A[x/y]. Since y is not free in Γ and Γ contains all undischarged
assumptions we may apply ∀I to obtain a normalised deduction
that Γ `C1 ∀xA.

3. The case where C is atomic is for the most part considered in
lemma 9.1.3. What is missing is one extra subcase where P is
∀xA[t/x]:

iii. If P is ∀xA[t/x] then it is used to deduce A. We may then
delete P to obtain a shorter deduction of C from ∆∪ {C|C}
where ∆ = Γ ∪ {A}.15 By induction hypothesis there is a
deduction of C from ∆ in normal form and since A follows
from Γ by an elimination rule there is a normalised deduction
of C from Γ.

Theorem 9.2.1 Every deduction in Clas1 can be reduced to a deduction
in normal form that does not use IE.

Proof: Take any deduction that Γ `C1 A, we may use this to produce
a deduction that Γ ∪ {A|A} `C1 ⊥ from which, by lemma 9.2.3, we
can obtain a normalised deduction that Γ `C1 A. Furthermore, we
may re-label all applications of IE in this deduction as CE to obtain
a new deduction that Γ `C1 A (see the proof of theorem 9.1.1).

15Since no introduction rules depend on P we need not worry about t occurring free in
the assumption replacing P .
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9.2.4 Soundness and Completeness

We should give the universal quantifier its usual interpretation: v(∀xA)=T
iff v′(A) = T for every valuation v′ x-alternate to v. On doing this a sound-
ness and completeness proof of Clas1 for the familiar first order semantics
is amusing enough, but not necessary here. It is enough to notice that the
addition of familiar quantifier rules to a deduction system that is complete
for classical propositional semantics should yield first order system that is
complete for classical first order semantics.

9.3 Concluding remarks

We can now argue that the true basis for logic is incompatibility (Shef-
fer stroke), universal quantification and conjunction.16 This basis has au-
tonomously defined and harmonious introduction and elimination rules. We
may use this basis to define other connectives. For example, I think it quite
plausible that we define negation in terms of sheffer stroke using these rules:

¡¡An
....
⊥
∼A

∼I(n) ∼A

©©©B|Bn
....
A

B
∼E(n)

and then disjunction in terms of negation using these rules:

A
A ∨B

∨IIa
B

A ∨B
∨IIb

©©∼An ©©∼Bn
....
⊥

A ∨B
∨I(n) A ∨B

¡¡An
....
C

¡¡Bn
....
C

C
∨E(n)

Thus it may seem that disjunction and negation are basic logical connectives,
but in fact they are defined in terms of the a true basic connective sheffer
stroke.

As the lengths of the chapters suggest, the restart rule provides a simpler
solution to the problem of normalisation for classical logic. In general I find
it more elegant and it is the rule I shall adopt. I think it likely that we
have restart present in the structure of our deduction and then define our
connectives by the usual rules. I think it is less likely that sheffer stroke is
our basic connective (i.e. that incompatibility is our basic logical concept)
and other connectives are defined in terms or with reference to it. However
I do not find it completely implausible that this turn out to be the case.

16See [?] for an argument that negation derives from a primitive understanding of in-
compatibility, it just so happens that incompatibility does far more than yield negation.
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9.3.1 The conclusion

So, in conclusion, I think there is a strong case to be made that sheffer stroke,
conjunction and the universal quantifier are the basic logical connectives.
But the case is not strong enough, the case for the restart rule is stronger as
restart is more general and more simple. Consequently I maintain the thesis
that are basic logic consists of the familiar introduction and elimination rules
for the logical connectives (conjunction, disjunction etc.) and makes use of
the restart rule (a form of structural indirect proof).



Chapter 10

Strict implication

In this chapter I attempt to tackle two problems at once. I shall present
some rules for a strict conditional that I claim captures the logic of validity,
or at least strict implication. I take it that philosophical analysis of validity
(in terms of possible worlds) has indicated that the logic of strict implication
is at least S4. In addition to this, I claim to have resolved a familiar prob-
lem relating to the addition of intuitionistic implication to classical logic, I
outline the problem in section 10.1.1.

10.1 Strict implication

10.1.1 The collapse

It is well known that having classical rules and intuitionistic rules together
results in the intuitionistic implication collapsing into material implication.
The problem is (letting ⊃ and ∼ be classical and → and ¬ be intuitionistic)
merging the two logics yield that A⊃B ` A→B and ∼A→¬A.1 Because we
can make deductive headway by introducing classical connectives and then
turning them into intuitionistic ones by a subsequent elimination, we also
lose normalisation.2 Here is an example, suppose the rules for → are added

1The deductions
½A1 A→B

B
→E

A⊃B
⊃I(1)

½A1 A⊃B
B

⊃E

A→B
→I(1)

show that classical and intuitionistic conditionals become inter-deducible when the rules
for them are naively added together without modification.

2A natural way of introducing intuitionistic implication to Read’s system is to add the
new implication → and demand a single conclusion for the introduction of A → B, and

129
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to the sheffer stroke logic Clas (the conclusion is a famous non-theorem of
intuitionistic logic).

©©©A|A1

©©©A|A2
(((((((
(A→B)→A

©©©A|A2 ¡¡A3

B
A→B

!!(3)

A

⊥
(A|A)|(A|A)

CI(2)

A
[(A→B)→A]→A

→I
CE(1)

There is an introduction and subsequent elimination of sheffer stroke in
the deduction. The deduction will not normalise by the method above as
above the application of CI we have a deduction of ⊥ from A|A and Γ =
{(A→B)→A} which contains no formula of the form E|F , but also contains
some non-atomic formulae. Notice also the inference marked ‘!!’, this is an
inference of A→B from A|A.3

Looking at the introduction rules, we can see why: they are the same.
In the Sheffer stroke logics Int and Clas the introduction rules are identical,
and so are the introduction rules for → and ⊃ with or without restart.

The problem exemplified by ! is this: A→ B suggests a necessary con-
nection between A and B. A → B should not be true merely by accident
but because of a strict relationship between A and B. A ⊃ B on the other
hand does not imply such a necessary connection, A⊃ B may be true only
because of an accidental relationship between A and B. For example if B
happens to be true then A⊃B is true, but A→B should not be true unless
there is a stronger link between A and B.

10.1.2 The nature of the collapse

Here are some intuitive inference rules for strict implication, notice the sim-
ilarity for the rules for the conditional in intuitionistic logic.

A A→B
B

¡¡A....
B

A→B

for Rumfitt’s to give only the rules for +A→B. Neither of these work.
3The system with restart suffers a similar collapse, the collapse is more obvious as the

new rules for → are identical to the rules for ⊃. This entails that normalisation does not
fail (though intuitionistic and classical implications become indistinguishable).
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A major problem is then that these seemingly indisputable inference rules
(when taken as the essence of the natural language conditional) yield strange
results.

• We may infer B →A from A

• We may infer B →A from ∼B

The two results together constitute the least enjoyable part of teaching an
elementary logic course to philosophy students, they do not seem right for
a strict implication.

The problem is that the introduction rule above is misleading. Perhaps
a less misleading way of putting it is this:

¡¡A, Γ....
B

A→B

where Γ contains all the assumptions used in the inference of B from A.
The rule for the conditional allows the inference B from A on the basis
of anything that can be put in Γ. The classical inference rule places little
restriction on what can be a member in Γ. Anything we know to be true
can go in Γ, for example if we know that B is true then we can put B
in Γ and then the deduction of B from {A} ∪ Γ is easy. When we use a
strict conditional, on the other hand, there are restrictions on what can
be put in Γ, we try to infer B from A only using truths that do not vary
with the context. This is so that A→B retains a generality across various
contexts. This matches te difference between validity and local validity, one
is independent of the context and the other is not. The material conditional
expresses the relation of local validity, and we must now give rules for a
strict conditional that expresses the relation of validity.

10.2 The addition of strict implication

We will divide formulae into two categories, strong and weak. Strong for-
mulae are ones which are true or false independently of the context. Weak
formulae are not so universal. Effectively, a strong formula such that if it is
true then it is necessarily true.
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10.2.1 The rules for the strict conditional →
Suppose then that we infer B from Γ and the additional assumption that A.
The inference may rely on weak formulae in Γ which are context dependent.
So we may not wish to conclude that A→ B for when the context changes
Γ is no longer true.4 This legitimates introducing A→ B on the basis of a
deduction of B from {Γ, A} when the deduction of B from A depends only
on A and strong context independent) formulae in or deducible from Γ.

• Any formula of the form A→B is strong

• ⊥ is strong and so is >
The following rules for→ a to extend a natural deduction system for classical
logic which already contains the connectives ∧,⊥,⊃ etc.

The elimination rule for → remains Modus Ponens

A A→B
B

→E

but the introduction rule gets an extra side condition

C1 . . . Cn

¡¡Am,½½C1
m . . .½½Cn

m
....
B

A→B
→I(m)

provided that the Ci are all strong, and the
inference of B depends on no formulae other
than A, C1 . . . Cn and depends on no weak
rule applications.5

The inference of B from A,C1 . . . Cn must not contain on any weak rule
applications, and so it must be a deduction: any application of restart on
which B depends is weak, so all applications of restart on which B depends
must be completed at B.6 A special case of →I is when n is 0 (i.e. there

4At most we can conclude that if A is true as well as the weak assumptions on which
it relied, then so is B.

5So far the restart rule is the only rule I have used that can be weak. See section 11.3
for some more rules that are always weak.

6Here is the corresponding sequent rule →right, note its similarity to the CUT rule
but remember that →right, unlike CUT , always increases complexity.

Γ ` C1 . . . Γ ` Cn {C1 . . . Cn, A} ` B

Γ ` A→B
→right provided that the

Ci are all strong

The side condition is not quite complete as I have provided no way of identifying as-
sumptive rules in a sequent calculus. In this thesis I shall not show how to incorporate
assumptive rules into a sequent calculus.
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are no Ci), in such a case the inference rule has no premises other that the
deductive premise which is a deduction of B from A alone. For example in
this deduction of A→A from the emptyset:

¡¡A1

A→A
→I(1)

In the case where there are no Ci, →I becomes the more familiar conditional
proof with the restriction that the deduction of B from A depends on no
assumption other than A. If A⊃B is a theorem then B may be deduced from
A depending on no other assumptions. We can use this deduction applying
→I with no Ci to conclude that A→ B. Thus if A ⊃ B is a theorem then
so is A→B.

The restriction allows us to introduce A→ B only if B is derived only
from A and strong conclusions of other possibly weak assumptions.

Theorem 10.2.1 (A ∧ A1 ∧ · · · ∧ An) → B is logically equivalent to A →
(A1 ⊃ · · · ⊃An ⊃B).

Proof: This:

(A ∧A1 ∧ · · · ∧An)→B

A,½½A1
1, . . . ,½½An

n
.... ∧I

A ∧A1 ∧ · · · ∧An

B
An ⊃B.... ⊃I(2) . . . (n)

A1 ⊃ . . . An ⊃B

⊃I(1)
→E

is a deduction of A1 ⊃ . . . An ⊃ B depending only on A and a strict
implication (A ∧A1 ∧ · · · ∧An)→B (which is strong) and so we may
finish the deduction with an → introduction (let m > n):7

(A ∧A1 ∧ · · · ∧An)→B

(A ∧A1 ∧ · · · ∧An)→B

¡¡Am,½½A1
1, . . . ,½½An

n
.... ∧I

A ∧A1 ∧ · · · ∧An

B
An ⊃B.... ⊃I(2) . . . (n)

A1 ⊃ . . . An ⊃B

⊃I(1)
→E

A→ (A1 ⊃ · · · ⊃An ⊃B)
→I(m)

7Treating (A ∧A1 ∧ · · · ∧An)→B as the only Ci.
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For the other half of the equivalence, from A→ (A1 ⊃ · · · ⊃ An ⊃ B)
we may apply modus ponens successively

A ∧A1 ∧ · · · ∧An

An
∧E

A ∧A1 ∧ · · · ∧An

A
∧E

A→ (A1 ⊃ · · · ⊃An ⊃B)
A1 ⊃ · · · ⊃An ⊃B

→E
.... ⊃E,∧E

An ⊃B

B
⊃E

to obtain a deduction of B from the premises A→ (A1⊃· · ·⊃An⊃B)
(which is strong) and A∧A1∧ · · ·∧An. So we may discharge A∧A1∧
· · · ∧An for a final introduction of →.

A→ (A1 ⊃ · · · ⊃ An ⊃ B)

(((((((
A ∧ A1 ∧ · · · ∧ An

1

An
∧E

(((((((
A ∧ A1 ∧ · · · ∧ An

1

A
∧E

(((((((((
A→ (A1 ⊃ · · · ⊃ An ⊃ B)1

A1 ⊃ · · · ⊃ An ⊃ B
→E

.

.

.

.
⊃E,∧E

An ⊃ B

B
⊃E

(A ∧ A1 ∧ · · · ∧ An)→ B
→I(1)

As a taster of how I shall explain away some problems with embedded con-
ditionals. We may analyse

(†) if A then if B then C

as

A→ (B ⊃ C)

which is equivalent to

(A ∧B)→ C

which is the analysis of

(‡) if A and B, then C.

It is natural to consider it a failure of a theory of conditionals if † and ‡
are not equivalent. However, I shall not argue that the natural language
conditional is the strict conditional or the material conditional (or some
combination of the two).
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10.2.2 Semantics of the strict conditional

Let L be classical logic, the argument below is not dependent on which
system of rules is used to formulate L however in this thesis the received
formulation of classical logic is the system on page 87 using the restart
rule. Let Li be classical logic with the new implication rules for → and the
following inference rule for > is added,

> >I

and also with these additional rules for strength above.
Let ML is a set of models of L and 〈W,R〉 is an S4 (transitive and

reflexive) Kripke frame, 〈W,R, ML, f〉 is a model of Li where f is a bijection
from W to ML.8 Truth is then defined as follows, let M be a model of Li

and suppose w ∈ W

• For any w in any model M , M ²w > and M 6²w ⊥.

• If A is atomic then M ²w A iff f(w) ² A (remember that f(w) ∈ ML)

• If A is B → C then M ²w A iff M ²w′ C for all w′ s.t. wRw′ and
M ²w′ B

• If A is B ∧ C then M ²w A iff both M ²w B and M ²w C

• If A is B ∨ C then M ²w A iff either M ²w B or M ²w C

• If A is B ⊃ C then M ²w A iff either M 6²w B and M ²w C

If a formula A is strong (i.e. a strict conditional) then at any world w in
any model, either A is not true at w or it is true at all w′ s.t. wRw′

Now we may prove soundness for this semantics:

Theorem 10.2.2 If Γ ` A in Li then A is true every model of Li where Γ
is true.

Proof: The proof I present here is for a logic where restart is replaced
by PIP . See section 8.2 to see how restart and PIP are interchange-
able (i.e. switching one for the other does not alter the logical conse-
quence relation). In the following proof I omit the clause for PIP .9

8A model for S4 consists of a set of possible worlds with a transitive and reflexive
accessibility relation on them. A→ B is true at a world in wuch a model if B is true at
every accessible world where A is true.

9Remember that when restart is replaced by PIP we need not worry about assump-
tive rule applications (as incomplete applications of restart are the only assumptive rule
applications that appear in this thesis).
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We must show, by induction on the length of the derivation, that for
any world w if Γ `Li C and Γ is true at w then C is true at w. It is
a simple if somewhat tedious matter to check all the rules. The only
interesting case is →I, but I consider all cases here.

Firstly if A→ B is true at w then it is true at all accessible w′, thus
the condition on strength is sound.

If C ∈ Γ then the result is immediate.

If C is derived by ∧E then we have a shorter deduction that Γ `Li

C ∧ D (or D ∧ C) for some D which by induction hypothesis is true
at w and so C is true at w. If C is A ∧ B and is derived by ∧I then
by induction hypothesis A and B are true at w virtue of the shorter
deductions that Γ `Li A and Γ `Li B, and therefore so is C.

If C is derived by ∨E then we have shorter deductions that Γ `Li A∨B,
Γ, A `Li C, Γ, B `Li C. By induction hypothesis A ∨ B is true at w
and so one of A or B is true at w and therefore, also by induction
hypothesis, so is C. If C is A ∨ B and is derived by ∨I then by
induction hypothesis A or B is true at w virtue of a shorter deduction
either that Γ `Li A or that Γ `Li B, and therefore so is C.

If C is derived by⊃E then we have shorter deductions that Γ `Li D⊃C
and Γ `Li D for some D. By induction hypothesis D and D ⊃ C are
both true at w and then so is C. If C is A⊃ B and is derived by ⊃I
then virtue of the shorter deduction that Γ, A `Li B and the induction
hypothesis either A is not true at w or it is true together with Γ and
so is B.

⊥ is not true at any world, so ⊥E is a sound rule for this semantics,
and > is true at all worlds so >I is sound.

If C is derived by →E then we have shorter deductions that Γ `Li

D → C and Γ `Li D for some D. By induction hypothesis D and
D→C are both true at w and then, since wRw, so is C. If C is A→B
and is derived by →I then there is some set of strong formulae ∆ such
that Γ `Li D for all D ∈ ∆ and ∆, A `Li B (all of which are shorter
deductions). By induction hypothesis ∆ is true at w, and since every
member of ∆ is strong ∆ is true at all w′ s.t. wRw′. Thus for any w′

s.t. wRw’ at which A is true, both A and ∆ are true, and by induction
hypothesis so is B.
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10.2.3 Completeness

Before proving completeness notice that A→ (B → A) is not a theorem of
this logic. We cannot infer B → A from A as A might not be strong. For
example if, in a model, A is true at w and not in all w′ s.t. wRw′ and B is
true in all such w′ then A is true at w while B →A is false.

Also see that if
(†)B1 . . . Bn `Li C

then
(A→B1) . . . (A→Bn) `Li (A→ C)

the deduction for this is:

A→B1 . . . A→Bn

»»»»»(A→B1)1, . . . ,»»»»»(A→Bn)1,¡¡A1
.... →E

B1 . . . Bn.... †
C

A→ C
→I(1)

by appending deduction † to the bottom of n applications of modus ponens.
The final inference (introduction of A → B) is clearly legitimate because
each the A→ Bi is strong and the deduction of C from the Bi depends on
no undischarged assumptions.

Theorem 10.2.3 If A is true every model of Li where Γ is true, then Γ ` A
in Li.

Proof: To show this we shall assume that Γ 6` A and show that
there is a model of Li where Γ is true but A is not. This is done by
constructing a canonical model.

Take all maximal consistent sets of Li
10 – we denote such a set by m

– and define an accessibility relation R on them (we regard each m as
a world)

mRm′ iff {B : A→B ∈ m and A ∈ m′} ⊆ m′

We must show that we have a Kripke model. We must prove that

A→B ∈ m iff B ∈ m′ for all m′ s.t. mRm′ and A ∈ m′

10A maximal consistent set is a deductively closed, consistent set that contains, for every
formula A, either A or ∼A (A⊃⊥).
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The left-right direction follows immediately from the definition of R.

To prove the right-left direction let M ′ = {m′ : A ∈ m′ & mRm′},
that is M ′ contains all worlds accessible from m at which A is true.
Suppose further that B ∈ m′ for every m′ ∈ M ′. The m′ ∈ M ′ are
all maximally consistent sets containing {C : A→C ∈ m} ∪ {A}, and
since B is in every m′ it follows that {C : A→C ∈ m}∪{A} ` B. But
then {A→ C : A→ C ∈ m} ∪ {A→ A} ` A→ B (as shown above).
A → A is a theorem of the logic and {A → C : A → C ∈ m} ⊆ m,
therefore A→B ∈ m by the deductive closure of m.

The two deductions

>
¡¡>1 »»»»>→A1

A
→E

(>→A)→A
→I(1)

»»»»>→A2 »»»»>→A1

>→ (>→A)
→I(1)

(>→A)→ [>→ (>→A)]
→I(2)

show that (>→A)→A and (>→A)→ [>→ (>→A)] are theorems.
So {A : >→ A ∈ m} ⊆ m thence mRm. Also if, mRm′ and m′Rm′′

then if >→A ∈ m then >→ (>→A) ∈ m so >→A ∈ m′ so A ∈ m′′,
hence {A : >→A ∈ m} ⊆ m′′ so mRm′′. Taking all deductively closed
sets as the domain we can therefore construct a Kripke model for the
logic.

The remaining connectives are easy, as each m is consistent, deduc-
tively closed and must contain either A or ∼A for any A. A ∧B ∈ m
iff A ∈ m and B ∈ m. A ∨B ∈ m iff A ∈ m or B ∈ m (as if neither is
in m then ∼A,∼B ∈ m and m is inconsistent). A⊃B ∈ m iff ∼A ∈ m
or B ∈ m.

Treating truth as membership we may use each m as a model for L
(with sentences of the form B→C treated like new atomic formulae).11

Hence we obtain a model of the desired form.

So if in Li, Γ 6` A then there is a deductively closed set containing Γ
and not A, and so Γ∪ {∼A} is consistent (if it is inconsistent then we
may use restart or PIP to deduce A from Γ). So Γ ∪ {∼A} can be
extended to a maximal consistent set. This set will appear somewhere
in the canonical model above and so A is false in some model in which
Γ is true.

We may now define strict negation ¬ so that ¬A is equivalent to (or a
shorthand for) A→⊥. The system is as close as I can come to adding an

11Since the maximally consistent sets contain a negation satisfying the classical rules
they will do for models of the classical connectives.
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intuitionistic conditional to classical logic.12 We would be using the term
somewhat loosely to call → of Li intuitionistic implication (and ¬ intuition-
istic negation), as not every theorem of intuitionistic logic is a theorem of
Li. For example

A→ (B →A)

is not a theorem and the inference

A
B →A

is not valid. If A is strong (e.g. A itself is an implication) then both are
theorems/valid. If we set all atomic formulae as strong then we obtain a
logic closer to intuitionistic logic as A → B → A is a theorem when A is
atomic. But I see no reason to do this.

We may treat 2 as shorthand for >→A then we will obtain the familiar
language for the modal logic S4.

10.2.4 Deduction theorem

The deduction theorem does not hold in Li. If A is weak then although
A,B ` A, it is not the case that A ` B → A. The deduction theorem is
retained for the material conditional ⊃ however.

10.3 Normalisation

An introduction and subsequent elimination of → may be removed in the
normal way:

....
A

....
C1 . . . Cn

¡¡Am,½½C1
m . . .½½Cn

m
....
B

A→B
→I(m)

B
→E

gets reduced to ....
A,

....
C1 . . . Cn....

B
12Interestingly, we get a slightly different logic if we add classical negation to intuition-

istic logic. The difference is in the interpretation of atomic formulae. If we begin with
intuitionistic logic (and add a classical conditional) then the logic we get is the same as
Li except that all atomic formulae are strong.



140 CHAPTER 10. STRICT IMPLICATION

however there is another way a connective could be eliminated for the in-
troduction rule →I serves to eliminate some of its minor premises (the Ci):

....
C1

?I
. . . Cn

¡¡Am,½½C1
m . . .½½Cn

m
....
B

A→B
→I(m)

and C1 has been introduced by ?I and then eliminated. However, the con-
dition that all the Ci must be strong means that it is of the form D1 →D2

and so ?I is the rule →I:

....
E1 . . . Em

½½D1
k,½½E1

k . . .©©Em
k

....
D2

D1 →D2
→I(k)

. . . Cn

¡¡Am,½½C1
m . . .½½Cn

m
....
B

A→B
→I(m)

and, since the Ei must also be strong, there is a deduction of C1 (i.e. D1→
D2) from the Ei, we can use it to produce the following deduction:

....
E1 . . . Em

....
C2 . . . Cn

¡¡Am,

½½D1
m,½½E1

m . . .©©Em
m

....
D1 →D2 ,½½C2

m . . .½½Cn
m

....
B

A→B
→I(m)

10.4 The paradoxes of material implication and
the strict conditional

There are problems with the view that classical logic presents the full story
of the logical connectives. The greatest problem lies in the classical theory
of implication: ⊃. Material implication has too strong a logic to be what is
meant by natural language ‘if. . . then. . . ’. It is natural then to think that
the natural language conditional is in fact a strict conditional (or sometimes
strict and sometimes material). Unfortunately this view is also problem-
atic and I conclude (in chapter 13) that the logic of the natural language
conditional is much more subtle.

Nevertheless the view that the natural language conditional is a strict
conditional is not untenable and has been defended well in the literature
(e.g. Lowe).
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It is interesting to see how Li is free from familiar objections to analysing
‘if. . . then. . . ’ as ⊃.

10.4.1 Some deductions with strict conditionals

Since we cannot assume that A or ∼A are strong in general,

A 6`Li B →A
∼A 6`Li A→B

However, if A is strong then

A `Li B →A

which is not unacceptable, for example pif B then 1 + 1 = 2q is true for any
B, or at least for any B that is possible. Perhaps a little more contentiously,
if A is impossible then if it is true, anything is, i.e.

¬A `Li A→B.

It may be thought that the natural language conditional is false in the case
of an impossible antecedent, or at least not assertable. I think this is not in
general true, for otherwise a conditional like ‘if 1+1 = 3 then a contradiction
follows’ is false, which is not the case such conditionals are true. However,
the conditional that requires a possible antecedent may be characterised by

(‡) (∼¬A) ∧ (A→B).

10.4.2 Other deductions with strict conditionals

Clearly A→B entails A⊃B, but not vice versa.
Disjunctive syllogism is valid in Li,

A ∨B

¡¡A1 ∼A
⊥ ∼E

B
⊥E

¡¡B1

B
∨E(1)

but we cannot introduce ∼A → B from this as the premise A ∨ B might
not be strong (and does not have a strong formula below it that does not
depend on ∼A). So although

A ∨B,∼A `Li B, and even A ∨B,¬A `Li B
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the restriction is not in general met to allow the conditional proof for the
strict conditional:

A ∨B 6`Li ∼A→B, and also A ∨B 6`Li ¬A→B.

If A ∨ B is strong then the restriction is met and we may introduce the
intuitionistic conditional in the usual way. Since there is no restriction on
the classical conditional

A ∨B `Li ∼A⊃B, and also A ∨B `Li ¬A⊃B.

In Li, A→B is equivalent to ¬(A ∧ ∼B), but not to ∼(A ∧ ∼B) as

∼(A ∧ ∼B) 6`Li A→B

and similarly

∼A ∨B 6`Li A→B

although the classical (material) conditional A⊃B is entailed by ∼(A→∼B)
and ∼A ∨B.

10.5 Conclusion

I have shown here that even operating within the constraint of harmony we
can give an account of the strict conditional. We are not confined to the
basic classical logic by demanding normalisation.

I shall not argue that the only conditionals that occur in natural language
are the material conditional and the strict conditional, but I hope to have
shown that an account along those lines (e.g. and account with a variety
of strict conditionals) looks like it could provide a good analysis of the
conditional used in natural language. In particular, we can account for the
analyticity of much reasoning with the strict conditional (as we can give
harmonious rules for it).



Chapter 11

First order logic

So far I have considered mainly propositional logic, in this chapter I shall
discuss issues sounding the familiar rules for the quantifiers. I shall present
a normalised system for first order logic which will allow me to complete my
argument that the consequences of classical first order logic are analytic.

Actually I shall not complete my argument there, for I think that a
discussion of first order logic is not complete without some comment on
the phenomenon of reference failure. I shall suggest a logic that allows
us to handle empty proper names, I propose something similar to familiar
negative free logics (see [?]). Strictly speaking, therefore, I do not conclude
that classical logic is analytic for classical logic has no empty reference and
I present a logic that allows for it. But the logic I present is similar enough,
I think, to classical logic to warrant falling under the title of this thesis.1

11.1 First order rules

11.1.1 Universal quantification

A point of difficulty arises in using the natural deduction system in the gen-
eralisation to first order logic. The familiar rules for the universal quantifier
are complicated slightly by the addition of restart:

∀xA
A[x/t] ∀E provided t is free for x in A

A
∀xA[y/x] ∀I

provided y is not free in
any formulae or assump-
tive rule applications on
which A depends

1For example, the logic of reference failure I present is not strictly speaking a free logic
as it does entail ∃x(x = x). Usually, only logics that can have an empty domain (and not
entail ∃x(x = x)) are called ‘free logics’.

143
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y is free for x in A when no free occurrence of x in A in the scope of a
quantifier binding y. That is, any free occurrence of x in A may be replaced
by y which remains free. A term t is free for x in A when all its free variables
are free for x in A.2 The side-condition on ∀I ensures that y is not free in
the premises of any incomplete applications of restart on which A depends.3

We may extend the justification of the logical connectives to these rules.
A speaker may think that A, and not intend to make reference to any object
in particular when asserting A. For example, a speaker may be believe that
something has spots only on learning that it is a cow, without waiting to
find out which cow it is. The verbalisation of ‘. . . but it does not matter
what object x is’ is ∀x. Similarly if the speaker believes arbitrarily that a
cow has spots then he is being true to his belief to believe of a particular
cow that it has spots, and true to his intentions if he infers it from his
belief that all cows have spots.4 Certainly, when described the rules are
obvious. If everyone had a parent, then so have I. Now given any person,
nobody in particular, they have a parent. A simpler way of putting the last
sentence is ‘everyone has a parent’. Actually, serves better as a justification
of a generalised quantifier meaning ‘all. . . are. . . ’: let ∀x.A.B be a binary
quantification, then these are the rules for it (I omit the rule name and
superscripts):

∀x.A.B A[x/t]
B[x/t]

¡¡A....
B

∀x.A[y/x]x.B[y/x]

provided B does not de-
pend on any assumptions
or weak rule applications in
which y is free, except A

It is easy to show that these rules entail that ∀x.A.B is equivalent to ∀x(A⊃
B). For simplicity I shall base the remaining discussion around the unary
quantifier ∀x.

2The restrictions about t being free for x are to ensure that we do not add or bound
variables with our replacements. For example from ∀x∃yRxy we cannot apply ∀E setting
t to be y, for then we conclude ∃yRyy which does not follow from ∀x∃yRxy. Notice that
y is not free for x in ∃yRxy.

3I formulate the rule in terms of assumptive rule applications so that we would not have
to modify it were we to add any rules other than restart that have assumptive applications.
I shall not add any such rules in this thesis, but I think it is a virtue to maintain a certain
degree of generality in presenting these rules.

4For the term ‘all cows. . . ’ is introduced with the intention of verbalising that what
follows (what goes in place of ‘. . . ’) does not depend on which cows it refers to.
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11.1.2 Universal harmony

Harmony in the case of the universal quantifier is easy enough. If the con-
nective is introduced and then eliminated thusly:

....
A

∀xA[y/x] ∀I
A[y/t] ∀E

then the side-condition on the introduction rule ensures that, after suitable
renaming bound variables, we may replace y by t in the Prawitz tree as far
as A allowing us to delete the introduction and subsequent elimination of
∀x: ....

A[y/t]

When y is replaced by t throughout the deduction of A we may have to
change some bound variables (so that nothing in t gets bound when we put
it in place of y).

11.1.3 Replacement of variables

Normalisation theorems are complicated by the universal quantifier. The
problem lies in the reduction cases for →, ⊃ and ∨ and ∃ (below).

Call a variable x critical in a Prawitz tree if it occurs free in the Prawitz
tree is not free in any of the formulae at top nodes of the tree that are not
crossed out.

Now, if we introduce and then eliminate ⊃:

....
A

¡¡An
....
B

A⊃B
⊃I(n)

B
⊃E

then before adding the deduction of B from A (the premise of ⊃I) on the
end of the deduction of A (the minor premise of ⊃E), we must replace some
variables in the deduction of B from A. We must replace uniformly all the
variables x1 . . . xn that are critical in the deduction of B from A by y1 . . . yn,
where no yi occurs in the deduction of A. After making these replacements
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we can reduce the introduction and subsequent elimination to:

....
A....
B

and any application of ∀I in the deduction from A to B is sure to have its
side condition met.

Similar considerations apply to the reduction cases for →, ⊃ and ∨ and
∃ below.

11.1.4 Existential Quantification

The rules for the existential quantifier are more problematic:

∃xA

»»»»A[x/c]n....
B

B
∃E(n)

where c is a constant that
does not occur in any for-
mulae or assumptive rule
applications on which B
depends (except A[x/c]),
nor in ∃xA nor in B itself.

A[x/t]
∃xA

∃I
provided t is free for x in A

The idea behind the restriction on the elimination rule is to make it a gen-
eralisation of this argument

Something is A
Anything that is A is in a world where B is true
B

thus c is used as an arbitrary object that satisfies A so as to capture
the ‘anything’ without using a universal quantifier. In order to ensure that
c is arbitrary it must not already appear in A. Neither must c appear in
any formulae on which B depends, this is similar to the restriction on the
introduction rule of the universal quantifier.

The rule ∃E is problematic because it seems hard for anybody to under-
stand let alone apply correctly. Furthermore, listening to people reasoning
existential statements, it is hard to spot how where this rule is used explic-
itly. I think the rule is used explicitly but in a more roundabout way than
the other rules.

Suppose I return home one evening and notice a light on in my house
and sense movement inside. I might immediately jump to the conclusion
that:
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There is someone in my house

when reasoning further from this I typically use pronouns like ‘he’ or ‘it’ or
descriptions like ‘the person in my house’, for example I might conclude:

All my family are abroad so it is not a relation of mine.
Nobody else has a key so the person in my house broke in.
I should call the police.

notice that I can sensibly use a directly referring pronoun ‘it’ or ‘he’ without
a determinate referential link to anything (e.g. if there are two burglars in
my house, to whom does ‘it’ refer?), and I sensibly use the definite article
‘the’ without uttering a definite description (again, there may be two bur-
glars). These deviant uses of ‘he’ and ‘the’ are sensible in the context of me
reasoning from an existential belief that someone is in my house. Only the
sentence ‘I should call the police’ is fully intelligible without knowledge of
this context (although it may not be clear why the police should be called).
My use of the terms ‘it’, ‘he’ and ‘the person in my house’ are more to
facilitate reasoning than as fully fledged referring expressions. I should not
be worried about my use of the phrase ‘the person in my house’ when I dis-
cover there were really two burglars because I never intended it as a genuine
definite description, I was using it to aid my reasoning (which concluded in
‘I should call the police’).

But this is exactly what the existential elimination rule does. To elim-
inate ∃xA we assume, for a side deduction (i.e. in the context of the ex-
istential statement ∃xA), that A[x/c]. That is, we find a neutral referring
expression (neutral as in we assume nothing about it except that it satisfies
A) and say that A[x/c]. Since c is meaningful only in the context of facil-
itating reasoning from ∃xA we can end our deduction only when we have
stopped using c. To ensure neutrality of c we must know nothing about it
except that it is A, more formally it must not be free in ∃xA nor in any
other assumptions we use to deduce B from A[x/c]. Finally to ensure we
conclude with something that has truth conditions we must ensure that c is
not (free) in B.

The simplest method of finding a neutral term c that we can keep track
of (to make sure we have made no extra assumptions about it) is to use a
pronoun or a description like ‘the A’, although such a uses are not really
referring expressions. And, of course, people are lazy and very often to not
bother freeing their assertions from the context. I may end my reasoning
from ‘someone is in my house’ with the conclusion ‘he is a burglar’, it is
clear from the context that the inference is to be concluded silently with
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‘there is someone in my house who is a burglar’. It is far easier to think
‘there is someone in my house who is a burglar’ than it is to say, saying
it takes up more time and energy which is perhaps why it is hard to find
spoken instances of the existential weaken rule, but for me a silent use is
good enough. We might extend the rule ∃E to this:

∃xA

»»»»A[x/c]n....
B

B
∃E(n)

where c is a constant that does not
occur in any formulae on which B
depends, except A[x/c] and any as-
sumption anaphoric on ∃xA, and c
does not occur in ∃xA nor in B it-
self.5

Consider the sentences

There is a fly in my soup. It is still alive.

the first of these is in existential quantification ∃x[fly(x) ∧ in my soup(x)],
and the second sentence is anaphoric on the first. We might analyse them
as two separate assumptions:

(1) ∃x[fly(x) ∧ in my soup(x)]

(2) still alive(c)

but add that the second is anaphoric on the first, so that c may be used
together with (2) when eliminating (1):

∃x[fly(x) ∧ in my soup(x)]

(((((((((((
fly(c) ∧ in my soup(c)1 still alive(c)
fly(c) ∧ in my soup(c) ∧ still alive(c) ∧I

∃x[fly(x) ∧ in my soup(x) ∧ still alive(x)] ∃I
∃x[fly(x) ∧ in my soup(x) ∧ still alive(x)]

∃E(1)

which allows us to conclude, as we should, that

There is a live fly in my soup

from

There is a fly in my soup. It is still alive.
5This side-condition is, as things stand, not legitimate. This is because no effective

method has been given of determining what is anaphoric on what just by looking at
a Prawitz tree. A simple and unsubtle way of overcoming this difficulty is to add to
each Prawitz deduction a list of exactly what is anaphoric on what. A more subtle and
complicated way of handling anaphora is to use the epsilon calculus.
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11.1.5 Existential harmony

Harmony for the existential quantifier is unproblematic:
....

A[x/t]
∃xA

∃I
»»»»A[x/c]n....

B
B

∃E(n)

may be reduced by replacing c by t and, after suitable replacement of critical
variables (see section 11.1.3), appending the deduction of B from A[x/t] to
the deduction of A[x/t].

....
A[x/t]....

C

The restrictions on our choice of c in ∃E ensures that it may be replaced
by t without affecting the validity of the deduction. We may also define a
binary existential quantifier:

∃x.A.B

»»»»A[x/c],»»»»B[x/c]....
C

C

where c is a constant
that does not occur in
any formulae or assump-
tive rule applications on
which C depends (except
A[x/c] and B[x/c]), nor in
∃x.A.B nor in C itself.

A[x/t] B[x/t]
∃x.A.B provided t is free for x in A

and B

11.2 Identity

The rules for identity are these:

t = t =I
t1 = t2 A[x/t1]

A[x/t2]
=E provided t1 and t2 are free

for x in A

we may also add an extra elimination rule, but only shortens some deduc-
tions without adding any deductive power:

t1 = t2 A[x/t2]
A[x/t1]

=E provided t1 and t2 are free
for x in A
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Harmony is easy to show, if t1 = t2 is introduced and then eliminated then
t1 and t2 are syntactically identical:

t = t

....
A[x/t]

A[x/t] =E

and we may replace the whole thing with the deduction of A[x/t]:

....
A[x/t]

11.3 Reference failure

It would be well objected that t = t is not analytic as it is not true when t
does not refer. I am sympathetic to the view that ‘John is John’ or ‘John
swims’ are not true if John does not refer.

A simple response to this is to deny that ‘John is John’ expresses a
proposition if ‘John’ does not refer, with this we can avoid the objection by
arguing that we are interested in accounting for the analyticity of sentences
that express propositions.6 I think this a reasonable thing to say about
the apparent failure of the law of excluded middle in the case of vague
predications. But I think in the case of reference failure it is too simple a
response, at least with respect to questions about the relationship between
analyticity and modality. In the case of a vague predication, if it is vague
that a is F in one possible situation then (it is commonly supposed) it is
vague that a is F in all other possible situations (see [?]). However if a
does not exist in one possible situation it might still exist in others. This
suggests that even if paq does not refer the sentence pa exitsq does express a
proposition. Also consider a sentence like ‘Napoleon no longer exists’ which
seems to express a true proposition.

I shall suppose here that such sentences do express propositions and we
should account for non-referring terms in the theory of analyticity.7 I shall
now present a modification to classical logic that allows us to account for
reference failure.

6For example ‘splurg or not splurg’ is not analytic because it expresses no proposition
at all.

7The matter is complicated further by some philosophers suggesting that ‘Napoleon’
does refer, even though Napoleon is dead (and presumably no longer exists). I shall not
discuss these issues here.
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11.3.1 A simple analysis

The simplest way of allowing for non-referring constants is to modify the
quantifier and identity rules to obtain a free logic. Technically what I shall
now produce is not a free logic, although it can handle empty proper names,
because ∃x(x = x) is a theorem. Free logics are easy enough to produce,
more interesting is a logic that allows reference failure and allows the possi-
bility of an empty domain, but recognises that this domain is not empty.8

I shall take it as given that an atomic formula F (t1 . . . tn) is not true

8Tennant, in [?, p167-175] and in other of his arguments and papers, presents a free
logic. I shall make some points of comparison here of his logic and mine, my logic is just
like his except with some additional subtleties.

1. My free logic is not really a free logic as ∃x(x = x) is a theorem, in Tennant’s logic
it is not a theorem. My logic has the additional subtlety that 2∃x(x = x) is not a
theorem and 3∼∃x(x = x) is consistent. So although it is analytic that something
exists (I think that ‘I exist’ is analytically true) the logic allows the possibility that
nothing exists. Tennant does not present a modal free logic.

2. The logic I present is negative, that is, if a has no reference then Fa is false if F is
an atomic predicate. Tennant’s logic is not negative, although it is easy enough to
make it so.

3. Following on from the first point, in order to say that t refers in Tennant’s system
we write ∃x(x = t) whereas in my system we need only write t = t. Furthermore,
if t is a variable then it refers (∃x(x = y) is a theorem of my free logic, but again,
2∃x(x = y) is not). This makes for some more elegant quantifier rules, for example
here is Tennant’s ∀I rule:

»»»»»∃x(x = y)
....

A[x/y]

∀xA

with the side condition that y not occur free in any other assumptions on which
A[x/y] depends. My rule for the universal quantifier has no such discharging. This
means that if the rules for the universal quantifier constitute its definition then it
is not defined in terms of the existential quantifier. Also the introduction rule for
the existential quantifier does not seem so circular, here is Tennant’s:

∃x(x = t) A[x/t]

∃xA

My introduction rule is more elegant because the existential quantifier appears only
in the conclusion. These inelegancies in Tennant’s logic become highly objection-
able in the context of the theory of implicit definitions I propose in chapter 14 (and
indeed in the accounts given by Dummett and Hacking) where I argue that such
definitions must be constituted by introduction and elimination rules in a strict
sense (e.g. no circularity of the type displayed by Tennant’s rules is allowed).
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unless the terms t1 . . . tn all refer.9

The rules for ∀ become:

∀xA B
A[x/t] ∀E

provided t is free for x in A,
and B is an atomic formula
in which t is free. If t is
a variable then B need not
be present.

A
∀xA[y/x] ∀I

provided y is a variable and
A does not depend on any
assumptions or assumptive
rule applications in which y
is free

The rules for ∃ become:

∃xA

»»»»A[x/y]n,....
B

B
∃E(n)

where y is a variable that
does not occur free in
any formulae or assump-
tive rule applications on
which B depends (except
A[x/c]), nor free in ∃xA
nor free in B itself.

A[x/t] B

∃xA
∃I

provided t is free for x in A,
and B is an atomic formula
in which t is free. If t is
a variable then B need not
be present.

The rules for identity become:

B
t = t =I

where B is an atomic for-
mula in which t is free. If
t is a variable then B need
not be present.

t1 = t2 A[x/t1]
A[x/t2]

=E provided t1 and t2 are free
for x in A

So for example:
x = x = I

is a deduction as x is a variable, but if x is replaced by a constant the
deduction is not valid.

11.3.2 Normalisation

Harmony follows pretty much as before. If ∀ is introduced and then elimi-
nated

A
∀xA[y/x] ∀I

....
B

A[y/t] ∀E

then we may replace y by t in the inference of A. But doing so may invalidate
some applications of ∀E, ∃I and = I that relied on y being a variable. We

9As does Burge in [?].
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can revalidate them by adding B as a premise, so the inference reduces to:
....
B....

A[y/t]

where instances of

y = y =I
∀xC

C[x/y] ∀E
D

∃xD[y/x] ∃I

have been replaced by

B
t = t =I

∀xC B
C[x/t] ∀E D[x/t] B

∃xD[t/x] ∃I

If ∃ is introduced and then eliminated
....

A[x/t]

....
B

∃xA
∃I

»»»»A[x/y]n....
C

C
∃E(n)

then we may replace y by t in the inference of C and, as with the universal
quantifier, we must add B as a minor premise to any rule that relied on y
being a variable. ....

A[x/t]

....
B....

C

Finally if t = t is introduced, it can be eliminated by =E:
B

t = t =I A[x/t]
A[x/t] =E

the reductions for this is easy. Also t = t could be eliminated by an appli-
cation of ∀E, ∃I and =I:

B
t = t =I

t = t =I
∀xA

B
t = t =I

A[x/t] ∀E A[x/t]
B

t = t =I

∃xA
∃I

the reductions for these are equally easy, just delete the introduction of t = t:

B
t = t =I

∀xA B
A[x/t] ∀E A[x/t] B

∃xA
∃I
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11.3.3 The result

The logic we get from this is close to a standard negative free logic where
every atomic proposition involving a non-referring term is false.10 For ex-
ample:

∼∃x(x = t)

©©Ft1

t = t =I ©©Ft1

∃x(x = t) ∃I
⊥ ⊃E

∼Ft
∼I(1)

Using normalisation we can show that ∃x(x = t) is not a theorem where
t is not a variable. A normalised deduction of it must finish with by applica-
tion of ∃I to t′ = t, if t is not a variable there is no way to deduce anything
of the form t′ = t from no assumptions.

11.3.4 Strict implication

In order to accommodate strict implication appropriately, we must add that
some applications of ∀E, ∃I or =I are weak rule applications.

Any application of ∀E, ∃I or = I in which the term introduced
in the conclusion does not appear in the atomic premise (if there
even is such a premise) because it is a variable, is a weak rule
application.

For example:
∀xA

A[x/y] ∀E

is a weak rule application.
a = b does not entail 2(a = b), for we cannot deduce 2(a = a). This

is because a = a is not a theorem. Also, we can use = I to deduce x = x
but since this would be a weak rule application we cannot use it to deduce
2(x = x). a = b does entail that a = a → a = b by applying = E to a
deduction of a = a→ a = a. That is, from a = b we cannot deduce that a
is necessarily b, but we can deduce that necessarily if a exists then it is b.

10See Burge’s paper [?] for such a logic, a difference between his and mine is that
∃x(x = x) is a theorem of my logic and not of Burge’s. From the way I have set things
up, although ∃x(x = x) is a theorem, 2∃x(x = x) is not. This means that the logic
acknowledges that the universe could be empty but actually is not.
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11.3.5 Semantics

A model consists of a domain D, a set of subsets (call them worlds) of the
domain W , a reflexive and transitive accessibility relation R on the worlds,
and an interpretation I of the constants, predicates and function symbols of
the language.

I assigns to each n-ary function symbol a function from Dn to D and to
each n-ary predicate symbol F a set of n+1-tuples of the form 〈w, e1 . . . , en〉
where w is a world in W and each ei ∈ w. That is I fixes the extension of
F at each world.

For simplicity we shall assume that the language has only constants and
no function symbols (except for the constants). One world wa ∈ W is the
actual world.

A valuation vw on a model M assigns elements of the world w to every
variable.

Let M ²v
w A mean that A is true at world w in model M under valuation

v. Let xv denote the object assigned by v to the variable x. If t is a constant
then tI is the object I assigns to t, and tv = tI . Also let F I be the set I
assigns to F .

The semantics are little different from the usual semantics for first order
modal logic.

M ²v
w Ft1 . . . tn iff 〈tv1 . . . tvn〉 ∈ F I

M ²v
w t1 = t2 iff tv1 = tv2

M ²v
w A ∧B iff M ²v

w A and M ²v
w B

M ²v
w A ∨B iff M ²v

w A or M ²v
w B

M ²v
w A⊃B iff either M 6²v

w A or M ²v
w B

M 6²v
w ⊥

M ²v
w ∀xA iff M ²v′

w A for every valuation v′ that is x-alternate to v
and that assigns an element of w to x.11

M ²v
w ∃xA iff M ²v′

w A for some valuation v′ that is x-alternate to v
and that assigns an element of w to x.

M ²v
w A→B iff M ²v

w′ B for every w′ s.t. wRw′ and M ²v
w A.

11v′ is x-alternate to v when it agrees with v on what is assigned to every variable except
perhaps x.
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M ² A iff M ²v
wa

A for every valuation v that assigns only elements
of wa (the actual world) to the variables.

Note that M ²v
w A→B iff M ²v

w′ A→B for all w′ s.t. wRw′, so if a strong
formula is true at w it is true at all future w′.

Soundness

It is easy to see that the rules are sound for this semantics.12

First we must show that if M ²v
w Γ and Γ entails A without any variable

dependent rule applications then M ²v
w A for any w. The proof of this is

by induction on the length of the deduction.
For example, suppose the deduction ends with an application of →I:

C1 . . . Cn

¡¡A,½½C1 . . .½½Cn....
B

A→B
→I

by induction hypothesis M ²v
w Ci and if M ²v

w′ {A, C1 . . . , Cn} then M ²v
w′

B for every w′, since each Ci is strong M ²v
w′′ Ci for every w′′ s.t. wRw′′.

And so M ²v
w′ B for every w′ s.t. wRw′ and M ²v

w′ A.
If the deduction ends by an application of ∃I:

A[x/t] B

∃xA
∃I

then by induction hypothesis M ²v
w A and M ²v

w B, since B is atomic and
t is free in B (we are assuming that ∃I is not variable dependent), tv ∈ w,
and so there is a valuation v′ x-alternate to v which assigns an element of
w (tv) to x.

The other cases are shown similarly.

Now we can show that if M ²v
wa

Γ and Γ entails A then M ²v
wa

A, where
v assigns only elements of wa to the variables. Once again this is shown by
induction of the length of the deduction.

The interesting cases are variable dependent rule applications and →I.
For example

12The argument I present here is for a logic where restart is replaced by PIP . See
section 8.2 to see how restart and PIP are interchangeable (i.e. switching one for the
other does not alter the logical consequence relation). In the following proof I omit the
clause for PIP .
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x = x

is sound as, by assumption, every variable is assigned a member of wa.
And if the deduction ends with an application of →I, by induction hy-

pothesis M ²v
wa

Ci and if M ²v
w′ {A,C1 . . . , Cn} then M ²v

w′ B for every
w′ (we can assume this as the deductive premise makes use of no variable
dependent rules), since each Ci is strong M ²v

w′′ Ci for every w′′ s.t. waRw′′.
And so M ²v

w′ B for every w′ s.t. waRw′ and M ²v
w′ A.

The other cases are also easily verified.

Completeness

Say that Γ ` A when Γ deduces A in the free logic above, say Γ `s A when
Γ deduces A without any variable dependent rule applications.

First we must extend the language to ensure that there is a different
constant c for every formula ∃xA of the language.

We take all sets m such that either A or ∼A is in m and m is consistent
with respect to `s, and such that if ∃xA ∈ m then A[x/c], c = c ∈ m for som
constant c. The m are deductively closed with respect to `s, for if A 6∈ m
and m `s A then ∼A ∈ m and so m `s ∼A, but we have assumed that m is
consistent.

The deduction13

∼∀xA

»»»x = x2

¡¡A1

⊥ restart

∼A
⊃I(1)

∃x∼A
∃I

A
restart

∀xA
∀I(2)

⊥ ⊃E

∃x∼A
⊥E

shows that for any such m, if ∼∀xA ∈ m then ∼A[x/c] ∈ m for some c.
It is not complicated to show that every set consistent with respect to `s

can be extended to a set m. For example, the consistency of the rule ∃E
means that it is consistent, indeed conservative, to extend every consistent
Γ to Γ′ so that for every ∃xA ∈ Γ′ there is c such that A[x/c], c = c ∈ Γ′.
Therefore if A is in all m so extended that contains Γ, then A is a deductive
consequence of Γ.

13A similar deduction can be constructed using PIP and not the restart rule.
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Each m may be considered a world, the elements of which are nonempty
sets of constants {a, b : a = a ∈ m & a = b}. That is, if a is a constant and
a = a ∈ m then aI is the set of constants {b : a = b ∈ m}. We may take
the set of all such equivalence classes of constants as the domain D of the
entire model.

The extension if each atomic predicate F I is the set of all 〈aI
1 . . . aI

n,m〉
where the ai are constants and Fa1 . . . an ∈ m.

A valuation is taken as usual, as an assignment of variables and constants
to elements of D such that aI = av if a is a constant.

If 〈tv1 . . . tvn, w〉 ∈ F I then, by the definition of F I , Fa1 . . . an ∈ m for
some constants ai ∈ tv1.

If Ft1 . . . tn ∈ m then ti = ti ∈ m for each term ti by = I. By ∃I
and then and the definition of each m, Fc1 . . . cn ∈ m for some constants
c1 . . . cn. Therefore we any valuation that sets each tvi to cI is such that such
that 〈tv1 . . . tvn, w〉 ∈ F I .

The accessibility relation on the m is defined as in 10.2.2

mRm′ iff {B : A→B ∈ mA ∈ m′} ⊆ m′

we can verify, as we did in 10.2.2 that R is reflexive and transitive.
The actual world ma by taking some world m such that x = x ∈ m for

every variable x. The canonical valuation vc sets xv = aI for every variable
x s.t. x = a ∈ ma

It is now fairly easy to show that we have constructed a model M for
`. We may now set that M ²v

m A iff A′ ∈ m where A′ results by replacing
every variable x in A by some constant c ∈ xv. We must verify that this
yields the correct truth conditions.

If A is atomic this has already been shown above.
M ²v

m ∼A iff ∼A′ ∈ m, iff A′ 6∈ m (by definition of m) iff, by induction
hypothesis, M 6²v

m A′.
M ²v

m A∧B iff (A∧B)′ ∈ m iff, by ∧I and ∧E, A′ ∈ m and B′ ∈ m iff,
by induction hypothesis, M ²v

m A and M ²v
m B.

M ²v
m ∃xA iff ∃xA′ ∈ m iff A′[x/c] ∈ m for some c s.t. c = c ∈ m by

the definition of m and the ∃I rule iff, by ind. hyp. M ²v′
m A′ on some

x-alternate valuation v′ to v.
We can show that

A→B ∈ m iff B ∈ m′ for every m′ s.t. mRm′.

by reasoning similar to that of page 138.14

14It follows in the left-right direction by the definition of R. Now let M ′ = {m′ :



11.3. REFERENCE FAILURE 159

Thereby we can show that M ²v
m A→ B iff M ²v

m′ B for every m′ s.t.
mRm′ and M ²v

m′ A.
The other cases can be shown similarly, or by proving equivalences to

formulae expressible using only ∃,∼,→,∧.
Finally, our choice of ma is such that x = x ∈ ma for every variable x.

Consequently, for every variable x, there is a constant c such that x = c ∈
ma. Thus vc assigns an element of ma to every variable of the language.

Now, if Γ 6` A then Γ′ = Γ ∪ {∼A} is consistent.15 Since ` x = x we
can extend Γ into a maximal consistent set mΓ′ with respect to ` where
x = x ∈ mΓ′ for all variable x, and, since ts is weaker we can find mΓ′ in the
model described above. We can then set the actual world ma = mΓ′ above.
Since ∼A ∈ ma we have that M ²v

ma
∼A, and we have found a model where

Γ is true and A is not. So if A is true in all models where Γ is true then
Γ ` A. This concludes the (somewhat sketchy) completeness proof.

11.3.6 A final comment

In the system I have given, every a = a is false if a does not refer (and
all variable refer). This might not be entirely appropriate. We can modify
the logic easily so that Ft1 . . . tn is false if ti does not refer, but ti = ti is
necessarily true. For this we need a dummy unary atomic predicate E. The
rules for equality revert to the normal classical rules, in particular =I is

t = t

A ∈ m′ & mRm′}. Suppose further that B ∈ m′ for every m′ ∈ M ′. It follows that
{C : A→ C ∈ m} ∪ {A} `s B. But then {A→ C : A→ C ∈ m} ∪ {A→A} ` A→B.

A→ C1 . . . A→ Cn

½A1

»»»»»
(A→ C1)

1, . . . ,»»»»»
(A→ Cn)1,½A1

.... →E

C1 . . . Cn....
B

A→B
→I(1)

is the deduction, notice that the side conditions on →I entail, effectively, that {A →
C1 . . . A→ Cn} `s C.

A→A is a theorem of the logic and {A→C : A→C ∈ m} ⊆ m, therefore A→B ∈ m
by the deductive closure of m. This shows the right-left direction.

15As if Γ,∼A ` ⊥ then Γ ` A (using restart or PIP ).
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and E has an introduction rule:

B
E(t) EI

where B is an atomic for-
mula in which t is free. If
t is a variable then B need
not be present.

In effect, E is an existence predicate, but it need not be interpreted as
predicating of nonexistent objects since if∼E(t) then any atomic predication
containing t is false. E is more like a reference predicate, it does not entail
the presence of nonexistent objects.

11.4 Conclusion

We can produce a harmonious system of rules that allows for non-referring
terms, when used in conjunction with the rules for strict implication we
obtain a very subtle modal logic a semantics for which involves possible
worlds with variable domains. This seems all very much on the right track.
Furthermore the distinction between weak and strong rules allows us to
achieve another subtlety, we can have x = x a theorem of the logic without
2(x = x) being a theorem. Thus we can account for the analyticity of
a sentence like ‘I am me’ or ‘I exist’ without that entailing its necessity
(by finding more rules for terms like ‘here’ and ‘now’ I expect that we can
account for sentences such as ‘I am here now’).



Chapter 12

⊥ and the ex falso rule

Perhaps the least intuitive of the rules suggested so far is the elimination
rule for ⊥. Indeed, the ex falso rule is so unintuitive that it may be taken
as evidence that any logic containing it is not the logic of our reasoning (i.e.
not the logic we define). This would be evidence against my thesis as part of
my argument (that classical logic is analytic) is that we actually use classical
logic in our reasoning. I discuss the ex falso rule here and try to make it
seem less unintuitive. But my main argument for accepting it is this:

• The logic we use has a rich and simple truth conditional semantics. Al-
ternatively put, the properties and relations that hold between propo-
sitions are not obscure and are easy for us to analyse. In particular
we can provide simple and intuitive accounts of what propositions are
that are at least of instrumental value (e.g. possible world semantics,
no matter how implausible it may seem, is at least of instrumental
value in the practice of philosophy).

• However it seems that the best alternative logics that do not contain
the ex falso rule have very obscure, trivial, or unhelpful semantics. I
refer here to the search for a simple semantics for relevance logics, or
a simple theory of propositions for relevance logic.1

• Therefore the logic we use is such that everything follows from a con-
tradiction (i.e. it does contain the ex falso rule).

1Semantics for relevance logic are known, but they are by no means intuitive and require
significant logical ability and experience to understand. I submit that they are of little
value in furthering our understanding of the nature of propositions and truth conditions.
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12.1 ⊥
Traditionally ⊥ is regarded as denoting an absurdity, or something that
is disbelieved by definition. Treating ⊥ as shorthand for a contradictory
pair of propositions {A,not-A} is not enough for the purposes of this thesis
unless we add that contradictions are absurd or disbelieved by definition (so
that the absurdity of contradictions is analytic). We might argue that the
absurdity of contradictory pairs is part of the definition of negation, this is
not unacceptable although a little inelegant. I think an equivalent and more
natural strategy is to regard ⊥ as a formula that is absurd or disbelieved by
definition, and show how the rules for negation entail that {A, not-A} ` ⊥.
In light of this I shall try to regard ⊥, not as denoting any contradiction,
but as an atomic formulae which is necessarily absurd or disbelieved.

The problem then is whether such a formulae should support the famous
ex falso quod libet elimination rule:

⊥
B

which allows the derivation of anything from absurdity and consequently
from a contradiction. It is hard, if not impossible, to find uses of this rule
explicitly, which has lead many to believe that it is not a correct rule of
inference and should not be part of our primitive logic.

12.2 Arguments for ex falso

12.2.1 Lewis’ deduction

Here is C.I. Lewis’ famous argument that anything follows from a contra-
diction:

not-A
A

A ∨B
∨I

B
DJ

The final step DJ is disjunctive syllogism, an argument pattern which is
undeniably commonplace in common reasoning. Perhaps less common is
the rule ∨I which is what seems suspect initially to many people. However
it is hard to fault as A ∨ B is indeed true if A is.2 We can justify ex falso
using this argument if we regard ⊥ as a shorthand for a contradictory pair
(any contradictory pair). We might then even use this result to explain why

2It is enough to verify that A in order to verify that A ∨B.
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contradictions are analytically absurd (and disbelieved on principle), they
entail everything.

Equally famous is relevance logic which is motivated to rebut Lewis’
argument. The objection is that the argument is circular, the circularity
becomes apparent when we try to justify disjunctive syllogism. The elimi-
nation rule for disjunction is:

A ∨B

¡¡A....
C

¡¡B....
C

C

it is used to justify disjunctive syllogism

A ∨B

¡¡A not-A
⊥
B ¡¡B

B

and the application of the disputed ex falso rule has been revealed. In order
to justify the ex falso rule Lewis’ argument used disjunctive syllogism which
itself assumed the ex falso rule. We might try to repair this by arguing
that disjunctive syllogism is an elimination rule for disjunction and is not
derived. This is a plausible suggestion, disjunctive syllogism seems a basic
rule of inference, perhaps it is basic enough to be definitional of ∨. We might
add two extra elimination rules for disjunction:

A ∨B

¡¡A....
⊥

¡¡B....
C

C
A ∨B

¡¡A....
C

¡¡B....
⊥

C

and now disjunctive syllogism can be validated without use of ex falso. Such
a response is of little help to this thesis as those elimination rules cost us
normalisation (harmony) unless we have also the ex falso rule. Unless we
have ex falso as a primitive (underived) inference rule, a deduction of B from
a contradiction must involve the introduction and subsequent elimination
of a connective (disjunction) which cannot be reduced to a normal form.
Perhaps this is more the worse for the demand for normal forms, but the
roundabout nature of Lewis’ argument makes it seem like a sophistry of
some sort.
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Actually, the argument need not utilise disjunction at all and may avoid
the charge of circularity by reformulating the argument in terms of conjunc-
tion and negation. For example the following deduction

not-A
((((((
A ∧ not-B

A
⊥

not-(A ∧ not-B)
A »»»»not-B
A ∧ not-B

⊥
not-not-B

B

does not assume the ex falso rule. An application of double negation elim-
ination (or some other rule that entails it) is required. Denying double
negation elimination yields little relief as a similar argument will deduce the
negation of every formula from a contradiction which seems to me to be as
problematic as the ex falso rule. The use of conjunction in this argument
turns out to be extremely problematic for relevance logic and, it seems to
me, that relevance logics have not yet achieved an adequate treatment of
conjunction.

Whatever is to be made of the Lewis argument it is not enough for me
to use it as a justification of the ex falso rule. I am investigating how much
logic we can get when operating under the normalisation constraint, and the
Lewis argument is not in normal form, it can be reduced to normal form only
if the ex falso rule is taken as a primitive deduction rule. I must therefore
seek an alternative justification of ⊥.

12.2.2 Dummett’s justification

Dummett provides two interpretations of ⊥,

1. ⊥ is the set of all atomic formulae ([?])

2. ⊥ is some false atomic formula typically 0 = 1 ([?]).

The first interpretation of ⊥ legitimates the following restricted ex falso rule:

⊥
B ⊥E′ Provided B is

atomic.

an easy induction on the degree of B shows how ⊥ deduces any B by a
sequence of introduction rules.3

3For example, if B is atomic then ⊥ ` B immediately by ⊥E′; if B = C∧D then ⊥ ` C
and ⊥ ` D by induction hypothesis and so ⊥ ` B; if B = ¬C then since {⊥, C} ` ⊥,
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The second interpretation seems circular at first sight. However, in the
case of (certain views concerning) arithmetic it differs very little, if at all,
from the first. To see this note that atomic formulae in the language of
arithmetic are all of the form t = t′. With the axioms of Peano arithmetic
without the axiom that s(x) 6= x (s is the successor function) we can use 0 =
1 to derive every atomic formula (open or closed) from 0 = 1. Thus, at least
in the case of the language of arithmetic, there is a close relation between
the two interpretations of ⊥. Since we do not speak only in arithmetic this
observation does not apply and the second interpretation does not justify
the ex falso rule, we may take it for granted that 0 = 1 is false necessarily,
but we do not, in general think that 0 = 1 entails that the sun is shining.4

The first interpretation, that ⊥ is all atomic formulae, is unproblematic
from the point of view of justifying ex falso. The problem arises when we ask

it follows by ¬I that ⊥ ` ¬C; if B = C ∨ D then ⊥ ` C thence ⊥ ` B by ∨I; finally
if B = C → D then ⊥ ` D and so {⊥, C} ` D thence ⊥ ` A → B. The argument is
unchanged if we uses classical negation and implication symbols instead.

4Although perhaps this is because we have not thought enough, consider this proof
that p.

either p or not-p, if p then there is nothing left to prove. On the other hand,
if not-p then the number of things such that p is 0, but since 0 = 1 the
number of things such that p is 1, so there is something s.t. p, therefore p.

an argument not relying on the law of excluded middle is perhaps constructible using
extra rules relating to ‘the number of things such that p’. I am not sure what to make of
this argument. If it cannot be faulted, and I see no fault, then it shows that ex falso is
true provided that ⊥ is short for 0 = 1 and appears in a fairly strong arithmetic system.
However it seems wrong to hold that every sentence of the form not-A (e.g. the sun is
not shining) contains an arithmetical sense to it (e.g. if the sun is shining then 0 = 1). In
general we do not introduce negation on the basis of a deduction that 0 = 1.

Diversions through maths seem to me to be the quickest of the intuitive derivations of
anything from a contradiction. Here is another example:

Suppose that p and not-p. Now there is exactly 1 thing identical to me and
so, virtue of p, there is (exactly) one thing identical to me such that p. But
since not-p then there are 0 things such that p and so 0 things that are
identical to me such that p. So the number of things that are identical to
me and such that p is both 1 and 0 and so 1 = 0. But, as argued above,
anything follows from ‘1 = 0’.

So, if ⊥ is represents any contradiction, and the above arguments are acceptable, and
we have a priori enough maths to be claims like ‘the number of things such that. . . ’
intelligible, then the ex falso rule is acceptable (and we need not regard ⊥ as short for
0 = 1). However I find the detour through mathematical claims worrying, it is against the
spirit of normalisation (which I use as the basis for analyticity). We should expect there
to be more direct arguments or intuitions that anything follows from a contradiction if ex
falso is indeed an analytic law of logic.
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if, in actual practice, we really believe negations on the basis of a deduction
of every atomic formula. When I judge that there is no glass on the table in
front of me I do so by failing to find one, this is not implausibly modelled
by an application of the introduction rule for negation5

¡¡A....
⊥

not-A

but not if ⊥ is all atomic formulae, certainly I do not try to verify that the
sun is shining in order to show that there is no glass on the table.

Furthermore if ⊥ is all atomic formulae then its meaning differs when
the language is extended, a new ⊥ must be introduced when new atomic
formulae are added to the language (e.g. if a new word is introduced meaning
‘snow’ then we have a new atomic formulae which means that snow is white).

Dummett’s interpretations of ⊥ are quite natural in the context of a
language for mathematics but not for natural language.

12.2.3 An definitional justification

It may be thought that we can justify the ex falso rule in exactly the same
way we intend to justify the other logical connectives: we specify that the
ex falso rule (or rules that entail it) is part of the definition of ⊥.

Usually, the elimination rule for ⊥ is the ex falso rule and ⊥ has no
introduction rule. We now need only check that the introduction and elim-
ination rules are in harmony. But since ⊥ has no introduction rule, it can
never be introduced so we need never worry about it being introduced and
then eliminated. Certainly in all the logics I consider in this thesis, the ex
falso rule causes no problems for proving normal form theorems.

This may show that there are no logical grounds for rejecting the ex falso
rule, but it does not make ex falso any more plausible as a rule to adopt,
and does not help to allay any fear that it is a rule that we do not actually
adopt. If we are to say that ex falso is a definitional rule, we must give some
argument that it is used as a definition. But this is precisely what is being
doubted, it seems that the ex falso rule is never used (moreover, it seems
irrational to use it).

It might be argued that we should always adopt the strongest possible
elimination rule that is in harmony with the introduction rule. But this

5Where the assumption of A is implicit in the attempt to find the glass and is discharged
when I terminate the ‘search’.
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requirement is too strong, for example many atomic formulae other than ⊥
also have no introduction rules, but we would not wish to have a rule

A
B

for every such atomic formula. No doubt a subtle distinction could answer
this little problem, but the more general problem is that sometimes we may
not wish the strongest possible elimination rule.6

Furthermore what rule is the strongest may depend on what other con-
nectives have been defined and even the way they are formulated. Perhaps
a condition of the form ‘adopt the strongest possible elimination rule’ can
be made more clear and more general, but I shall not develop it here.

I believe it is not enough to show that the rules for a logical connective
are in harmony, for this shows only that a definition can be made. It does
not show that the definition has been made or must be made, and in the
case of the rules for ⊥ this is precisely what is in contention.

I think we can resolve the difficulty here by distinguishing between two
sorts of rules: direct inference rules and admissible inference rules. An
admissible rule is a meta-level rule that says ‘if there is a deduction of the
premises then there is also a deduction of the conclusion’. For example, here
is the ex falso rule understood as a direct inference rule:

6For example consider these rules, which we may add instead of the rules for strict
implication (matters are slightly more complex if we have rules for strict implication as
well):

A
3A

3I

3A B1 . . . Bn

½A,½½B1 . . .©©Bn....
B

B
3E1

Provided (1) B is
backwards-strong (2) each
Bi is strong (3) B depends
only on A, B1 . . . Bn

and where, for any A, B, 3A is backwards-strong and ⊥ is backwards strong. Furthermore,
we must add that any incomplete applications of restart the premise of which is backwards-
strong is not a weak rule.

With these additions we can show that 3A has the familiar Kripke semantics of S4
where 3A is true iff A is in some accessible possible world. I shall not prove this here.

We should not rule, out of hand, that 3 is not a legitimate or useful connective to
define. But clearly the elimination rule for 3 are not as strong as it could be:

3A
A

is the strongest rule in harmony with the introduction rules.
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From ⊥ (you may) infer A

and as an admissible inference rule:

If you have an inference of ⊥ then you can obtain also an infer-
ence of A.

More formally the direct inference rule for ⊥ is this:

⊥
A
⊥E

Whereas the admissible rule is this

Γ ` B
Γ ` A

Now, it is not hard to show, that in a logic with no rules specifically for
⊥ then the ex falso rule is indeed an admissible rule (even though there is
no direct inference rule corresponding to ex falso).

If our general theory of definition-by-inference-rules requires the infer-
ence rules to be direct inference rules then we have problems arguing that
a logic with the ex falso rule is the logic we actually use. But if our general
theory of definition-by-inference-rules allows also that admissible rules can
count as definitional, then perhaps we will have an easier time arguing that
classical logic (with its ex falso rule) is a logic we actually define.7 On this
understanding of the ex falso rule, it is not a rule that says that we may
infer any A from a contradiction (⊥). Instead it is a general condition on
our logic that any deduction of a contradiction may as well be a deduction
of anything. Put more loosely, the ex falso rule (interpreted as a definitional
admissible rule) is a promise never to accept a contradiction.

If we interpret the ex falso rule as an admissible rule then we may accept
that it is irrational to infer A directly from ⊥ (as there is no inference rule
that allows it). However, we can still regard the ex falso rule as a rule that

7In Gentzen’s original writings on the idea that inference rules can define logical con-
stants, the inference rules he used are formulated in his sequent calculus. A sequence
calculus may be thought of as a deduction system for the logical consequence relation
derived from some other deduction system. For example one of the sequent rules for
conjunction is this:

Γ ` A Γ ` B
Γ ` A ∧B

which does not say that we may infer A ∧B from both A and B, it says something more
general (that if there are two deductions of A and of B, then there is also a deduction of
A ∧B, nothing is said about how this new deduction is obtained).
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defines our basic logic, and as a crucial rule in making our logic complete
for the familiar truth conditional semantics.

I think it is plausible that we do treat the ex falso rule as admissible. I
use as evidence remarks such as

If you believe that then you’ll believe anything!

If we accept that, then we might as well accept this: [insert
ridiculous proposition here]!

This sort remark may be more than just a rhetorical device.
So in conclusion, we may use our theory of definition-by-inference-rule

to account for the meaning of ⊥ (and justify the ex falso rule), if we allow
that admissible rules may be used to define a logical connective. I think it is
not entirely implausible that such a story can be made to work at least for
reasoning from contradictions (or ⊥). I tentatively conclude therefore, that
we may resolve the difficulties with the ex falso rule (as part of a theory of
how we actually reason) by regarding it as an admissible rule rather than a
direct inference rule.

To be fair to those who are not convinced by the justification of ex falso I
have just proposed, I now turn to a discussion of what a system of inference
rules without the ex falso rule might look like.

12.3 Life without ex falso

I shall reject out of hand paraconsistent logics which allow contradictions to
be true, or at least do not have the law of non-contradiction as a theorem.
As far as I am concerned, regardless of the status of the ex falso rule I have
already shown that the meanings of the terms entail the truth of pnot-(A ∧
not-A)q. Here is the deduction (valid in intuitionistic logic):

»»»»
A ∧ ¬A

A
∧E »»»»

A ∧ ¬A
¬A

∧E

⊥ ⊥E

¬(A ∧ ¬A) ¬I

12.3.1 Relevance logic: implication

Relevance logic is then worthy of some extra discussion. Every line in a
relevance deduction is annotated by a set of labels (integers will do as la-
bels), these labels are transmitted down the branches of the deduction and
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indicate what assumptions were required for the deduction of each formula,
for example:

1 : A 2 : A→B
1, 2 : B

is an application of Modus Ponens. The two premises have the sets labels
{1} and {2} and the conclusion has the union of the labels of its premises
(here, the set of labels {1, 2}).

The rules for implication in relevance logic are:

α : A β : A→B

α ∪ β : B

n : ¡¡A....
α ∪ {n} : B

α : A→B

notice that in the introduction rule we can discharge A only if the label we
initially assign A is one of the labels of B, the idea being that A → B is
deducible only if A was used in the deduction of B.

For example we cannot deduce A→B from B by empty discharging A,
for, as the name suggests, A is empty discharged when it was not used in
deducing B. Thus A→ (B → A) is not a theorem of relevance logic. The
conclusion of any deduction in relevance logic with no labels attached to it
is a theorem. For example:

1 : ¡¡A 2 : »»»»A→B
1, 2 : B

1 : ¡¡A 3 : (((((((
A→ (B → C)

1, 3 : B → C

1, 2, 3 : C

2, 3 : A→ C

3 : (A→B)→ (A→ C)
[A→ (B → C)]→ [(A→B)→ (A→ C)]

shows that [A→ (B→C)]→ [(A→B)→ (A→C)] is a theorem of relevance
logic. Also, in relevance logic A→ (B →C) ` (A→B)→ (A→C) as there
is a deduction of α : (A→B)→ (A→C) from α : A→ (B→C), that is, any
assumptions that deduce A→ (B → C) also deduce (A→B)→ (A→ C)

12.3.2 Problems with relevance logic: conjunction and dis-
junction

In order to block the two Lewis arguments, in particular the one utilis-
ing conjunction rather than disjunction, relevance logic places the following
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restrictions on conjunction and disjunction (Greek letters are for sets of
labels.8 For brevity let α, β be short for α∪β and α, n be short for α∪{n}:

α : A α : B
α : A ∧B

∧I
α : A ∨B

α : ¡¡A....
α, β : C

α : ¡¡B....
α, β : C

α, β : C
∨E

In other words, we can introduce A ∧ B only if both conjuncts are derived
from the same assumptions, and we may eliminate A ∨ B only if we can
derive C from A and from B using the same additional assumptions. These
restrictions are to block the addition of irrelevant assumptions. The intro-
duction rule for negation is this:

n : ¡¡A....
α, n : ⊥
α : ¬A

where n is a fresh integer that labels no other assumption.
Now consider this deduction:

1 : A ∨B

1 : ¡¡A 2 : ¬A....
1, 2 : ⊥

1 : ¡¡B 3 : ¬B....
1, 3 : ⊥

1, 2, 3 : ⊥

in which we allow the elimination of A ∨ B even though the two minor
premises do not depend on the same assumptions. But now both ¬A and
¬B have become relevant to the deduction of ⊥ (as its labels indicate) we
may then finish the deduction by introducing a negation:

1 : A ∨B

1 : ¡¡A 2 : ¬A....
1, 2 : ⊥

1 : ¡¡B 3 : ©©¬B....
1, 3 : ⊥

1, 2, 3 : ⊥
1, 2 : ¬¬B

and a further application of double negation elimination (a usual part of
relevance logic) yields disjunctive syllogism and from there the ex falso rule.

8There are different systems of relevance logic, I present here one of the stronger (and
more sensible) elimination rules for disjunction.
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A similar problem arises with conjunction, suppose we allow that the
premises of conjunction introduction have different labels, then we can use
conjunction to add irrelevant premises.

1 : A 2 : B
1, 2 : A ∧B

1, 2 : A

In this deduction conjunction is introduced and then eliminated in order to
add an extra label to A: the label for B. But B might not be relevant to A.

The restrictions on conjunction introduction and disjunction elimination
block such deductions, but the price is high. Firstly such restrictions seem
highly unnatural: we should be able to introduce a conjunction whenever we
have derived each conjunct. Secondly {¬(A∧B), A, B} and {A∨B,¬A,¬B}
are not contradictory sets with these restrictions in place, but they ought to
be.9 These problems have caused some to reject relevance logic as of merely
technical interest (e.g. Hanson [?]). But those are not the only possible
rules, I shall now present a deduction system for relevance logic that does
not suffer from these problems.

12.3.3 Tennant’s relevance logic

Before I present my solution to these problems I wish to discuss another
solution offered by Tennant in [?] and [?]. Tennant observes the high cost of
such restrictive rules for conjunction and disjunction (see the labelled rules
above), and also rejects the famous relevance logic denial of disjunctive syl-
logism! Tennant rejects the Lewis ‘proof’ of the ex falso rule by rejecting the
transitivity of deduction. So, in Tennant’s system, we may have a deduction
from A to B and another from B to C, but then we may not be able to
obtain from these a deduction from A to C.

Tennant’s logic is effectively this

• It contains all of the familiar rules for intuitionistic logic except the
absurdity elimination rule, and has additionally the rule PIP (to make
it classical).

• It has an extra condition banning any empty discharging (this affects
the rules PIP , →I, ∨E and ∃E.

• It has a global condition that all deductions must be in normal form
9Note also that {A∧B, A→C, B→D} 6` C∧D}, and {A∨B, A→C, B→D} 6` C∨D}

in relevance logic, which is quite a failing.
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So for example although these are valid deductions:

A B
A ∧B

∧I
A ∧B

A
∧E

this is not a valid deduction:

(†)

A B
A ∧B

∧I

A
∧E

I have some issues with Tennant’s relevance logic, I give two here:

• Deduction is transitive. There is nothing wrong with (†) as a piece of
reasoning except that it need not be so long. I argue for this claim only
by appeal to our practices in reasoning. If we have reason to believe
that A deduces B and that B deduces C we rarely (if ever) check that
we can reason from A to C in normal form before we conclude that A
deduces C. Mathematical practice would be almost impossible if we
had to redo all previous lemmas and theorems just so we can derive a
corollary. We frequently reason out of normal form (especially when
chains of reasoning are done partly by one reasoner and partly by
another).

• In Tennant’s logic the object language conditional does not match
entailment in the logic. We can deduce A→ C, in normal form, from
A→B and B→C. We can even deduce (A→B)→[(B→C)→(A→C)].
So in a sense the conditional is transitive (or at least the conditional
‘thinks’ it is transitive).10 But then A → B is not the object level
analogue of the meta-level ‘there is a deduction/entailment from A
to B’. This makes it hard to use Tennant’s logic together with my
account of implicit definition in chapter 14, for my account requires
the object level connectives to be analogues of meta-level phrases and
constructions.

To conclude then, Tennant’s relevance logic, as Tennant shows in [?] pos-
sesses substantial logical power despite its failure of transitivity. Neverthe-
less, I object that it will not do as the basis of a theory of analyticity. The
primary objection here is that it does not match actual reasoning (reasoning
is transitive). In section 12.4.5 I suggest that any relevance logic will suffer
from this problem (of not being a good account of human reasoning) for
semantic reasons.

10Actually it is not, for we may have deductions of A→B and B→C but not be able to
convert them into a deduction of A→C without breaching the restriction the deductions
only be in normal form.
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12.3.4 My diagnosis of the problem

It would be an injustice to relevance logic not to attempt further to overcome
the difficulty of formulating relevance logic so it is plausible that we actually
use it. The idea behind the relevant conditional is intuitive: A→B is true
when A is relevant to the conclusion B.

As seen above we may use conjunction introduction (and disjunction
elimination) to add irrelevant premises to a deduction. We deduce A from
assumptions [labelled by] α, and B from assumptions β and thence A ∧ B
from the union of these assumptions:

α : A β : B

α, β : A ∧B

the problem is that we might later use A∧B to conclude A and mistakenly
be led to believe that the assumptions β are relevant to the deduction of A.
For example:

1 : ¡¡A 2 : ¡¡B
1, 2 : A ∧B

1, 2 : A

1 : B →A
A→ (B →A)

is a deduction of a formula relevance logicians do not wish as a theorem.11

We must find some way of blocking the introduction of B→A in the deduc-
tion above. Notice this deduction with a single premise

A ∧B....
C

may be viewed only as a deduction of C from a premise A∧B. But a similar
deduction of C from more than one premise

A, B....
C

is in a sense at least three deductions. It is a deduction of C from A in the
context of B, a deduction of C from B in the context of A, and a deduction
of C from A and B. But it might not be relevant that A and B are separate
premises, for example if they are immediately used to introduce A ∧B.

11If ¬B is short for B → ⊥ then the theorem entails that ⊥ → ¬B for any B, which
together with double negation elimination yields that ⊥→B for any B.
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This suggests the following addition to the conjunction introduction rule:

A B
A ∧B

Provided the
assumptions on
which A and B
depend are dis-
charged together
or not at all.

and the deduction above of A→ (B→A) is blocked as A ∧B is introduced
from assumptions A and B, which are subsequently discharged at different
points in the deduction.

We need to add a mechanism of labelling assumptions so we may give a
clearer account of simultaneous discharge. We already use a minor labelling
system in our practice of adding superscripts to formulae at top nodes of
deductions, it just so happens that this is enough.

12.4 A less problematic relevance logic

I shall present a natural deduction system here for a relevance logic, it is
a simplification of a more subtle natural deduction system which I shall
not describe in this thesis. I do not know exactly which axiom system
deduces exactly the theorems of the natural deduction system I am about to
present (I suspect it is 2R without the axiom for distribution of conjunction
across disjunction).12 I present the relevance logic here just as an example
of how we can obtain harmonious natural deduction systems for relevance
logics without such heavy use of labels and with less restrictive rules for
conjunction and disjunction.

• Say that occurrences of A1 . . . An in a Prawitz tree depend on the same
applications of restart when for every incomplete application of restart
on which Ai depends, there is an incomplete application on which Aj

depends with the same premise (for any i, j ≤ n).

12.4.1 The rules

Restart

Firstly the restart rule must be restricted:
A
⊥ restart Provided that A is occurs in the

Prawitz tree below ⊥
we may also call this restricted (or, relevant) restart ⊥I.

12See J. Michael Dunn, Relevance Logic and Entailment, in [?] Volume III, chapter 3.



176 CHAPTER 12. ⊥ AND THE EX FALSO RULE

Connectives

The side conditions on the following rules are somewhat long, although the
concept behind them is fairly simple. It is possible to shorten the side
conditions by means of a more compact language, but there is no point
here. Also the side conditions will almost completely disappear if I give
the following rules in a multiple conclusion logic (indeed, the normalisation
proof below will be considerably simpler in a multiple conclusion logic). I
present the logic here as a single conclusion calculus to keep it in the spirit
of the other logical systems of this thesis.

• In the following inference rules a premise such as this:

[½½A1
m] . . . [½½An]m....

B

represents any Prawitz tree some of the top nodes of which are crossed
out occurrences of A with a superscript m.13

Implication is enhanced so that it can take multiple antecedents. That
is ( )→, or → for short, is a connective that has an arbitrary finite string of
antecedents and one consequent. So if A1 . . . An, C are formulae then so is
(A1 . . . An)→ C.14

Here is the introduction rule for → (each ni is an integer):

[½½A1
m] . . . [½½Ak

m]....
B

(C1 . . . Cl)→B
→I(m) Where the A1 . . . Ak are

among C1 . . . Cl.

This rule is formulated so that every rule application must be have the
additional label m, and each Ai must appear at top nodes of the Prawitz tree
(with a superscript m). Since the rule application must have the additional
label m, each Ai is discharged by that rule application (as no two rule

13This:
½½A1 . . .©©An....

B

represents any Prawitz tree which may or may not have some crossed out occurrences of
A at top nodes.

14Interpret (A1 . . . Ak)→B as pIf A1 and if A2 and if. . . Ak then Bq.
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applications can have the same additional label). Here is the elimination
rule:

A1 . . . Ak (A1 . . . Ak)→B

B
→E

Provided that for every hy-
pothesis (crossed out for-
mula) on which Ai depends
there is a hypothesis on
which Aj depends with the
same superscript (for any
i, j ≤ n). And provided
that the A1 . . . Ak depend
on the same restarts.

If (A1 . . . Ak) → B is true then some of the A1 . . . Ak may be irrelevant to
B and some are relevant to B. Suppose that A1 is irrelevant to B and
A2 is relevant, then the condition on the elimination rule ensures that any
irrelevant assumption on which A1 depends is discharged simultaneously
with relevant assumptions on which A2 depends. Thus, the condition ensures
that it is always the case that at least one relevant assumption is discharged
(whenever a discharge is made).

It should be no surprise to learn that (A1 . . . Ak) → B is deductively
equivalent to (A1 ∧ · · · ∧Ak)→B.

The way I have set the logic up here, it is more convenient to have
separate rules for negation (rather than defining it as A→⊥).

[¡¡Am]....
⊥
¬A

¬I
A ¬A
⊥ ¬I

Conjunction introduction is:

A1 A2

A1 ∧A2
∧I

Provided that for every hypothesis
on which Ai depends there is a hy-
pothesis on which Aj depends with
the same superscript (for any i, j ≤
2). And provided that the Ai de-
pend on the same restarts.

The side condition ensures that for every application of relevant-restart that
is incomplete at A (or B), there is an application of relevant-restart with
the same premise that is incomplete at B (or A). In other words, A and B
depend on the same applications of relevant-restart.

Conjunction elimination is:

A ∧B
A

∧E
A ∧B

B
∧E
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Disjunction introduction is

A
A ∨B

∨I
B

A ∨B
∨I

and disjunction elimination is

A ∨B

[¡¡Am]....
C

[¡¡Bm]....
C

C
∨E(m)

Provided that for every hypothesis
on which each occurrence of C de-
pends there is a hypothesis on which
the other occurrence depends with
the same superscript. And provided
that both occurrences of C (in the
minor premise of the rule applica-
tion) depend on the same restarts.

The rules for ⊥:

⊥
A
⊥E

Provided that ⊥ depends on an in-
complete application of restart the
premise of which is A

The rules for the universal and existential quantifier are unchanged (as in
sections 11.1.1 and 11.1.4, except that the existential elimination rule is this:

∃xA

[»»»»A[x/c]m]....
B

B
∃E(m)

where c is a constant that
does not occur in any
formulae or (premises of)
applications of restart on
which B depends except
A[x/c], nor in ∃xA nor in
B itself.

When referring to this less problematic relevance logic, let us write Γ ` A
when there is a deduction the bottom node of which contains an occurrence
of A and the top nodes of which contain only occurrences of members of Γ.

12.4.2 Deduction theorem

The deduction theorem does not hold in this logic, for example {A,B} `
A∧B but B 6` A→(A∧B) is not a theorem.15 Perhaps we should deny that
that really is the deduction theorem, the deduction theorem (for relevance
logic) is that

15The normal form theorem of the next section may be used to show this, at least
for atomic A and B the only deduction in normal form of A ∧ B from A, B is a single
application of ∧I, but then neither A nor B can be discharged alone to derive A→(A∧B).



12.4. A LESS PROBLEMATIC RELEVANCE LOGIC 179

if Γ, A ` B then there is some finite subset {A1 . . . An} of Γ such
that ∆ ` (A1 . . . An, A)→B and Γ = ∆ ∪ {A1 . . . An}.

To see that this is a theorem note that a deduction of A from Γ is a finite
affair. So we may take a deduction that Γ, A ` B and choose A1 . . . An to
be all the undischarged (not crossed out) assumptions of the deduction. We
may then cross out all the Ai and superscript them with some integer n (that
does not appear elsewhere in the deduction), then we add an application of
→I with additional label n to the end of the Prawitz tree to get a deduction
that ` (A1 . . . An, A) → B. Each Ai is in Γ and so, for the ∆ such that
Γ = ∆ ∪ {A1 . . . An}, we have a deduction that ∆ ` (A1 . . . An, A)→B.

12.4.3 Normalisation

Theorem 12.4.1 Every deduction in the less problematic relevance logic
can be reduced to a normal form.

Proof:

I sketch the proof here as it proceeds much as before. For example,
suppose A ∨B is introduced and then eliminated:

....
A

A ∨B

[¡¡Am]....
C

[¡¡Bm]....
C

C
∨E(m)

then we may reduce this section of the Prawitz tree like this:
....
A....
C

Because the occurrences of C all depend on the same restarts, any
application of ⊥I or r-restart below C has its side condition met.
Furthermore, if one occurrence of C depends on a hypothesis with
superscript n, then the does the other. Thus any application of →I
(or ¬I) below C remains legitimate.16

16The minor premise
[½Bm]

....
C
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The cases for the other connectives are largely the same as in previous
arguments and I omit them here.

The most problematic cases arise with ⊥. We can easily reduce this
....
A
⊥ restart

A
⊥E

by replacing it with th initial deduction of A. But more complicated
is the reduction of this: ....

B
⊥ restart

A
⊥E

I shall sketch how to reduce these cases. First note that for such a case
to arise, B must depend on some prior applications of restart with a
premise A. Therefore, the Prawitz tree looks like this:

(†)

....
A
⊥ restart
.... (w)
B
⊥ restart

A
⊥E

.... (v)
B

Now, suppose that the section Prawitz tree labelled w contains no
applications of restart that are completed in the Prawitz tree labelled
v. Then we may replace † by this:

....
A.... (v)
B
⊥ restart
.... (w)
B

is deleted in the reduction step, we have shown that there are no rule applications below
C, in the original deduction, that are legitimate only because of this premise and not also
because of the other premise.
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On the other hand, looking at †, suppose that there are applications
of restart in w that are completed in v. Let C be an occurrence of a
formula that occurs in v, and completes an application of restart in w,
and is such no other formula in v completes an application of restart
in w and is higher than C. We may represent this case in this way:

(‡)

....
A
⊥ restart
.... (w1)
C
⊥ restart
.... (w2)
B
⊥ restart

A
⊥E

.... (v1)
C.... (v2)
B

because of the way we have chosen C, we may replace ‡ with:

....
A.... (v1)
C
⊥ restart
.... (w2)
B
⊥ restart
.... (w1)
C.... (v2)
B

An essential part of previous normalisation arguments was a proof that
any deduction can be reduced to a deduction where no formula is both
the conclusion to a restart rule and a premise to an elimination rule
(see page 8.3).

In the case of this normalisation theorem we must prove that any de-
duction may be reduced to one where no formula is both the conclusion
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of ⊥E and the premise of an elimination rule. This can be proved just
as in previous normalisation arguments (see around page 8.3).

We obtain normalisation by repeated application of these reduction
steps (notice that each reduction step rewrites a part of the deduction
so that as a whole the deduction contains one fewer formula that is
introduced and then eliminated).

Consider an atomic conclusion C of a deduction from {A,¬A} where A
is atomic. Then it may be deduced in normal form and since the conclusion
is atomic the last step in an elimination rule. Since the deduction is in
normal form C must be deduced via a sequence of elimination rules from
assumptions in {A,¬A} but such a sequence can yield only A or ⊥. Thus it
is not the case that everything follows from a contradiction (and similarly
from ⊥) in this logic. More complicated arguments show that 6` A→(B→A)
for any atomic A and B.

It is good that the result that a contradiction does not deduce everything
can be shown entirely proof theoretically and without appeal to semantic
notions. This is because a semantics of relevance logic seem to be either
trivial and unhelpful,17 or unintelligible and unhelpful.18

12.4.4 Some deductions in relevance logic

The new inference rules may be considered as improvements as we now
have much more general rules for the logical connectives. The following
deductions exemplify their strength. In these deductions I call the restart
rule ⊥I.

C
A B
A ∧B

∧I

(A ∧B) ∧ C

¡¡A1

(A,B)→A
→I(1)

B gets empty discharged, we can do this as one of the antecedents of (A,B)→
A really does appear at a top node of the Prawitz tree.

17For example an operational semantics where A → B means effectively ‘there is a
deduction in relevance logic of B from A’.

18For example the ternary accessibility relation possible world semantics.
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¬(A ∧B)
A B
A ∧B

∧I

⊥ →E

A ∨B
¡¡A1 ¬A

⊥ →E ¡¡B1 ¬B
⊥ →E

⊥ ∨E(1)

»»»»A ∧B1

A
∧E

»»»»A ∧B1

B
∧E

(((((((A,B)→ C2

C
→E

(A ∧B)→ C
→I(2)

((A,B)→ C)→ ((A ∧B)→ C)
→I(1)

¡¡A1 ¡¡B1

A ∧B
∧I (A ∧B)→ C

C
→E

(A, B)→ C
→I(1)

¡¡A1

A ∨ ¬A
∨I

⊥ ⊥I

¬A
→I(1)

A ∨ ¬A
∨I

A ∨B

»»»C → E1
½A3

(((((((
A→ C ∧B →D2

A→ C
∧E

C
→E

E
→E

E ∨ F
∨I

»»»»D→ F 1
½B3

(((((((
A→ C ∧B →D2

B →D
∧E

D
→E

F
→E

E ∨ F
∨I

E ∨ F
∨E(3)

(A→ C ∧B →D)→ E ∨ F
→I(2)

(C → E, D→ F )→ (A→ C ∧B →D)→ E ∨ F
→I(1)

12.4.5 Concluding remarks: the main case against relevance
logic

In this chapter I have attempted to argue that the ex falso rule is valid and
that its unacceptability is an illusion. However, I find the justification of
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the ex falso rule not entirely satisfactory and I think we must still respect
relevance logic as being potentially the correct formal system.

I hope to have answered in this chapter any proof theoretic worries about
relevance logic. The logical consequence relation of the less problematic
relevance logic seems to be as a logical consequence relation should be (e.g.
it does not have obvious failings such as a lack of conjunction introduction.
However, I shall not endorse it as the basis of the correct system of logic.

As I see it, the main arguments against a replacement of classical logic
by relevance logic, or against the view that we have been using relevance
logic all along are these.

1. There are ways of interpreting negation and ⊥ so that ex falso is a valid
rule, and furthermore the so called paradoxes of strict implication
(that a theorem is implied by anything and a contradiction implies
everything) are not paradoxes and are in fact true.19

2. The model theory obtained from classical first order logic is indispens-
able. That is, there is something correct about the truth conditional
semantics. With the ex falso rule we know that every possible world
is characterised by a set of sentences such that for every A either A
or ¬A is true at that world but not both. From this the notion of
entailment is simple, A→ B just in case A ` B (deduction theorem)
just in case every possible A-world is also a B-world. This provides
us with a good basic account of what the property of truth and re-
lation of validity are (I leave it open whether this account is real or
instrumental, either way it is indispensable).

It is not clear to me what a helpful semantics for any relevance logic
looks like. The closest I can come is to suggest a truth conditional
semantics for ⊥, conjunction and disjunction and to read (A1 . . . An)→
B as ‘there is a deduction of B that requires some of the Ai’, this is
not very helpful.

For these reasons I shall retain classical logic and not advocate this relevance
logic. There is excellent reason for applying this relevance logic to cases
where the consequence relation is not intended merely to preserve truth
(or to preserve truth at all). For example, in the case of reasoning within
a fiction we wish our inferences to preserve relevance to the fiction rather

19I find it hard to doubt that B → (A→ A) is not necessarily true, it seems to follow
from the fact that A→A is necessary. Although perhaps what I find hard to doubt is not
B → (A→A) but in fact B ⊃ (A→A), and B ⊃ (A→A) is a theorem of relevance logic.
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than truth. We can read and play along with an inconsistent story, this
is perhaps because many of the inferences we draw are intended only to
preserve the spirit of the fiction. Certainly relevance logic, although not the
logic from which the logical connectives derive their meaning, is of great use
and importance.
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Chapter 13

Implication

In this chapter I shall discuss how my analysis of the meanings of logical
constants applies to conditionals. So far I have shown how a logic of the
material conditional and the strict conditional may be regarded as analytic.
I wish now to investigate the extent to which the natural language con-
struction ‘if. . . then. . . ’ means the same as ⊃ or →, and what ‘if. . . then. . . ’
means when it is does not have the meaning of ⊃ or →.

I shall begin by discussing some famous theories of conditionals. First I
shall discuss arguments for the theory that any use of ‘if. . . then. . . ’ may be
analysed by ⊃ (i.e. the theory that all conditionals are material condition-
als). I shall reject these arguments and their conclusion, however I think the
arguments to support a weaker conclusion that some uses of ‘if. . . then. . . ’
really are the material conditional. Furthermore I think that similar ar-
guments support the view that some uses of ‘if. . . then. . . ’ are the strict
conditional.

I shall then discuss the conditional probability theory of conditionals
(famously advocated by Edgington and Adams). Ultimately I shall reject
the theory, mainly on the grounds that it fares no better as a theory of con-
ditionals than a closest-possible-world theory with the additional problem
that conditionals do not (under the conditional probability account) express
propositions.

Finally I present my account of conditionals which is a variant on Lewis’
closest possible world account. I argue that the logic of conditionals is not
entirely analytic, some of the rules for ‘if. . . then. . . ’ do not determine its
meaning (the rules relating to the relation of closeness of possible worlds).
Nevertheless, there is an analytic core to the logic of the conditional (the
rules that determine that it is a conditional). The significance of this for my

187
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theory of analyticity is this: the full logic of the conditional is not harmo-
nious, nevertheless there is an important sublogic that is harmonious. That
sublogic consists of rules that identify the ‘if. . . then. . . ’ as a conditional
(they are similar to the rules for →). The remaining rules relate to the
ordering of possible worlds by the closeness relation (these rules are learned
through experience).

13.1 Arguments that implication is material im-
plication

There are two compelling arguments not discussed enough that the condi-
tional is truth functional is material. The arguments come in a number of
forms.

13.1.1 Argument from conjunction

Suppose that we have these intuitive rules for negation:1

¡¡A....
⊥
∼A

∼I
A ∼A

B
∼E

∼∼A
A

∼DE

which are standard rules for classical negation.2 And these intuitive rules
for the conditional

¡¡A....
B

ifA thenB
A ifA thenB

B

The argument then proceeds by means of two simple deductions: a de-

1The rule ∼I is often called reductio, the rule ∼DE is the infamous double negation
elimination rule. The rule ∼E might be called contradiction elimination but has no official
name as far as I know.

2Usually only ∼DE is necessary as ∼ . . . is defined to be pif . . . then⊥q. But I do not
do this here so that ∼ at least appears to be a term in its own right and not defined in
terms of the conditional.
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duction of pifA thenBq from ∼(A ∧ ∼B) and vice versa.

¡¡A2 ©©∼B1

A ∧ ∼B ∼(A ∧ ∼B)
⊥

∼∼B
(1)

B
ifA thenB

(2)

((((A ∧ ∼B1

∼B
ifA thenB

((((A ∧ ∼B1

A
B

⊥
∼(A ∧ ∼B)

(1)

Put into words the arguments run like this

• Suppose that one of A and ∼B is false, now suppose also that A, it
follows that ∼B is not true (for otherwise A and ∼B are both true),
so B is true. Thus if A then B.

• Also, pifA thenBq is inconsistent with A ∧ ∼B, so each implies the
negation of the other. Therefore ‘if A thenB’ implies ∼(A ∧ ∼B).

13.1.2 The argument from disjunction

A similar argument is based on disjunction.

• Suppose ∼A ∨B then if A, B.

• Suppose that if A then B, now there are two cases: either ∼A or A.
In the second case B (as we have supposed that if A then B). So the
two cases become: ∼A or B, i.e. ∼A ∨B.

The conclusion of both arguments is that if we accept modus ponens
and conditional proof for the conditional (together with double negation
elimination or the restart rule) then the conditional is equivalent to material
implication.3 This then applies to my thesis in which the conditional is
defined implicitly by conditional proof and modus ponens.

The arguments are hard to fault, perhaps the first is the more surpris-
ing to those not wishing to accept the material conditional as the natural
language conditional.

13.1.3 A response

Given the restart rule (which entails double negation elimination), anything
that satisfies conditional proof and modus ponens is at least as strong as
the material conditional. The conclusion we must draw is that the natural

3If we accept that it expresses a proposition, which Edgington and Adams do not.
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language conditional does not satisfy conditional proof, at least not in such
an unrestricted form.

We have already seen how a restricted form of conditional proof is re-
quired when giving the logic of the strict conditional. A→B may be intro-
duced not on the basis of any deduction of B from A but only on the basis
of a deduction that can be made in any context. However the deduction of
B from A required to introduce A ⊃ B may depend on anything that just
happens to be true (and may be false in different situations). In particular
the deduction may depend on B, if it is true, and so A⊃B can be introduced
only because it is true that B.

I think the form of conditional proof we actually use, in general, is re-
stricted in a similar manner, for pifA thenBq to be true, not just any de-
duction of B from A must be available. pifA thenBq is true when B follows
from A on the basis of certain appropriate information.4 I begin a discussion
of what information is ‘appropriate’ means in section 13.5.

Even so, the arguments remain compelling and I think that the material
conditional is used. I suggest that the construction:

if. . . as well, then. . .

is a material conditional. For example, the embedded conditional in the
latter half of:

(†) if A ∨B then if ∼A as well, B.

is of the form if. . . as well, then. . . . Let us suppose for now that the main
connective of † expresses entailment, then † is best analysed by

(A ∨B)→ (∼A⊃ C)

and is equivalent to ((A ∨ B) ∧ ∼A)→ C. It is easier to see that the ‘if as
well’ construction is material when it is written in a longhand

if. . . , in addition to all else that is the case, then. . .

Now if B is true, then if A is true in addition to all else that is the case (e.g.
B) then B is true. Furthermore if ∼A is true, then if A is true in addition
to all else then ⊥ is true, and so (by ex falso) B is true.

It is rare that we use the ‘if as well’ by itself, usually it occurs embedded
in another conditional. A similar construction is ‘and if. . . then . . . ’, which
clearly can occur only embedded

4See page 203 for the full truth definition for the natural language conditional.
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if A and if B then C

it seems to me that the best analysis of such a construction is the material
conditional.5

13.2 The inescapability of the logical conditionals

Despite the stock of counterexamples to the strict and material conditionals
as an analysis of the natural language conditional, the two conditionals ex-
ist in natural language and are unavoidable. This follows directly from the
arguments above, we may always define such conditional, and such condi-
tionals will always be useful to us as they allow us to express our reasoning
and thoughts. Even the most anti-logical text on the subject, loaded with
counterexamples to the material and strict analysis of the natural language
‘if. . . then. . . ’ makes use of a term like ‘therefore’. pA, therefore Bq sat-
isfies all the properties of the strict conditional, it must, for otherwise we
would not be able to string an argument together such that the premises
are grounds for the conclusion (e.g. we cannot if transitivity of ‘therefore’
fails).

Indeed, any formulation of the logic of the ‘real’ conditional makes use
of a rule like:

(†) If A logically implies B then, A⇒B

where ⇒ is to be the natural language conditional.6 What is the status of
‘logically implies’ in such sentence and what is the status of the ‘if. . . then. . . ’
used explicitly in the sentence? If, in order to grasp the natural language
conditional, we are to grasp something like † then we already have, or have
the means to define and use the strict conditional, before we come to have
⇒. Otherwise † the ‘if. . . then. . . ’ and ‘logically implies’ of † is ⇒ in which
case, † is circular if used as a defining axiom for ⇒, and adds nothing to the
logic except perhaps the theorem (A⇒B)⇒ (A⇒B).

A more specific example, it has been argued that the natural language
‘if. . . then . . . ’ is a judgement best captured by

P (B|A)

5This also allows us to solve a difficulty for embedded conditionals and modus ponens
presented my McGee, see 13.7.2.

6For example, see the formulation of the rule LC on page 154, of Adams’ book A
primer of probability logic, CSLI, 1998.
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understood in the usual probability calculus. We accept ‘if. . . then . . . ’ when
we judge P (B|A) to be high. But to be competent users of the probability
calculus we must know, or at least act in such a way that

If A is tautology then P (A) = 1

which is an axiom of the probability calculus. In terms of the judgement
theory, upon learning that A is a tautology we should be certain of it. But we
cannot learn that A is a tautology unless there already exists a framework for
deducing tautologies. If such a framework exists then a strict and material
conditional is definable. Furthermore, suppose we wish to explain someone
why we are certain that ∼(A∧∼A) we do not argue that its probability is 1,
for this merely serves to restate that we are certain of it. In fact, we try to
show that ∼(A∧∼A) cannot be false we show that it is a tautology, in doing
so we might argue that if A ∧ ∼A then an inconsistency follows (⊥). That
use of ‘if. . . then. . . ’ is the strict conditional and is essential to making the
argument understood. The strict conditional is used in natural language.

These arguments apply equally to a material-implication-only theory. I
think it is not tenable to hold that the natural language indicative condi-
tional is only ever the material conditional.7 Even one who loves the material
conditional must acknowledge that there is a difference between

(†) If it is sunny then I will not take my umbrella

and

(‡) If it is sunny then it is sunny,

one is necessary and the other is not. The difference can be characterised by
using some analogue of a necessity or theoremhood operator such that ‡ is
necessary (or a theorem) but † is not. Another way to go, a simpler way, is
to accept that, in addition to other conditionals, there is a strict conditional
for which ‡ is true and † is not. This way there is no extra notion of
necessity to rely on, or even a notion of theoremhood which (in the same
way as for a probabilistic conditional above) requires a strict conditional in
its formulation. The strict conditional is neither mysterious nor circular as it
may be implicitly defined in much the same way as the material conditional.

7Talk of ‘indicative’ rather than ‘counterfactual’ conditionals comes with a disputable
taxonomy of conditional sentences. I use it here to help refer to theories of others who
accept the distinction and argue that so called indicative conditionals are truth functional.
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13.3 The probability analysis

Before turning to my own analysis of conditionals I want to discuss an ac-
count of conditionals that, if true, renders pointless any investigation into
the analyticity of conditional sentences. The account is that conditional
statements do not express propositions but are express a primitive judge-
ment that is best analysed by a conditional probability (if conditionals do
not express propositions then they are neither true nor false and so there is
no point in trying to explain why some are true only because of the meaning
of ‘if. . . then. . . ’). This probabilistic account of conditionals is accepted by
many philosophers, famously Edgington and Adams.

Edgington argues for the thesis when we ‘believe’ that if A then B we
are really making a conditional judgement about B (conditional on A). The
degree of conditional-on-A belief we have in B is given by P (B|A) the con-
ditional probability of B given A.

13.3.1 Edgington’s argument

Here is, from what I can tell, Edgington’s master argument. I change only
Edgington’s notation in the following quotation (from [?, p279-80])

Two prima facie desirable properties of indicative conditional
judgements:

(i) Minimal certainty that A ∨ B (ruling out just A ∧ ∼B) is
enough for certainly that if ∼A, B; changing the negation
sign, minimal certainly that∼A∨B (ruling out just A∧∼B)
is enough for certainty that if A, B.

(ii) It is not necessarily irrational to disbelieve A and yet dis-
believe if A, B.

The truth functional account satisfies (i) but not (ii). Stronger
truth conditions may satisfy (ii). . . but they cannot satisfy (i);
for any stronger truth condition ruling out just A ∧ ∼B leaves
open the possibility that ‘if A,B’ is not true. (p279)

Minimal certainty in A ∨ B occurs when p(A ∨ B) = 1 but p(A) 6= 1 and
p(B) 6= 1. Edgington then goes on to argue that her probability analysis
of conditionals satisfies both (i) and (ii) at the cost of conditionals not
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being propositions.8 Notice that if we use probabilities as an analysis of
certainty then we must be certain of every tautology (and certain that every
impossibility is impossible), this is a general problem of many systems. In
a context such as this, Edgington has a right to ignore it, as do I.

We may generalize. Take any proposition, Either it is entailed by
∼(A∧∼B) or it is not. If it is, it will satisfy (i) by not (ii) (when
substituted for pif A,Bq). If it is not, it may satisfy (ii), but it
cannot satisfy (i). Conditional judgements interpreted according
to the [Conditional Probability] Thesis satisfy both (i) and (ii).
So they cannot be interpreted as a belief in any proposition.
(p280)

I think the error here is the supposition that a semantic treatment of the con-
ditional (in which conditionals are true or false) will treat certainty merely
by attaching probabilities to propositions. For example if we have a possible
world analysis of conditionals we might demand that a probability distribu-
tion on propositions affects the distribution of the possible worlds.

Take Stalnaker’s semantics for the conditional [?]. There is an actual
world which is a member of a set of possible worlds called the context set.
The context set is contained in a total domain of all possible worlds. There is
a closeness relation on the total domain, such that any world in the context
set is closer to the actual world (and also any other world in the context set)
than any world outside the context set. pIf A then Bq is true at a world w
when B is true at the closest world to w where A is true. A proposition is
true when it is true in the actual world.

Edgington’s argument applied here is that we might be minimally certain
that A ∨B (i.e. attach appropriate probabilities to A and B and A ∨B) in
the actual world, but still, in the closest world where ∼A is true B is not
true (if A is actually true). I think the error in Edgington’s argument lies
in assuming that the probabilities of A and B at a world are independent
of what worlds are close or distant to that world.

Stalnaker does not write so much about certainty, but he is quite clear
on how knowledge should be treated in his model when he discusses what
the context set is. Stalnaker stresses the need to evaluate conditionals in
context. . .

8Though she does allow that we can make assertions out of a conditional probability,
if we think p(B|A) is high then we can assert that p(A ∧ B) is significantly greater that
the probability of A ∧ ∼B.
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The most important element of a context, I suggest, is the com-
mon knowledge, or presumed common knowledge and common
assumption of the participants of the discourse.(p141)

...

In the possible worlds framework, we can represent this back-
ground information by a set of possible worlds – the possible
worlds not rules out by the presupposed background informa-
tion. I will call this set of possible worlds the context set. (p142)

When we know A, the context set should be such that A is true at every
world in it. If we do not know that A (ignoring unknown logical truths9)
then ∼A should be true at some world in the context set. Thus, if we have
minimal knowledge that A ∨ B, then we know only (of A and B) that ∼A
and ∼B are not both true, and so A∨B is true throughout the context set
and ∼A and ∼B are true at some worlds in the context set. It follows from
the conditions on the closeness relation that pif ∼A then Bq is true in the
actual world (and also any other world in the context set).

Stalnaker does not relate his context set to probabilities, but it is easy
to find ways in which he can. For example, we could stipulate that the
proper objects of probabilities are worlds. Worlds in the context set all have
non-zero probabilities such that the sum of the probabilities of the worlds
in the context set is 1. The probability p(A) of a proposition A is the sum
of the probabilities of the worlds in the context set at which A is true. We
may then define p(B|A) as p(A ∧ B)/p(A). And now we have a stronger
than truth conditional account of the conditional, in which it expresses a
proposition, which satisfies both of Edgington’s (i) and (ii) above.

Certainty does not entail truth, so it does not follow that minimal cer-
tainty in A∨B entails that pif ∼A thenBq is true (or even A∨B). However
minimal knowledge in A ∨ B does, on this upgraded account, entail that
if ∼A thenB. So if we are minimally certain that A ∨B and we also know
that A ∨ B, then pif ∼ A thenBq is true, and so we have every right to be
certain that if ∼ A thenB (as we assume we know each individual thing of
which we are certain).

9As Edgington must as well, for there are logical truths of which we are uncertain yet
their probability is 1.
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13.3.2 Relevance and similarity

An experienced diver is standing on a diving board over a swimming pool
that has been drained of water and has not yet been refilled. There is a
sense in which it is true that

(†) If he jumps he will break his neck

but, the probability of him breaking his neck given that he has jumped is
very low, after all, he knows not to jump into a pool that has no water in it.

Edgington’s thesis can easily account for this, using the phrase such as
‘as he is’ or ‘as things are’. The probability that he will break his neck given
that he jumps as things are, is very high, but if we do not specify that the
jump has to be as things currently are, it becomes very low.

But this phrase ‘as things are’ if we are not careful should result in the
probability of everything (except perhaps some quantum events) being 1 or
0. The answer is that when assessing pif A then Bq we do not always assess
p(B|A) out of context, we may identify some facts Γ relevant to the context
and instead assess p(A|(∧ Γ ∪ {B})).

We must do something like this anyway when we come to use general
probabilities for assessing likelihoods of individual events or properties of
individual things. Gillies ([?, p119-125]) uses an example of whether to
allow a teenage girl to own a scooter. The crucial question centres around
the conditional

if she owns a scooter then she will have an accident

how are we to judge what the probability of her having an accident is given
that she owns a scooter. We could look at (possibly objective) probability
of someone crashing given that they own a scooter. But this might not be
appropriate, the particular teenager in question might not be represented
adequately by the class of all past scooter owners. It is perhaps best to look
at the probability of a teenager crashing given they own a scooter. But that
might still not be appropriate as, this teenager might be more careful than
all other teenagers, and so we should consider the probability of a crash
given the owner of the scooter is a careful (slow driving) teenager.10

The upshot of this is that for knowledge of general probabilities to help
us decide about probabilities of particular things and events,11 we must find

10But notice that this adds further complexity as to judge whether it is appropriate to
class this teenager as careful we might have to consider different conditional probabilities
(e.g. the probability of a teenager being a careful driver given their age and surroundings).

11Which it must, otherwise the theory is impotent to explain how we should accept or
reject conditional judgements about particular events or things.
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some relevant information (from the context) that determines which general
probability we use. Suppose I am debating the conditional probability of
Tweety flying away if I open the door to his cage. I cannot judge this at all
unless I learn some information about Tweety, e.g. that he is a bird, which
seems to make the conditional probability very high. But this might not do
justice to the situation (e.g. if Tweety is a penguin).

The conditional probability analysis of conditionals cannot work with-
out a separate theory of identifying an optimal set of relevant facts to use
for turning general probabilities into probabilities of individual things and
events. Or, perhaps some account of similarity of situation so that when we
judge p(B|A) we do so by considering all similar cases where A is true and
look at the proportion of them that are B.

Notice a similarity between a theory of optimal sets of relevant facts
and a theory of closest possible worlds. The similarity is close to identity,
especially if worlds are deemed closer or more distant depending on how
many more relevant facts are true at them.

Thus a probability theory of conditionals cannot claim to have an ad-
vantage over other theories (e.g. possible world theories) in that it bypasses
considerations of similarity of worlds or relevance of information, for it does
not. Furthermore, as we have seen, Edgington’s master argument does not
succeed.

13.3.3 Embedded conditionals

Since p(B|A) is not the probability of a proposition B|A we cannot embed
it in another connective. Thus we cannot analyse pifA then ifB thenCq in
terms of p((C|B)|A) as the latter has no meaning (or at least, any attempt
to give it meaning results in disaster). This means that the probability
thesis of conditionals can only account for conditionals with do not occur
embedded in a sentence. Proponents of the thesis seek to paraphrase what
constructions involving embedded conditionals they can and argue that the
remaining ones are unintelligible. This is perhaps an acceptable strategy as
complex sentences involving multiple embeddings of conditionals (or even a
single embedding of a conditional in the antecedent of another) are rare and
hard to understand.

For example pifA then ifB thenCq is commonly paraphrased as pifA ∧
B thenCq. I have yet to see a reasonable paraphrase of p∃x ifFx thenGxq
as in ‘there is someone who will die if they eat a peanut’.

I do not wish to discuss these worries about Edgington’s thesis much,
mainly as they can be avoided by altering conditional probability theory of
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conditionals to one which asserts that pifA thenBq is a proposition that is
true when p(B|A) is sufficiently high. That is, it is an assertion that p(A∧B)
is significantly greater than p(A ∧ ∼B).

I content myself here to state my dissatisfaction with the paraphrases
(or lack of paraphrases) presented by proponents of Edgington and Adams’
theses. I recommend that the theses be altered as suggested above in order
to avoid these difficulties without altering the essence of their positions.

To cast more doubt on the ability to find paraphrases, here is an example
of a counterfactual embedded in an indicative conditional. A person dies
after eating what turns out to have been a poisoned meal and an autopsy
is performed to determine whether the meal was poisoned. A test for a
certain poison is carried out and the doctor awaits the result. The doctor
may assert:

If the test yields positive then if he had not eaten the meal he
would not have died

I claim that no matter how we add time indexes to this it cannot be para-
phrased by a variant of pifA∧B thenCq simply because the test would not
have been carried out at all had he not eaten the meal. This kind of exam-
ple is worrying only to someone trying to apply to a conditional probability
thesis both to counterfactuals and indicative conditionals. It seems to me
that if the probability thesis is applied to one it should be applied to the
other for I find it hard to believe that, given the similarities between the
two,12 one sort of conditional is a proposition whereas the other is not.

13.3.4 Final remark

I do not doubt that a conditional probability has a great deal to do with
the content of a conditional. But I see no advantage to accepting analysing
conditionals solely in terms of conditional probabilities. Lewis’, and other,
triviality results show that such an analysis cannot regard conditionals as
propositions. This loss, in my opinion, far outweighs the gain, for what
gain is there? Edgington’s argument above is invalid, and when we come
to apply conditional probabilities to particular cases we get just as involved
with considerations of similarity and relevance as with the possible world
semantics for conditionals.

I shall therefore maintain that conditionals express propositions and re-
ject the conditional probability thesis. However, I shall not regard a theory

12For example similarities between counterfactuals and indicative conditionals about
the future.
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of conditionals as complete unless some relation is made between the truth
of a conditional and a conditional probability. That is, there is a sense in
which

If I buy a lottery ticket I will not win the lottery

is true, simply because that conditional probability of winning given that I
buy a ticket is so low. There is also a sense in which it is false, unless the
lottery is biased. On the other hand I think that

If I toss this coin it will land heads

is false, unless the coin biased, as the conditional probability of it landing
heads given that I toss it is not high enough (only 0.5).

13.4 Gibbard cases: an argument against the propo-
sitional approach

Before turning to my account of conditionals I wish to discuss an argument
that conditionals do not, in general, express propositions. The argument is
due to Gibbard and is described clearly in [?]. I do not think that Gibbard’s
argument does not support the conclusion that conditionals do not express
propositions. However, I do think Gibbard’s argument shows that the same
conditional expresses different propositions depending on the background
knowledge of the speaker.

The premise of Gibbard’s argument is that if A is not itself impossible
then pifA thenBq and pifA thenCq should be incompatible if B and C are
incompatible, for nobody could sensibly (or rationally) believe or assert both
pifA thenBq and pifA then ∼ Bq an also believe A to be consistent. Now,
suppose two people Peter and Jane know that three people a, b and c are in a
room. Both Peter and Jane know that one of a, b, c will remain in the room
and the other two will leave. Looking into the room Peter sees a leave and
Jane sees c leave. Peter concludes ‘if b leaves then c is alone in the room’,
but Jane concludes ‘if b leaves then a is alone in the room’. The problem is
then that these two conditionals seem both true, and yet by the argument
above they should be incompatible (‘b leaves the room’ is not contradiction
and ‘a is alone in the room’ is incompatible with ‘c is alone in the room’).
There is nothing unique to Jane’s or Peter’s position that allows us to say
that e.g. Peter’s conditional is true but Jane’s is not. Edgington concludes
from this that both conditionals are not true, nor are they both false, the
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Gibbard case is yet another example of how a conditional does not express
a proposition.

A proponent of the thesis that the natural language conditional is the
material conditional has no problem with the Gibbard case itself for he
allows that A ⊃ B and A ⊃ ∼B may both be sensibly believed (even by
the same person) if A is false, so much the worse for the proponent of the
material conditional.

I shall respond to the Gibbard cases first by attacking the relation be-
tween the initial claim about incompatible conditionals and the argument
itself. Consider the following analogous argument:

The two expressions ‘I am F ’ and ‘I am G’ are incompatible if ‘is
F ’ and ‘is G’ are incompatible predicates, the reason for this is
someone could not sensibly (or rationally) assert or believe both.
Now, any two people could easily find incompatible predicates
F and G such that one truly asserts ‘I am F ’ and the other
truly asserts ‘I am G’ (e.g. ‘I am the candidate’ vs. ‘I am the
examiner’).

What does this tell us about the personal pronoun? It tells us not that it
is not a referring expression, but that its primary semantic contribution is
its character (a function from information states to contents) rather than
a unique content. Although no one person could reasonably assert both ‘I
am F ’ and ‘I am not F ’ there is nothing wrong with two different people
asserting them truly.

The moral of the story is that the content of the conditional depends on
the context. I conclude from this that the semantic value of a conditional
is its character: a function from contexts states to contents. As far as I
can see the only relevant feature of the context in the Gibbard cases is the
information state of its utterer. Therefore I suggest that the semantic value
of a conditional is a function from information states for contents.

Therefore, sometimes two people who assert incompatible conditionals
are not really in dispute. In the example above, Peter asserts that if b leaves
then c is alone in the room and Jane asserts that if b leaves then a is alone.
Naturally, in such a case, Peter and Jane have nothing to argue about as
it is clear that they are speaking from different knowledge states. Both can
then conclude that b is alone in the room.

Two people who argue over whether pif A then Bq and are in genuine
dispute, do so assuming, tacitly, that each expresses the same proposition
by that conditional. Or the dispute could arise when each believes they have
all relevant information about the consequences of A.
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For example, suppose Peter knows that A ∨ B but is undecided about
each of the disjuncts, and Jane knows that A. They then dispute whether
pif not A then Bq is true. Given Jane’s belief state she interprets it more
like a counterfactual, but Peter does not and a disagreement arises. In this
simple case we should expect the disputers to realise quite quickly what is
happening, and come to some agreement as to which conditional proposition
to debate.

13.5 Variable strict conditionals, my analysis

13.5.1 Dependent strict conditionals

The strict conditional is far too strict to do for the natural language condi-
tional. A→ B is true when and inference of B from A is truth preserving
independently of any other truths that are not analytic (logical truths).
Clearly we do not intend to say anything so strong with our normal use
of the conditional (neither do we intend to say (A ∧ L) → B where L is a
conjunction of logical laws).

Further the logic of the strict conditional is wrong. The general logic of
the natural language conditional does not support an inference like

ifA thenC, therefore ifA ∧B thenC13

counterexamples to this are common, for example:

(†) if I go to central China I will have trouble communicating
with the locals.

is true as I have no Chinese and, I am sure, central Chinese have little
English. But

(‡) if I go to central China and everyone there speaks English
then I will have trouble communicating with the locals.

is false.
There are many more counterexamples, the most convincing of which

run on similar lines. Notice that it is perhaps plausible that I should go to
central China, but it is considerably less plausible that I go to China and
that everyone there speaks English.

Some (e.g. Lowe [?]) argue that that such examples do not show that
the logic of the natural language conditional is any different from that of

13The ‘therefore’ denotes entailment and is, therefore, the strict conditional →.
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the strict conditional. The response to the purported counterexamples is
that the conditional is highly context sensitive, † does entail ‡ but not if
the context of ‡ is different from that of †. But it is hard to see how the
context of the two conditionals could have changed, save by virtue of the
different antecedent. There are cases of an utterance altering its own context
of utterance (e.g. a sarcastic remark), but as far as I can see this happens
only because of some property external to the content of the utterance itself
(e.g. intonation). In the case of † and ‡ the difference is entirely internal.
Thus, even if the conditional † and ‡ differs only in its context, this context
change is brought about by the conditional itself and the logic we give of
the conditional should reflect this.

On the other hand there is an argument to be made that it should not.
Inferences to which we find counterexamples like that of above are commonly
made for example

ifA thenB
ifB thenC

ifA thenC

has counterexamples along the lines of the one above, and yet seems a natu-
ral inference to make, also the antecedent strengthening inference for which
we have a counterexample above is commonly made. A natural answer to
this is that in these inferences all the conditionals are in the same context.
If we alter the logic of the conditionals we must indicate how some accept-
able instances of generally invalid conditional reasoning are valid. I find it
unacceptable to argue that people are so often wrong about the way they
reason.14

The most famous analysis of the conditional (Ramsey) shows us how to
reconcile this dilemma. I assume (as does nearly everyone else it seems) that
we judge that pifA thenBq on the following basis

Assume A, make appropriate adjustments for consistency, and
then infer that B

14Usual modifications of conditional logic support this inference

if A then B
if A ∧B then C

if A then C

it is not implausible that some ellipsis or some pragmatic operation occurs so that reason-
ing with successive conditionals is really of this form, when it is on the surface an instance
of the invalid principle of the transitivity of the conditional. Perhaps other reasoning such
as contraposition and the strengthening of the antecedent, which are sometimes valid, can
be handled in this way, I shall not investigate how.
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that is, if B is judged true conditionally on the assumption that A, with
appropriate modifications to our beliefs, then pifA thenBq is true. There
are at least three ways of interpreting what an ‘appropriate adjustment for
consistency’ is:

1. Evaluate at the closest/most similar possible worlds where A is true.

2. Suspend some beliefs and perhaps assume some extra ones, as is most
appropriate, to allow the compatibility of A.

3. Make a conditional probability judgement.

13.5.2 My semantics for the conditional

I wish to avoid a discussion of possible worlds, and I do not wish to get
involved with the conditional probability thesis of conditionals. Further-
more, neither fits well with my general analysis of implicit definitions. Thus
the analysis I shall adopt is the second, in terms of belief revisions. This
suggests the following truth definition for pifA thenBq:

pifA thenBq is true when either (1) the inference from A to B is
valid when dependent on any of the most appropriate revisions
of the speakers knowledge compatible with A, or (2) A and B
are both true.15

with this truth definition I give up, to some extent, the objectivity of the
conditional, as its truth is dependent on what our background knowledge is.
In the discussion of Gibbard cases (13.4) we have an independent argument
this is the case. However I think that there are objectively most appropriate
revisions of a body of knowledge to make A compatible.

We can use this truth definition to resolve the dilemma above. Let
B →A C be true just in case the inference from B to C is valid given the
most appropriate revision of the background beliefs to make A consistent.
Then, as we shall see

A→A B
B →B C

A→A C

is not valid, however

15Even if we have no idea what is going on, and we say pif A then Bq and it turns out
by some fluke that A and B are (or were) true, then we were right although lucky.
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A→A B
B →A C

A→A C

is valid. In general pifA thenBq is to be analysed as A→AB, and sometimes,
once we start using →A, we continue using →A for further conditionals. So
for example, the following case of contraposition is valid:

A→A B

∼B →A ∼A

but this

A→A B

∼B →∼B ∼A

is not valid. I claim that many of our supposedly invalid uses of condi-
tional principles are in fact valid, but where we are intending our conditionals
to be evaluated in the same (revised) belief state (i.e. the same context).

13.5.3 The most appropriate belief revision

On Quine’s analogy of our web of belief, the most appropriate revision of
our beliefs to make A consistent revises as few inner beliefs as possible.
The more inner beliefs we revise the more radical the revision, the most
appropriate revisions for determining conditionals are the least radical. Say
the more radical the revision required to make A consistent with our beliefs,
the greater its degree of incompatibility.

It would be wrong to argue that knowledge of actual degrees of incom-
patibility, or even the meaning of a ‘degree’ of incompatibility, is an a priori
matter. A judgements about what update of our beliefs is most appropri-
ate, in the light of new information, is affected by our experiences. Thus we
should expect that many truths regarding the comparative compatibility of
two sentences to be a posteriori. For example, I judge that it is a greater
departure from reality that my house will collapse in five minutes than it
is that I will scratch my ear in five minutes. Whatever this knowledge is
(e.g. knowledge of probabilities or knowledge of belief updating) it is mostly
based on experience and not on the meanings of words.

Judgements about degrees of incompatibility come as the result of ex-
perience. Our experiences tell us which of our beliefs are better suited to
be placed further inside our web of belief. For example, my experience of
the weather in England tells me to maintain my belief that it rains in the
winter almost to the point of it being a physical law.
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I see no reason why, given a set of background beliefs that are incompati-
ble with A, there should not be some objectively most appropriate update(s)
to it to make A consistent. I assume furthermore that there is a fact of the
matter about what we do or do not know.

Also, I leave open the possibility that two difference sets of beliefs should
not update most appropriately to the same revised set of beliefs. I think
that commonly they do, my knowledge of the European union is different
from many others, yet we may still have similar visions of doom when we
consider what will happen if Britain joins the single currency.

13.5.4 A theory of the most appropriate belief revision

Lewis famously suggested some conditions on making appropriate updates
to accommodate new information to apply to his theory of counterfactuals.
Lewis bases his work on treating possible worlds as concrete objects and gives
a brief theory of the closeness (or similarity) relation on worlds. Although I
am not happy with his theory of possible worlds, his theory of similarity can
be relabelled for my purposes as a theory of degrees of compatibility.16 So,
following Lewis, when determining which possible states of affairs (worlds)
in which A is true are closest to a possible state of affairs w:

1. It is of the first importance to avoid big, widespread, diverse violations
of law.

2. It is of the second importance to maximize the spatio-temporal region
throughout which perfect match of particular fact prevails.

3. It is of the third importance to avoid even small, localised, or simple
violation of law.

4. It is of little or no importance to secure approximate similarity of par-
ticular fact, even in matters which concern us greatly. [?]

Put in terms of knowledge revision, the most appropriate revisions of knowl-
edge that make A compatible are the ones that most adhere to these rules
above. So a revision that revises a law is more radical (and less appropriate)
than a revision that avoids revising a law. Put in terms of a web of belief,
the more important it is to avoid revising something, the closer it is to the
centre of the web of belief.

16Or a theory of the ordering on the web of belief.
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There are difficulties with these conditions when applied to counterfac-
tuals, in particular the difficulty lies with the final condition. Some example
suggest that it should be of little importance, others suggest that it should
be of no importance to secure similarly if particular fact. For example the
truth of

(†) If I had woken up one or two hours earlier the sun would
have risen at the time it actually did.

suggests that when (temporarily) updating my beliefs to accommodate the
new ‘information’ that I woke up earlier I maintain the fact relating to the
time the sun rose. However the falsity of

If I had woken up one or two hours earlier then I would have
woken up one hour earlier.

suggests that I not should try to make the time I woke up as similar as
possible to the actual time I woke up.17 It seems that some matters of fact
should be retained and others should not when carrying out an update. It
is easy enough to see which matters of fact should be retained, matters of
fact that are causally independent of the A should be retained when trying
to update by A, but other matters of fact should not. Thus, the rising of
the sun is causally independent of what time I wake up so when updating
my beliefs to include the antecedent of † I retain the time at which the sun
rose.

I think it is a mistake to attempt to give a purely logical analysis of
judgements of degrees of incompatibility, experience plays a crucial role in
such judgements. Looking at Lewis’ conditions, aside from the first condition
(referring to laws which are presumably determined a posteriori) a posteriori
knowledge plays too little a role in the update. The kind of a posteriori
knowledge I have in mind is knowledge of causal dependencies.

The conditions I suggest for updating some beliefs with A are

Strong updating

1. It is of the first importance to avoid violations of causal or law.
17It seems that on Lewis’ recommendations the counterfactual

If I had woken up one or two hours earlier then I would have woken up one
hour earlier.

is true.
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2. It is of the second importance to maintain perfect match of particular
fact causally independent of A.

3. It is of the third importance to avoid violations of causal or probabilis-
tic dispositions.

4. It is of the fourth importance to maintain perfect match of particular
fact probabilistically independent of A and independent of any causal
dispositions surrounding A.

5. It is of no importance to secure approximate similarity of particular
fact, even in matters which concern us greatly.

The causal laws are the laws given by physical sciences, a causal dispo-
sition is a more general rule of thumb about causal relations. For example,
many of the facts we know of psychology are so general (with all kinds of
hidden ceteris paribus clauses) that they do not enjoy the same status as,
say, a law of physics. Furthermore, I know that in general it does not rain
heavily for five days on the trot in the English summer, this is not a law, but
it is something I know and is a fact about the dispositions of the weather in
England. Thus, when making an update of A to our beliefs

1. First we try to retain causal theories like the laws of physics.

2. Then we keep all (known) beliefs that these causal theories say are
independent of A.

3. Then we try to retain the more general (or ‘folk’) causal theories,
like non-scientific theories about the dispositions and behaviours of
particular objects (like my beliefs about someone’s personality).

4. Then we keep all (known) beliefs that these folk causal theories say
are independent of A

Perhaps we can eliminate talk of causal relations or dispositions by replacing
it with talk of probabilistic dependencies. But I doubt it, the failure of
probabilistic theories of causation suggests to me that, at least here, we
must take knowledge of causation as irreducible. In doing so I give up hope
of obtaining a reductive analysis of causation in terms of conditionals, but
suggest that the two are developed together. As we gain in experience our
causal theories become more subtle and advanced as do our ability to make
conditional judgements.
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13.5.5 Indicative and counterfactual conditionals

The distinction between indicative and counterfactual conditionals is well
known and well debated. Examples such as these

1. If there is an elephant in front of me then there is something wrong
with my eyes.

2. If there were (now) an elephant in front of me then there would (now)
be something wrong with my eyes.

leave little doubt that there are two different sorts of conditionals at work,
or maybe, two different types of context for the same conditional.18 There
are equally well known problems with discerning these conditionals solely in
terms of the surface grammar, some conditionals in the indicative mood, e.g.
some conditionals about the future, behave like counterfactual conditionals.

If we understand conditionals in terms of inferring the consequent from
updating our beliefs with the antecedent then we can differentiate the two
sorts of conditional in terms of the update procedure. Looking at the ele-
phant example, in the first conditional I retain the facts of our visual ex-
perience when adding the condition that there is an elephant in front me.
In the second I do not, if there were an elephant in front of me I would
have a visual experience of it. This suggests that there is a second way of
determining degrees of incompatibility:

Weak updating

1. It is first importance to secure approximate similarity of particular
fact, especially in matters which concern us greatly.

2. It is of the second importance to avoid violations of causal or law.

3. It is of the third importance to maintain perfect match of particular
fact causally independent of A.

4. It is of the little importance to avoid violations of causal or probabilis-
tic dispositions.

So I propose that there are two sorts of conditional. One where the
degrees of incompatibility are based on strong updating and one where the

18This difference cannot be put down to a difference of tense as both conditionals are
in the present tense.
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degrees of incompatibility is based on weak updating. In terms of the famil-
iar indicative/counterfactual conditional distinction, weak updating gives
us indicative conditionals whereas strong updating gives us counterfactual
conditionals.19

For example, suppose an experienced skydiver is standing by the air-
lock at 30,000 feet, he is not wearing a parachute. Consider the following
conditional:

(†) If he jumps he will fall all the way and die

this conditional could be taken in one of two ways. Since the skydiver is
ill-equipped for a jump, it is true that if he jumps he will fall and die.20 But
on the other hand there is a reading where this conditional is false, the man
is experienced, he is not going to jump out unless he puts his parachute on,
if he jumps he will be wearing a parachute and will not fall and die.21 We
can get a similar ambiguity out of the conditional:

(‡) If he were to jump he would fall all the way and die.

The difference between the two readings is that in one reading we use weak
updating and in the second reading we use strong updating.

The result is similar with conditionals about the past. For example
compare

If I was not using a computer five minutes ago then I was hallu-
cinating

with

If I had not been using a computer five minutes ago then I would
have been hallucinating

Given what I saw five minutes ago (a computer) the first is a far better
candidate for being true than the second. To evaluate the first we retain the
information about my visual experience, this is weak updating; to evaluate
the second we do not, this is strong updating.

19It falls out of this that where no update is required the indicative and counterfactual
conditionals agree.

20The conditional is genuinely used in this way, someone might ask me if the skydiver
is wearing a parachute and I could respond to you in the negative by saying, truthfully,
that †.

21Since the diver is experienced we know he will not jump, so we must do some updating
in order to accommodate that he will jump, the update is that he is wearing or will put
on a parachute.



210 CHAPTER 13. IMPLICATION

13.6 A logic of conditionals

Basically, I shall analyse pifA thenBq as A→A B, where →A is a weakest
strict conditional that does not rule out A (if there is such a conditional).

13.6.1 Syntax

In addition to the conditional → there, for each formula of the language A
there is a conditional →A. For simplicity I shall define the logic in terms of
2 and 2A setting B →A C to be 2A(A⊃B).

ST 2AB and ∼2AB are medium. 2B is both medium and strong.22

The introduction and elimination rules for 2 are as usual

2B
B

2E
C1 . . . Cn

½½C1
m . . .½½Cn

m
....
B

2B
2I(m)

provided that the Ci are all
strong, and the inference of
B depends on no assump-
tions other than C1 . . . Cn

nor on any weak rule ap-
plications.

Let 3AB be defined to be ∼2A∼B. The rules that define 2A as a form
of necessity operator and hence →A as a strict conditional are these:23

2AB1 . . .2ABn 2(B1 ∧ · · · ∧Bn ⊃ C)
2AC

2AP
2AB

B
2AE

the rule relating the 2A to 2 is this:

2B
2AB

2AS

The rule 2AS can be removed by allowing the 2I also to introduce 2A (I
think this is the true rule but I use 2AS for simplicity of presentation and

22For ease we can add that ∼2B is medium, but it is not necessary to do so.
232AP is a form of conditional proof, it may be rewritten like this:

2A C1 . . . Cm B1 . . . 2ABn

½½B1
m . . .©©Bn

m
½½C1

m . . .©©Cm
m

....
D

2AD
2AP (m)

provided that the Ci are all
strong, and the inference of B de-
pends on no assumptions other
than B1 . . . BmC1 . . . Cm nor on
any weak rule applications.
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proof below). It is then a simple matter to show that this stronger 2I (which
may also be called 2AI) together with 2E, 2AP and 2AE normalises.
Consequently any sentence deducible with just these rules is analytic.

The rules relating 2A to 2B are these:

2(B ⊃A) 2BC

2AC
2AO

3BA 2BC
2AC

2AT
2A ∼A 2AC

2BC
2AF

and finally there is this rule:

A B
2AB

2AM provided that B is
medium

As I have presented these rules I have given up all hope of proving an
easy normalisation theorem for the logic as a whole. But normalisation is
not necessary for as I have argued above the logic of these variable strict
conditionals is not entirely a priori or analytic. The essential ingredient to
the logic is developed over time for it take time to develop an ability to
judge degrees of incompatibility.

Deductions

A useful derived rule is this

2⊥(B ⊃A) 2BC

2AC

By the rules 2AT and 2AF , we have that {∼2AC, 2BC} ` {2B∼A, 3BB}.
Furthermore, since 2(⊥⊃B) is easily derivable, we have that 2⊥(B⊃A) `
2B(B ⊃A) using the rule 2AP . And so

{∼2AC, 2BC, 2⊥(B ⊃A)} ` {2B ∼A, 3BB, 2B(B ⊃A)}

using 2AP we can deduce that {2B∼A,3BB, 2B(B⊃A)} ` ⊥ and so that
{2BC, 2⊥(B ⊃A)} ` 2AC.

Also, since A∧B entails A, we can deduce 2A(B⊃C) from 2A∧B(B⊃C)
and so

{2A(A⊃B), 2A∧B(B ⊃ C)} ` 2A(A⊃ C)

using 2AP .
Furthermore by 2AT we get that {3A(A∧B),2A(A⊃C)} ` 2A∧B(A⊃

C) which by 2AP

{3A(A ∧B),2A(A⊃ C)} ` 2A∧B((A ∧B)⊃ C)
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The upshot of this is that if 3A(A ∧B) (i.e. ∼A→A ∼B) then

A→A (B ⊃ C)≡ (A ∧B)→A∧B C

13.6.2 Semantics

I shall obtain a semantics similar to that of Lewis. A model consists of a
set of worlds W and a system of spheres Sw for each w ∈ W and a reflexive
and transitive accessibility relation R on the worlds. Each sphere S ∈ Sw is
a set of worlds of W and for any two spheres S and S′ in Sw, either S ⊆ S′

or S′ ⊆ S. Sw contains a smallest sphere, i.e. Sw has a member that is a
subset of all members of Sw. If w′ is in a sphere in Sw (the system of spheres
around w) then wRw′. Every sphere in Sw contains w. Further, if S is the
smallest sphere in Sw and w′ ∈ S, then Sw′ = Sw, and w′Rw′′ iff wRw′.
Finally, for every formula A there is a sphere SA

w ∈ Sw which is either the
smallest sphere that contains a world where A is true, or, if there is no such
sphere, is

⋃
Sw.24

• A formula is medium when whenever it is true at a world w it is true
at all worlds in the smallest sphere in w. A formula is strong when it
is true at all w′ s.t. wRw′ whenever it is true at w, for any w.

• 2A is true at w when A is true at all accessible w′.

• 2AB is true at w when B is true throughout the sphere SA
w ∈ Sw

• The other connectives receive their usual interpretations.

Soundness

The argument that the rules for 2 are sound is similar to that of 10.2.2
(with a similar treatment of restart and PIP ). Furthermore since any two
members w′ and w′′ of the smallest sphere in Sw agree that their system
of spheres is Sw, the same formulae of the form 2AB and 2B (as w′ ∈ SC

w

implies wRw′ for any C) are true at w′ and w′′ as at w. Thus the condition
that any 2AB is medium is sound.

24In other words, if A is false at every world in every sphere around w then SA
w contains

every world in every sphere around w.
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2AP If 2AB1 . . .2ABn and 2(B1 ∧ · · · ∧ Bn ⊃ C) are true at w then C is
true at every w′ s.t. wRw′ where B1 ∧ · · · ∧ Bn is true. But every
world in SA

w is such a world and so 2AC is true at w.

2AE This is sound as every sphere in Sw contains w.

2AS Since w′ ∈ SA
w entails that wRw′, it follows that if B is true at every

accessible w′ from w it is true at every world in SA
w .

2AO If 2(B ⊃A) is true at w then A is true at every world in
⋃

Sw where
B is true. Therefore, since the spheres in Sw, are nested SA

w ⊆ SB
w ,

and so if 2BC is true at w, so is 2AC.

2AT If 3BA is true at w then A is true at some world in SB
w , and since the

spheres are nested and SA
w is the smallest sphere containing a world

where A is true, SA
w ⊆ SB

w .

2AF If 2A ∼ A then there is no sphere in Sw containing a world where A
is true. Thus SA

w is
⋃

Sw and so contains every sphere in Sw.

2AM If A is true at w then SA
w is the smallest sphere in Sw, so any two

members of SA
w agree on their system of spheres and so if B is true at

w and is medium then B is true at all w′ ∈ SA
w and so 2AB is true at

w.

Completeness

We now show that the logic is complete for this semantics. For the canonical
model take all maximal consistent sets M as the set of worlds. Set

mRm′ iff A ∈ m′ for all A s.t. 2A ∈ m

furthermore set

m′ ∈ SA
m iff B ∈ m′ for all B s.t. 2AB ∈ m

and let Sm be the set of all SA
m for every A.

Take truth at a world to be membership in it. We must verify that this
meets the correct conditions of the model.

The proof that the definition of R yields a reflexive transitive relation
with the correct truth conditions for 2 is similar to that of 10.2.2.

If 2AB ∈ m then by definition B ∈ m′ for every m′ ∈ SA
m. Conversely

A ∈ m′ for all m′ ∈ SA
m. Then since M contains all maximal consistent

sets and the m′ are exactly the sets containing {C : 2AC ∈ m} it follows
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that {C : 2AC ∈ m} ` A, Since the deduction of this must be finite we
can find C1 . . . Cn from {C : 2AC ∈ m} such that {C1 . . . Cn} ` B and so
` 2(C1 ∧ · · · ∧ Cn ⊃ B), then by the rule 2AP we have that {2C : 2C ∈
m} ` 2AB and thence 2AB ∈ m.

So the truth conditions for 2A are verified, now we must show that the
conditions on the structure of Sm hold.

Suppose A ∈ m′ for no world in
⋃

Sm, then 2A ∼ A ∈ m. Suppose
further that m′ ∈ SB

w , now if 2AC ∈ m then, by 2AF , 2BC ∈ m and so
B ∈ m′. Thus if A is true at no world in

⋃
Sm,

⋃
Sm ⊆ SA

m. Furthermore
SA

w ⊆ ⋃
Sm by definition. Therefore, if A is true at no world in

⋃
Sm,⋃

Sm = SA
m.

If m′ ∈ SA
w then C ∈ m′ for every 2AC ∈ m. But then if 2C ∈ m then

2AC ∈ m (by 2AS) and so A ∈ m′. Therefore, if m′ ∈ SA
m then mRm′.

If 2CB ∈ m then B ∈ m by 2CE, and so m ∈ SC
m for every C. Thus m

is in every sphere in Sm.
Suppose SA

m and SB
m are in Sm and suppose further that neither SA

m ⊆ SB
m

nor SB
m ⊆ SA

m.

1. If 2A ∼A ∈ m then SB
m ⊆ ⋃

Sw = SA
w (similarly for 2B ∼B ∈ m), so

we may suppose that 3AA and 3BB are both in m.

2. If 3BA ∈ m then 2AC ∈ m whenever 2BC ∈ m (by 2AT ), and so
SA

w ⊆ SB
w (similarly for 3AB ∈ m). Therefore we may suppose that

2A ∼B and 2B ∼A are both in m.

Since 2(A ⊃ A ∨ B) and 2(B ⊃ B ∨ C), by 2A0 and (2), 2A∨B ∼ A and
2A∨B ∼B are in m. But then using 2AP we get that 2A∨B ∼ (A∨B) ∈ m.
But then A ∨ B ∈ m′ for no m′ in

⋃
Sw, but this is in contradiction with

(1). Thus for any two SA
m and SB

m in Sm, either SA
m ⊆ SB

m or SB
m ⊆ SA

m.
Since > is in every m ∈ M , S>m is always the smallest sphere in Sm.

Suppose now that and that m′ ∈ Sm. Since 2BC is medium and > ∈ m,
if 2BC ∈ m then 2>2BC ∈ m by 2AO. Thence 2BC ∈ m′. Further, if
2BC ∈ m then since ∼2BC is also medium by similar reasoning it follows
that bBC 6∈ m′. Therefore any 2BC ∈ m iff 2BC ∈ m′. So m′′ ∈ SB

m iff
C ∈ m′′ for every 2BC ∈ m iff C ∈ m′′ for every 2BC ∈ m′ iff m′′ ∈ SB

m′ .
And so Sm = Sm′ .

Thus if Γ ² A then in the canonical model outlined above A is true at
every world where Γ is true. Since the worlds are maximal consistent sets
it follows that Γ ∪ {∼A} is inconsistent and so that Γ ` A (by restart or
PIP ). This concludes the completeness argument.
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What we have shown is that the logic is complete for models where there
is a total ordering on possible worlds and where the closest worlds to w agree
with w on the ordering of the possible worlds. This entails that what Lewis
calls the inner modality, here the operator 2>, is an S5 operator. The outer
modality 2⊥ yields the modal logic KT . And what I call the full modality
2 is S4.

13.6.3 The various conditionals and probabilities

pifA thenBq could mean a number of things, and I think it varies depending
on the context and the speaker.

1. (A ∧B) ∨ (A→A B)

2. (A ∧B) ∨ (3AA ∧ (A→A B))

and each one of the above can be interpreted in two different ways: in terms
of weak updating or strong updating.

In general, I think people expect conditionals with impossible antecedents
to be false, at least when not used in the context of strict mathematical or
logical reasoning. So the strict conditional is I think best analysed by 2.25

The logic of 2> (the ‘inner modality’) is that of S5, the sphere of 2>
(the smallest sphere) will do nicely as the analogue of Stanlaker’s context
set. 3>A is true if A is compatible with what we is know.26 We can then
add a probability distribution to it.27

25Though it may be that some considerations of Lowe are correct and that the best
analysis is this:

(A ∧B) ∨ (3AA ∧ (A→A B)) ∨ 2⊥B

26This does not mean that 2>A is the analysis of ‘it is known that. . . ’, there is a
difference between ∼A being incompatible with what I know and my knowing A.

27For example, to each system of spheres Sw we can put attach a probability distribution
pw on the members of S>w . We may then extend it to apply to all formulae by setting
pw(A) = Σw′∈S>w pw(w′). Further let B‖A be true at a world w whenever pw(B|A) ≥ 0.95d
or some other significant value. Notice that B‖A is true at w iff it is true at each world
w′ ∈ S>w .

We may then differentiate between two conditionals:

1. If A then probably B

2. If A then definitely B

The second of these is simply (A ∧B) ∨ (3AA ∧ (A→A B)) but the first of these is

(†) (A ∧B) ∨ (3AA ∧ (A→A (B‖A)))
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13.7 Modus Ponens and embedded conditionals

As I shall discuss in 13.7.2 there is good reason to believe that embedded
conditionals express different propositions from conditionals that occur as
the main connective of a sentence. It is helpful to give a systematic con-
struction for what proposition a conditional expresses when it appears in
different parts of a sentence. I shall now present such a construction.

13.7.1 My proposal for embedded conditionals

Let us define the background B(u) of an utterance u to be either 1 or 0.
If u is not an embedded utterance, e.g. u is not uttered as part of

pu and vq,28 then B(u) = 〈0, ∅〉.
• If u is a largest embedded sentence in some more complex sentence v,

then B(u) is identical to B(v), unless v is a conditional:

• If u is embedded in pifu then vq, and B(pifu then vq) then B(u) = 0.

• If u is embedded in u′ = pif v thenuq, then B(u) = 1.

I define the background merely as a bookkeeping device, it is of no semantic
significance. We can now give conditions on how to analyse conditionals
appearing in various parts of sentences:

• Entailment is always analysed by →, the strongest conditional.

• If u is of the form pifA thenBq and B(u) = 0 then u should be analysed
by (A ∧B) ∨A→A B.29

• If u is of the form pifA thenBq and B(u) = 1 then u should be analysed
by A⊃B.

I have shown above (page 212) that if 3A(A∧B) then A→A (B⊃C)≡
A∧B→A∧B C. And so if A does not rule out B then pifA then if B thenCq
has the same truth value as pifA ∧B thenCq, which is as it should be.30

So for example ‘if I toss a coin ten times it will land heads once’ is false, but ‘if I toss a
coin ten times it will probably land heads once’ is true. We should stipulate, as suggested
above, that 3>A is true iff p(A) 6= 0. Now if we do not know whether A∧B are true then
we judge that pif A then probably Bq exactly when we judge that † to be true which,
assuming we do not know whether A ∧B, we do if we judge that p(B|A) is high.

28I use Quine’s square quotes to allow for reference and quantification into a quotation.
29Or (A ∧B) ∨A→A B, or (A ∧B) ∨ (3AA ∧ (A→A B)) etc.
30Pollock ([?, p43]) rejects this, I remain unconvinced by his example.
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There are cases where embedded conditionals are not material, for ex-
ample if the grammar changes from indicative to counterfactual:

If A then if it had been that B then C
If A then if it were [then] the case that B it would be that C

or perhaps something more complicate like:

If A then the situation would be such that if it were the case
that B then C.

however, in general we can be safe to assume that embedded conditionals
are material. Certainly the conditional ‘if. . . as well, then. . . ’ is material, as
in

If I go into the building then if I wear a hard hat as well, I will
be safe.

13.7.2 Modus Ponens

It follows from the rules I have given that A→A B and A entail B, i.e. it
is a consequence of my theory that pifA thenBq and A entail B. This is an
uncontroversial result, modus ponens is not commonly disputed. I wish now
to discuss an argument that modus ponens is not, in general valid. If the
argument is correct then the logic I have given is not correct (as an analysis
of the logic of the conditional we actually follow). The argument shows that
conditionals behave differently when embedded within other conditionals, I
shall show how my theory can account for this.

The problematic inference is given by McGee [?] which he takes to be
a counterexample to modus ponens. Opinion polls taken just before the
1980 election showed the Republican Ronald Reagan decisively ahead of
the Democrat Jimmy Carter, with the other Republican in the race, John
Anderson, a distant third. Those apprised of the poll results believed, with
good reason:

• If a Republican wins the election, then if Reagan does not win Ander-
son will win.

• A Republican will win the election (i.e. Reagan).

• if Reagan does not win Carter will win (and not Anderson).
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We are already able to give an explanation of what is going on:
According to the construction I gave for embedded conditionals in sec-

tion 13.7.1, pif A then if B then Cq, is usually

A→A (B ⊃ C)

It is not complicated to see how this applies to McGee’s apparent counterex-
ample to modus ponens. Let A be ‘a Repulican wins’ and B be ‘Reagan
does not win’.

• a Republican wins the election →A Reagan does not win ⊃ Anderson
will win.

• A Republican will win the election (i.e. Regan).

• Reagan does not win →B Carter will win (and not Anderson).

And the final conditional need not be true and is not embedded in the initial
premise. We therefore do not have a counterexample to Modus Ponens.

13.8 Concluding remarks

I take myself to have shown here that a proof theoretic account of analyticity
can be applied even to an topic as problematic as the natural language
conditional. The account sheds light on which truths of the logic of the
conditional are analytic and which are not. I hope to have shown that
there is a coherent account of the truth conditions of the conditional that
treats the natural language conditional as a similar sort of entity to the
strict conditional and the material conditional (which themselves are used
in natural language).

With this I conclude that a proof theoretic account of analyticity has
much to say about some very interesting words and constructions of natural
language. I conclude that my theory of analyticity can account for the
analyticity of some truths involving connectives, like ‘if. . . then. . . ’, that
seem not to have an easy proof theory.



Chapter 14

The Thesis

I shall now postulate an account of how a definition is made. This content
of this chapter is not definitive, I present it as a possible avenue for further
research.

I think to obtain a full truth-by-definition account of analyticity we must
provide an answer to these questions:

Why should something that follows from definitions alone in this
way be true? More generally, why should the proposition ex-
pressed by s follow validly from the propositions expressed by S
just because s is analytic for S?

Ultimately what we want is a theory that answers the question of how we
acquire a logical language for which a certain logical consequence relation is
known to be valid.

To give an idea of what my proposed answer is, here is an example: the
rule modus ponens has this form

ifA thenB A
B

I claim that we do something that fixes the meaning of ‘if. . . then. . . ’ so that
pifA thenBq expresses a relation between ‖A‖ and ‖B‖, or more precisely,
pifA thenBq expresses a proposition that is true just in case a certain rela-
tion holds between ‖A‖ and ‖B‖. The relation is that of of ‖B‖ following
locally-validly from ‖A‖ (local-validity is like validity, I define it in sec-
tion 14.1). Now suppose that the premises of the modus ponens are true
(i.e. express true propositions), then there really is a relation of local validity
between ‖A‖ and ‖B‖. Furthermore, one of the premises (which we have as-
sumed as true) expresses ‖A‖, so ‖B‖ is also true, and the conclusion of the

219
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modus ponens expresses ‖B‖. Therefore, the conclusion of a modus ponens
expresses a true proposition when its premises express true propositions.

On my view, the property of analyticity is therefore relative to a lan-
guage. This adds the extra task of explaining why many propositions are
universally expressed by analytic sentences across a wide variety of different
languages, in particular it must be explained why logic is universal and is
universally analytic.

14.1 Validity and local-validity

I assume that we possess innately (or acquire very quickly) concepts of
validity and truth. I assume also that we possess a concept of local-validity.
An inference from A to B is locally-valid when it depends on some other
true assumptions Γ and the inference from Γ, A to B is valid. A special case
of local-validity is truth (or perhaps we should say that local-validity is a
generalisation on truth), for if A is true then an inference from nothing to
A is locally-valid. Also, if an inference is analytically locally-valid, then it
is valid.1

Truth an local-validity are the concepts we require to define the truth
functional connectives, and truth and validity are the concepts we require
to define strict implication (and related connectives).

Truth and validity are properties of propositions. Validity (and also
local-validity) is a relation between the propositions expressed by the premises
of an inference and the propositions expressed by its conclusion. Just as
propositions satisfy or fail the property of truth in different possible cir-
cumstances, so do collections of propositions satisfy or fail the relation of
local-validity in different circumstances.2

1The converse is not true, for example the inference from nothing to the proposition
that Hesperus=Phosphorus is valid but not analytic.

2Whether the relation of validity also has this property is a tricky question. As I shall
describe in chapter 10 we can formulate the logic of the strict conditional (meaning that
the consequent follows validly from the antecedent) as 2(A ⊃ B) where 2 is either the
S4 or the S5 modality. I do not discuss which is more faithful to our innate concept of
validity, thought I assume, tentatively, that it is S4 (in which case every valid argument
is valid in all possible worlds, but some possible worlds have more valid arguments than
this one).
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14.2 A closer look at implicit definitions

I shall now suggest a more detailed story of how implicit definitions may be
thought of as evolving out of explicit definitions rather than simply being
alternative ways of defining terms.

There are two reasons why we cannot use explicit definitions to explain
how we acquire a logical language and why some sentences/inferences of that
language are analytically true/valid. Firstly, an explicit definition contains
the term ‘iff’ or ‘=’, and those are among the terms for which I seek to give
an account. Thus an appeal to explicit definitions (where definiendum and
definiens are linked by a logical connective) would be of little help. Secondly,
in order to define the definiendum by means of an explicit definition we must
already be able to express something with the same meaning: the definiens.
So an explanation of our acquisition of a logical language in terms of explicit
definitions would presuppose that we already acquired a logical language.
The circularity is certainly vicious.

A natural stragey for resolving the first difficulty is to try to argue that
the form of an explicit definition need not be entirely verbal. The point of
an explicit definition is an association between two terms: definiendum and
definiens. That is, an explicit definition merely to ensures that

pdefiniendumq expresses the definiens

but this could be done without using the word ‘iff’. I think it is enough that
the speaker merely use the definiendum, on a particular occasion, with the
intention of it meaning the same as when he uses the definiens. If he does
such a thing then, I suggest, on that occasion he has fixed the meaning of
the definiendum.3

The second difficulty can be resolved in a similar way. What I have
in mind is that the definiens may be something that a speaker can think
but not express. For example, a speaker may be able to think both A and
B, he may realise this and then introduce a term ‘and’ (from the syntactic
category of propositional connectives) so that

pA and Bq expresses the local-validity/truth of: A, B.4

or perhaps a speaker may be able to make and discern reasoning from A to
B and introduce ‘if. . . then. . . ’

3Although the speaker may have a hard time telling other people what pdefiniendumq
means without verbally formulating the explicit definition.

4That is, pA and Bq expresses that ‖A‖ (the proposition expressed by A) and by ‖B‖
satisfy the property of truth.
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pifA thenBq expresses the local-validity of:

¡¡A....
B.5

On the left hand side of these examples is a term (‘and’, ‘if. . . then. . . ’) and
on the right hand side is, not an expression, but an inferential structure. If a
speaker can identify the inferential pattern in his own thoughts then he can
define a term for it by saying, for example ‘ “and” expresses that’ where by
‘that’ he refers to the inferential pattern. The situation is analogous to the
case were we may define a proper name by identifying an object and saying
‘ “Julius” refers to that’. Of course, as I have just formulated it the first
difficulty above arises again, it can be removed by treating the definition as
made not by a verbal act ‘ pxq expresses that’ but by an intention to use
pxq to express/denote that thing the speaker has identified.6

In overcoming this second difficulty the definitions of new propositional
connectives have become of this form

(†) pCon(A1 . . . An)q expresses the local-validity of: Φ(A1 . . . An)

where Φ(A1 . . . An) is an inference pattern (since inferences are made up of
thoughts it is also a thought pattern). Since Φ(A1 . . . An) is a pattern rather
than an expression it is not really a definiens, and so † is an implicit rather
than an explicit definition.

But we can still apply (i), (ii) and (iii) from section 3.2.3 on page 48 to
†. So (i) Con cannot occur in Φ, (ii) Con must be a single term (in † it has
been specified as a propositional connective), and (iii) Con must be totally
new to the language.

In the case of the logical constants, since we are explaining how they
get their meaning when they are first introduced (iii) is met by assumption.
We must now find definitions along the lines of † for the logical constants.
The examples above for implication and conjunction seem initially plausi-
ble. Disjunction is problematic, a possibility is that disjunction is defined
to express that case analysis is locally-valid, where we have an innate un-
derstanding of what case analysis is. Case analysis involves considering a
number of cases and concluding anything that follows from all of them. Thus
the definition for disjunction is

5That is, pif A then Bq expresses that ‖A‖ and ‖B‖ satisfy the relation of local validity.
A is crossed out to signify that it may be hypothesis rather than a belief (i.e. the speaker
need not believe A in order to reason from it to B).

6I have a theory of how this works. I suggest that a theory in the spirit of Grice’s
intentional theory of meaning (from [?] and [?]) may be restated, not as a theory of what
a word means, but as a theory of how the meaning of a word is fixed. I use such a theory
to account for how an intention can fix the meaning of a term.
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pA or Bq expresses the local-validity of:

¡¡A....
C

¡¡B....
C

C (for any C).7

Another possibility for disjunction is that it is defined in terms of nega-
tion

pA or Bq expresses the local-validity of:

©©∼A ©©∼B....
⊥ .8

where ⊥ is absurdity.

14.2.1 Inference rules

Looking closely at the example implicit definitions above we can see that
they can be reformulated in terms of the familiar inference rules. Reading

pifA thenBq expresses the local validity of:

¡¡A....
B

from right to left we get this rule:

¡¡A....
B

ifA thenB
I

and reading it from left to right we get:

ifA thenB
A....
B

E

a more familiar way of putting the rule E is:

ifA thenB A
B

7That is, pA or Bq expresses that ‖C‖ is true for any C such that both ‖A‖ and ‖B‖
satisfy the relation of local-validity with ‖C‖.

8That is, pA or Bq expresses that ‖∼A‖ and ‖∼B‖ together satisfy the relation of
local-validity with ‖⊥‖.
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Notice that the rule E allows us to infer no more from pifA thenBq than
is required to infer pifA thenBq using the rule I. In short, these rules are
in harmony (in the first sense), in general they will be in harmony in the
second sense as well.

Now, in addition to its relation to conservativeness, the significance of
harmony (in its second sense) is this. If Con is a connective for which there
are harmonious rules then we can express whatever Con(A1 . . . An) expresses
without using Con.9

In other words, a harmoniously defined connective expresses nothing over
and above a certain inferential pattern. To go further, I conjecture that a
connective that expresses nothing over and above an inferential pattern will
have harmonious inference rules. That is, any connective that is defined by
legitimate implicit definitions of this form:

(†) Con(A1 . . . An) expresses the local-validity/truth of: Φ(A1 . . . An)

will have harmonious inference rules. Furthermore, I suggest that any con-
nective the inference rules for which are harmonious may be defined by
definitions of the form of †.

Thus, if we want to check whether what is apparently a logical connective
really is a logical connective (a connective definable entirely by its inference
rules) we must check that it expresses nothing over an above some structural
property of inferences. That is, we must check that the connective can be
defined in the form of †. To check this we must show that the connective (or
system of connectives) satisfies a normal form theorem when put together
with all the other logical connectives (to show that each logical connective
is conservative over all the others, so we may conclude that each connective
is legitimately defined in the logical system as a whole).10

14.2.2 My account does not involve inferential roles

My account is not that the logical connectives are defined by their inference
rules. The meanings of the logical connectives are fixed by some action the
speaker performs, a baptism of some inferential structure. The meanings
of logical connectives are not fixed by their inferential roles. My account is
that the connectives are defined not by any disposition to use certain rules

9For example, instead of asserting A ∧B we can assert A and assert B.
10This should not be an unacceptable form of holism, for it does not entail that the

meaning of any one connective is dependent on the others. It entails only that the defini-
tion of a logical connective can regarded as a legitimate definition only in the context of
the definitions of the other logical connectives.
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but by a few initial definitional uses of the rules (or perhaps even a single
use).

The inferential role theory has too many difficulties. The challenges of
Kripke and Quine, that behaviour underdetermines what rules we are to
regard as the genuine definitional rules, are I think insuperable. The only
response to them (on the implicit definition account) is to regard the implicit
definitions as made explicitly. That is, from a early age a speaker must
state some rules for the logical connectives and assert explicitly something
like ‘this connective is hereby defined by these rules’. Put this way is safe
to assume that this does not happen. I try to formulate a more plausible
account of how an implicit definition may be made explicitly.

Since, on my theory, the inference rules are a consequence of the explicitly
made implicit definitions of the logical constants we can account for error
and underdeterminacy. A speaker is in error when the rules he uses are not
in accordance with the definition he has made of the connective in question.
Similarly it is no matter that our behaviour underdetermines what rules we
are using for our connectives for the rules we should be using are determined
entirely by the initial definitions of the logical connectives.

14.2.3 My account is not metalinguistic

Neither is my theory that pifA thenBq expresses a meta-linguistic proposi-
tion like: an inference with pAq as the premise and pBq as the conclusion is
locally-valid. My theory is that pifA thenBq expresses a relation between
the propositions expressed by A and B, that relation being local-validity.11

14.3 My account

My account is that we define the logical connectives by means of implicit
definitions that we make explicitly. That is, we do not express a definiens
by which the definiendum is defined, but, by means of an explicit action,
make an implicit definition of the logical connectives.

For example, I claim we possess an ability to think conjunctively. If
we use the word ‘and’, just once, with only the intention of causing others
to think conjunctively, then we fix the meaning of ‘and’ to have the truth
conditions of conjunctive thoughts.

But what does it mean to ‘think conjunctively’ and what is a ‘conjunctive
thought’? It may seem that my account answers the charge of circularity

11I of course deny that validity, truth and local-validity are meta-linguistic concepts.
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at the cost of allowing a charge of unhelpfulness. Is it not that ‘thinking
conjunctively’ is in equal want of explanation as the term ‘and’ and its
meaning? For sure it does, but the explanation is now quite simple.

In order to think conjunctively we need only think two thoughts. In
order to think inferentially we need only draw an inference. In order to think
disjunctively we need only perform a case analysis.12 Now, anything that
can think at all, I claim, can think more than one thing. Moreover, anything
that can think at all can draw inferences. Furthermore, anything that can
perform higher level thoughts (e.g. humans) can have some thoughts that
are beliefs and others that are suppositions.

I do not claim that the ability to make valid or rational inferences is a
necessary condition of thought, all I claim is that something does not think
unless it can have a number of thoughts and beliefs and suppositions (true
or false) and make inferences (valid or invalid, rational or irrational).

In short, I claim that we possess innately psychological analogues of the
symbols of the natural deduction system. Put another way, I claim that the
Prawitz natural deduction system provides a good formalisation of some
minimal capacities a creature must have to be a thinker.

I assume that we possess innately (or at least develop very quickly):

• the ability to make, and recall as such, a chain of inferences i.e. a
chain of reasoning (not necessarily with any degree of rationality)

• the ability to apply, and recall as such, reasoning by case analysis

• the ability to call to mind one belief out of many and recognise collec-
tions of beliefs.

• the ability to recognise suppositions and distinguish them from beliefs.

• enough of a concept of truth to know that some propositions are true
and to know that some inferences preserve truth.13

It is a matter of empirical testing to see if these are indeed innate capacities
and how they manifest themselves as innate (e.g. it may be a matter of
hardwiring). The abilities above seem to be ones that we must assume we

12A case analysis for A and B involves concluding as true anything that we can derive
from each of A and B.

13This does not entail that we have enough knowledge of truth to be able to say exactly
what it is. Neither does it entail that truth is some innate irreducible primitive. The
debate on the nature of truth is a side issue here. I am not concerned with what truth is,
I am more interested in why some sentences are analytically true.



14.3. MY ACCOUNT 227

have at the very least, it is the strongest of all sceptics (and a self-refuting
one at that) who doubts that we have these capacities. I claim they are
capacities that we cannot alter without impairing our capacity to think and
are innate.14

A good formal analysis of these capacities is given by the structure of
the Prawitz natural deduction system. At least, the structure of the more
natural Prawitz deduction system I sketch in 1.2.

To understand the natural deduction rules we must understand that it
is a deduction system, this is the analogue of our ability to expect that
something is preserved. We must understand the horizontal line,

Γ
∆

this is the analogue of our ability to order beliefs as following from each
other. We must also understand the vertical dots,

Γ....
∆

this is the analogue of our ability to recall chains of reasoning as chains of
reasoning. We must be able to understand what ∆ and Γ are and contain,
this is the analogue of calling to mind one belief from many (recognised
as many). We must also understand what crossing out formulae and the
bookkeeping of superscripts is (i.e. discharging assumptions), this is the
analogue of distinguishing suppositions from beliefs. We must also be able
to understand that deductions may function as minor premises (e.g. in the
rule ∨E), this is the analogue of case analysis.

So for example, we possess psychological analogues for, among other
things, the horizontal line and the vertical dots:

....

But we, as higher level thinkers, do more than possess these psychological
properties, we can discern them. That is we can recognise (at least some of)
our beliefs and suppositions as such, and we can recognise our inferences as
such. Whereas, say, a cat might merely have a sequence of thoughts that

14In a way, the framework constituted by these capacities is revisable in that we can
remove some of them (a heavy blow to the back of the head usually does the trick).
However any person without all of these capacities is defective and is excluded as an
example in my discussion.
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constitute an inference, I, a higher level thinker, can have such a sequence
of thoughts and recognise it as an inference. Reflection alone, probably the
first piece of introspection we ever do, allows us to recognise that we have
these psychological properties (of possessing many beliefs, drawing infer-
ences etc.).

Furthermore I claim that we possess innately a concept of truth and
concepts of truth preservation (i.e. validity and local-validity), for otherwise
we could not distinguish beliefs from suppositions or inferences from other
sequences of thoughts. For example a belief is a supposition we hold as
true, and an inference is a sequence of thoughts where we hold that each
successive thought preserves the truth of its predecessor.15

So we can put all of this together. The word ‘and’ obtains its meaning
by being used to express the truth conditions of conjunctive thinking. We
identify conjunctive thinking by introspecting many of our beliefs. We then
use the word ‘and’ with the intention that (regardless of what A and B are)
pA and Bq produce a response in an interlocutor of possessing these (many)
beliefs: A, B.

More generally, a logical constant is defined by an definition of this form:

Con(A1 . . . An) expresses: Φ(A1 . . . An)

where the left hand side is a sentence involving a term C of the syntactic
category ‘sentential operator’, and on the right hand side is some complex
thought pattern relating A1 . . . An.16 Examples are:

pA and Bq expresses (the local-validity of): A,B

and

pifA thenBq expresses the local-validity of:

¡¡A....
B

These are implicit definitions as the ‘definiens’ is a pattern rather than
an expression.17 But the definitions are nonetheless explicit as there is an
explicit intention of using a word in a certain way.

15As considerably more mature thinkers we possess many, more subtle, concepts of truth
and inference. The innate concepts of truth and inference are quite basic, and need be
enough only to give us the ability to discern beliefs from suppositions and inferences from
unconnected thoughts.

16I take it that we possess an innate (universal) grammar that provides us knowledge of
the various syntactic categories). I also take it that we possess innately a knowledge that
words can be used to express things and have, innately, a concept of what it is to express
a concept or some truth conditions with a word.

17We identify it by a piece of introspection, e.g. introspecting the presence of two beliefs
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14.3.1 Classical logic

The famous inference rules for classical logic do not normalise. The problem
is double negation elimination.

[DNE]
∼∼A

A

Consider a negation that is introduced and then eliminated by DNE

©©∼A1
....
⊥

∼∼A
∼I(1)

A
DNE

it seems that there is no general way of obtaining a direct deduction of A
out of a deduction from ∼A to ⊥:

©©∼A....
⊥

Effectively, we must show that this inference pattern:

A

is locally valid just in case this one is:

¡¡A....
⊥
⊥

There are at least two ways to achieve this

1. Devise a specific system which is equivalent to the usual system (of
inference rules) for classical logic which just so happens to be such
that there is a direct deduction of A whenever there is a deduction of
⊥ from the negation of A. An example of this is the logic for Sheffer
Stroke.

A, B for the definition of conjunction. I am inclined to hold that we can refer to such
thought patterns in much the same way that we can pick out any structural property of
real objects. For example we are able to notice a structural property, e.g. a linear order,
and say ‘that is how people are ordered in a queue’.



230 CHAPTER 14. THE THESIS

2. Enhance the structure of the natural deduction so that, in general,
there is a direct deduction of A whenever there is a deduction of ⊥
from the negation of A. An example of this is the Restart rule.

Ultimately, I favour the generality of the second strategy and adopt the
restart rule.

14.4 Knowledge of inference and analyticity

I now distinguish between what I call a logic user and a logic knower. A logic
user knows logical truths and preserves knowledge through logical inference
(that is, ceteris paribus, if a logic user knows A and infers B from this
deductively, then he knows B).18 A logic knower is a logic user who knows
that logic is analytic. I shall now explain how each is possible.

I assume that analysis of knowledge as at least justified reliable belief
will do for the sorts of belief I discuss here.

14.4.1 Logic users

Since harmonious introduction and elimination rules for a connective match
a structure a speaker has already identified, he will naturally use those rules
as the basic rules for that connective. Furthermore, I claim that any belief
the speaker has in the local-validity of those rules is reliable, for such a belief
is a direct consequence of that connective expressing (the truth conditions
of) a structural property of inferences, which then guarantees that those
rules are valid (as well as that they are locally-valid). Finally, the belief that
the inference rules are locally-valid is justified, the justification may come
either from the speaker’s interaction with other users of the same logical
connective and from the speaker’s association of that logical connective with
a certain inferential structure.19

This is my explanation of how a logic user is possible and is to be ex-
pected.

14.4.2 Logic knowers

Note that a logic user, on any occasion, knows that a logical truth is true
or that a logical inference is locally-valid. It would take a further piece of

18I take it that Nozick’s famous rejection of the transmission of logical knowledge
through known entailment is a problem for Nozick rather than for me.

19For example, if the speaker always associates A∧B with these beliefs: A, B; then the
speaker is justified in inferring A and B from A ∧B.
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introspection not only to notice that an inference is locally-valid by defini-
tion.

Although normal form theorems (i.e. normalisation theorems) can be
hard to prove, it is often easy to see that they are provable. That is, it
is easy to see that there is a symmetry between the introduction and that
elimination rules and elementary deduction reductions can be made. We
do not need a proof of a formal truth to know that it is true, Knowledge
does not require infallible proof. Thus, to know that a connective derives
is meaning entirely by definition it is enough introspection, I claim, to note
what our logical rules are and see the symmetry between the introduction
and elimination rules, for example we may see they are in harmony in its
first sense (see pageref 3.3.1). From this a speaker obtains knowledge of
normalisation and harmony and thence knowledge that the terms in question
are legitimately defined. This is how a logic knower is possible.

In many respects we are logic knowers, but perhaps sometimes we cannot
discern the rules we use or see so easily that the terms in question are defined
by legitimate definitions. I claim that we are knowers of all the logics of this
thesis for which I provide a normalisation theorem. Some logical connectives
are not entirely logical, for example the natural language conditional (which
is neither strict nor material) is partly defined in terms of (crudely put) the
closeness relation on possible worlds which is something we discover rather
than define. For such connectives, especially where the non-logical elements
of them are hard for us to define, we may be logic users rather than knowers.

14.4.3 Universality

Also I claim to have given an explanation of the universality of logic. The
same propositions expressed by the theorems of the logic of my language are
analytic in so many different languages too because they all use the same
logic. The logic is the same because it is defined out of innate abilities and
capacities than any thinker must possess to be a thinker. Thus, if there are
aliens, their logic should be the same as ours.

14.4.4 The response to Kripke and Quine

I sum up the challeneges of Quine and Kripke with this question:

What matter of particular fact was there that gave certain words
the particular meaning they do so that sentences involving them
are analytic (or have a particular meaning at all)?
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My response is this:

Some of our terms are, at some point in our lives, used with a
certain intention. This use of the word was an event the occur-
rence of which is a matter of particular fact. In many cases, that
use gives the word a particular meaning. In the case of logical
connective Con, pConq is used with the intention of expressing
the local validity of reasoning Con-ly.

I argue that if the rules for Con are part of a harmonious logical
system then anything that can reason at all can reason Con-ly
and recognise such reasoning as Con-ly reasoning.20

14.4.5 A comment on semantics

I claim that truth is an innate concept, furthermore this concept is central
to our ability to define logical connectives. Without the concept of truth
we could not even discern inferences, let alone inferential patterns, by which
we define the logical connectives. For this reason I suggest that the correct
semantics for are logical connectives be a truth conditional semantics. An
analysis of the metaphysics of truth would tell us how literally we should
interpret the more familiar semantic analysis of our logical connectives. For
example, I shall present a modal logic and give a possible world semantics
for it. If truth is, say, satisfaction at a possible world (read at face value, like
Lewis does) then we may understand this possible world semantics literally.
However, if possible worlds are merely a convenient fiction then we must
find some other interpretation of them (or a different semantics entirely).
However, what must always remain is truth, any semantics we give must be
truth conditional.

I shall not discuss further how the semantics should be interpreted aside,
I am more concerned about what the truths of logic are than exactly what
semantics should be given to them.

20So anything that can think at all can reason conjunctively, disjunctively, negatively
and conditionally.
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Second order logic and
plurals

The conclusions of this appendix are these:

• Natural language makes use of higher order quantifiers which range
over all classes of elements of an approprate domain. I discuss a higher
order extension of classical logic which can handle sentences such has
‘some critics admire only each other’.

• There is no requirement to intepret the higher order quantifiers of
natural lanugage as quantifying over objects (like sets or other sorts
of plural entity). We can handle sentences like ‘some men raced each
other’, ‘John and Mary wrote a book (together)’ without an ontology
of plural entities.

• We can handle sentences like ‘some men raced each other’, ‘John and
Mary wrote a book’ in a first order logic (but not ‘some critics admire
only each other’).

I obtain these conclusions by discussing some issues surrounding the expres-
sive limitations of first order logic. A famous limitation of first order logic is
its inability to handle quantification and predication over plurals. For exam-
ple, we cannot use first order logic to quantify over collections (for example
the Geach sentence is inexpressible in first order logic, see section A.2.1).
Furthermore first order logic, apparently, cannot handle sentences like ‘John
and Mary lifted a piano’ (where it appears we are predicating lifting a piano
of a collection constituted by John and Mary).

233
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To begin with I shall investigate here how we should extend first order
logic to overcome these limitations. I shall present a higher order logic with
quantifiers that may be interpreted as ranging over sets (though I argue that
this is not how they should be interpreted).

I shall then discuss in more detail the Geach sentence (‘some critics
admire only each other’) and its relation to the higher order logic obtained
by adding an operator that expresses transitive closure. I will show that
we can use the ancestral operator to express the (structure of) the Geach
sentence and vice versa.

Finally, the higher order logics I will have discussed do not have any
mechanism for plural reference. It seems that sentences like ‘some critics
lifted a piano (together)’ involve reference to a plural entity, but such an
analysis unavailable to me as I suggest we should not interpret the higher
order quantifiers as ranging over plural entities. I suggest that we interpret
such sentences as involving a plural predication over some things (rather
than a single predication of a plural thing).

It turns out that if we work with plural predications (rather then plural
reference) then we can handle sentences like ‘some critics lifted a piano’ in
first order logic.

A.1 Higher order quantification

A.1.1 The rules

A good reason for adding machinery for higher order quantification is to
improve expressive power. It is not simply that the limitative results in first
order logic yield non-standard models of things which we try to express with
it. There are sentences which our basic logic should be able to express that
first order logic cannot even make an attempt at. An example of such a
sentence is due to Geach:

Some critics admire only each other

Geach sentences are of interest in their own right and I shall discuss their
properties in more detail in A.1.3.

The simplest way improving expressive power is to allow quantification
over predications. We can add predicate variables to the language such that
for each n > 0 there are n-ary predicate variables α, β, γ . . . .

Let A[x/t1 . . . x/tn] be a formula in which each ti is free for x in A.
Furthermore, let (. . . A . . . ) be a formula in which A occurs as a subformula
(variables free in A may be bound in (. . . A . . . )). Finally let A[α/β] be
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result from A by replacing all occurrences of α(t1 . . . tn), not in the scope of
a quantifier ∃α, by β(t1 . . . tn) (for any terms t1 . . . tn).

(. . . A[x1/t1, . . . , xn/tn] . . . ) A[x1/t′1, . . . , xn/t′n]
∃α(. . . α(t1 . . . tn) . . . ) I Provided the t′i are free for

x in A

∃αA

»»»»A[α/β],»»»»»»
β(c1 . . . cn)....
C

C
E

where the ci are constants and nei-
ther β nor the ci occur in any formu-
lae or assumptive rule applications
on which C depends, except A[α/β]
and β(c1 . . . cn), nor in ∃αA nor in
C itself.

In these rules α and β are n-ary predicate variables (n > 0). Further the
extra premise that of A[x1/t′1, . . . , xn/t′n] be deducible in the introduction
rule ensures that there really is something that is A when we abstract it
away to α. That is, ∃αA says that there is a nonempty collection of things
satisfying A.1

I do not give rules for the universal quantifier as, in general, when we
use ‘all’ we are using the first order quantifier. It is not necessary and is far
more trouble than it is worth. If a universal quantifier is required we may
define it in terms of the existential quantifier ∼∃α∼ . . . .

We can now formalise a sentence like

Some critics are evil

as
(†) ∃α∀x[α(x)⊃ (Cx ∧ Ex)]

1We can supplement these rules by adding additional predicates for phrases like ‘John
and Mary’, ‘Russell and Whitehead’ etc. we add a unary predicate {t1 . . . tn} for every
such string of terms

{t1, . . . , tn}(ti) where 1 ≤ i ≤ n.

{t1 . . . tn}(t)

»»»t = t1....
C . . .

»»»t = tn....
C

C

The details of this get tricky when we allow quantification into the predicate {t1, . . . , tn}.
For these reasons I avoid developing a formal theory of these predicates, also, my account
of plural predication does not require them.
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where E is ‘dots is evil’. This deduction

∃α∀x(α(x)⊃ (Cx ∧ Ex))

©©©β(c)1
(((((((((((
∀x[β(x)⊃ (Cx ∧ Ex)]1

β(c)⊃ (Cc ∧ Ec) ∀E
Cc ∧ Ec

⊃E

∃x(Cx ∧ Ex)
∃x(Cx ∧ Ex)

E(1)

shows that † entails that some critic is evil. Also ∃x(Cx ∧ Ex) entails †

∃x(Cx ∧ Ex)

(((((Cc ∧ Ec1 »»»x = c2

Cx ∧ Ex
=E

x = c⊃ (Cx ∧ Ex)
⊃I(2)

∀x(x = c⊃ (Cx ∧ Ex)) ∀I
∃α∀x(α(x)⊃ (Cx ∧ Ex)) I

∃α∀x(α(x)⊃ (Cx ∧ Ex))
∃E(1)

in this deduction we abstracted away x = c by α(x) in the application of
the higher order introduction rule.

A.1.2 Normalisation

Normalisation follows in the same way as with the first order existential
quantifier. Suppose ∃α is introduced and then eliminated

....
(. . . A[x/t1, . . . , x/tn] . . . )

....
A[x1/t′1, . . . , xn/t′n]

∃α(. . . α(t1 . . . tn) . . . )

((((((((
(. . . β(t1 . . . tn) . . . ) »»»»»

β(c1 . . . cn)
....
C

C

β functions as any other (atomic) predicate as far as the inference of
C from (. . . β(t1 . . . tn) . . . ) is concerned. Our choice of β allows us to sub-
stitute any occurrence of β(d1 . . . dn) by A[x/d1, . . . , x/dn] for any terms
d1 . . . dn. Our choice of constants ci allow us to substitute them for any
terms we like, in particular the t′i. Thus we obtain a direct inference of C
from (. . . A[x/t1, . . . , x/tn] . . . ) and A[x/t′1, . . . , x/t′n]:

....
(. . . A[x/t1, . . . , x/tn] . . . )

....
A[x/t′1, . . . , x/t′n]....

C
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A.1.3 Plural quantification

We can use the extra expressive power to formulate the Geach sentence:

∃α∀y((α(y)⊃ (Cy ∧ ∀z(Ayz ⊃ α(z)))

or perhaps
∃α∀y((α(y)⊃ (Cy ∧ ∀z(Ayz ≡ α(z)))

if we understand the Geach sentence as ‘some critics admire all and only
each other’.

The usual interpretation of ∃αA is that there is a collection, or class,
of elements that satisfy A. α(t) satisfied when the element assigned to t
is a member of the class assigned to α. We can also choose to interpret α
as ranging over the syntax, so that ∃αA receives a substitutional interpre-
tation along the lines of ‘there is a description (or predicate) which when
substituted for α in A yields a true sentence’. The substitution interpreta-
tion of higher order quantification is far too tied to the syntax, we might
assert the Geach sentence without having anything to substitute for α to
form a true sentence not involving the higher order quantification. It seems
that if we are to be able to use the rules above as a definition of higher or-
der quantification we must have developed (or possess innately) something
of a concept of class or plurality. There is an alternative in the literature
to understanding such quantifications in terms of sets, we may take as a
primitive, plural quantification (e.g. Boolos [?], Hossack [?]). Our cognitive
capacity that allows us to define the higher order quantifiers need not be,
on this view, a concept of a set, rather a concept of plural quantification.
With plural quantifiers as the primitive we may then develop much of set
theory (without taking a concept of set as the primitive).

Notice that the higher order rules I present do not give us a language
of set theory. In particular we cannot reason with predicates like we reason
about objects, for example we cannot predicate α (as in Fα) like we can
predicate a name a (as in Fa). For this reason we do not need full set
theory in order to understand the rules of higher order quantification that
I present. Standard set theories are theories of pluralities (a.k.a. classes)
where these pluralities are themselves treated as objects of membership to
other pluralities. In order to understand set theory we must develop a more
advanced concept of a plurality as an object, this is far easier said than done
especially when we try to keep the concept consistent (as Frege discovered).

When we do not think of pluralities as objects of plurality themselves we
do not have a set theory, we have an elementary theory of plurality. If we



238 APPENDIX A. SECOND ORDER LOGIC AND PLURALS

allow quantification over pluralities then we have an elementary theory of
plural quantification. As far as I can see, if the higher order quantification
remains quantification over classes of objects, and we do not bring each class
down into the domain of quantification as an object (i.e. as long as we do
not develop set theory), then there is no difference between taking classes
as the primitive concept rather than plural quantification.

Thus I claim that we use the higher order rules above to define higher
order quantifiers in accordance with a pre-existing concept of plurality. Of
course, we can use these rules to develop a theory of sets. We can give
axioms that state that for every plurality there is a corresponding object
and thereby enrich the domain of quantification with considerably more
entities (a full domain of sets). But such a development is a theory, a theory
which has its uses in some but not all applications (e.g. the axiom of choice is
useful to some applications and not to other applications). A full set theory
is not required to provide an understanding of higher order quantification.
Finally I wish to touch here on a debate about the interpretation of higher
order logic. We may form a models, call them H-models, for our higher order
logic the domains of which feature two sorts of object, urelements (non-sets)
and pluralities (i.e. sets). As long as we have enough sets in the domain
to be associated with every formula A of the language (that can occur as a
premise of the higher order introduction rule) then the logic will be complete
for these models.2 We can then interpret higher order quantification as
first order quantification over the domain of sets. Now all the limitative
results of first order logic apply to the logic, for example if the syntax is
denumerable then the H-models may be denumerable. H-models provide
an unacceptable interpretation of higher order quantification in general as
we can, if the language is denumerable, keep the H-models denumerable
even though the number of pluralities should be far greater the number
of elements. For example if there are denumerably many urelements there
should be uncountably many pluralities, but according to the H-models there
are not. We might worry that, since we can always interpret the rules above
in terms of H-models we cannot to justice to higher order logic as we cannot
characterise the ‘real’ models of higher order logic.3 I shall now discuss why
I do not find this worrying.

Firstly the existence of alternative interpretations of our terms does not
alone undermine or raise any sceptical doubts about their meanings. We

2This is called the Henkin semantics for second order logic, see Shapiro [?].
3In section II of [?] Shapiro discusses a debate that might arise between someone who

insists on interpreting higher order rules in terms of H-models and someone who intends
a far richer (second order) interpretation of the higher order rules above.
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do not have to characterise something exactly in order to refer to it or talk
about it. I do not need to produce a complete theory of the arithmetic that
characterises their structure up to isomorphisms in order to give appropri-
ate meaning to the word ‘one’; I do not need to develop a full set theory in
order to know what a set or class or plurality is; I do not need to develop
a full psychology of human interpersonal relationships for my word ‘love’
to mean (or refer to) love. Secondly the H-models work by tailoring them-
selves to a fixed language, that is we can provide a first order interpretation
of the higher order introduction an elimination rules only by treating them
as schematic over a fixed language. This is clearly not what the rules are,
the rule is intended to be general over any (extension of the) language we
speak.4 The inference rules should be interpreted far more generally than
any first order interpretation of them.5 Thirdly the first order interpreta-
tions of higher order logic require pluralities to be thought of themselves
as objects (in order for them to be in a domain of first order quantifica-
tion). As I have suggested above such an understanding of pluralities is
quite an advancement on the elementary concept of plurality that allows
plural quantification. Thus the first order interpretation should be thought
of as an advanced theoretic development of higher order logic rather than
its fundamental interpretation.6

A.1.4 Plural predication

Not only do we quantify over pluralities we seem also to predicate over them.
For example

Russell and Whitehead wrote Principia Mathematica

has a reading that is not equivalent

4In the same way that the rules for conjunction are not for using ∧ to connect formulae
formed from a fixed syntax, they are rules for connecting formulae of any syntax we choose
to work with.

5Our intention to use the rules so generally is the fact that determines the incorrectness
of the first order interpretation.

6An answer to the question of which interpretation is correct does not affect the proof
theoretic properties of higher order logic. Even though plural quantification really does
quantify over all classes, the higher order logic I present is very weak. In order to obtain a
full set theory we must add extra axioms and rules, in short, we must develop a theory. Set
theory is not the basis of our understanding of plurality, it is a theoretical advancement
of a concept we already possess (a theoretical advancement we can choose to use or reject
at will, there are many set theories).
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Russell wrote Principia Mathematica and Whitehead wrote Prin-
cipia Mathematica

Similarly there is a reading of

Some critics lifted a piano

the truth conditions of which are of a collective piano raising action rather
than a number of individual actions.

It is possible to develop a theory of predication where pluralities can
take an argument position of a predicate. Such a line would defeat all that I
have argued previously about the concept of plurality being weaker than the
concept of a set. I cannot interpret a predication Fa unless a is some kind
of object (abstract or real), that is I cannot give a sensible interpretation of
Fa unless a is something that a first order quantifiers can range over. If we
allow plural predication (e.g. Fα) then we must be able to treat pluralities
like objects. But to do so would overturn my arguments above about the
interpretation of second order logic.

Unless my mind is opened to other interpretations of plural variables
occupying argument positions of predicates, I must seek another way of
characterising plural predication. The method I propose arises from my
analysis of Geach sentences in the context of the limitations of first order
logic. I now turn to this analysis, my account of plural predication is con-
tained within it. The idea is that we should treat plural predication, not as
a predication of a normal predicate over a plural entity, but as a predication
with a plural predicate over a number of (unitary) entities.

A.2 First order enhancements

A.2.1 Expressive difficulties of first order logic

A reason for accepting a second order logic over a first order logic is the
failures of expressive power of a first order language. Intuitively we are
capable of expressing sentences like

(F) There are finitely many people

(A) John is my ancestor

(G) Some critics admire only each other (the Geach sentence7)

7Amusingly this is occasionally simplified to
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(C) John lifts some stones (collectively)

The usual language of first order logic cannot express any of these. The
first three at least fall foul of the compactness theorem.8 The compactness
theorem states that

if S is a collection of sentences and every finite subset of S is
consistent (has a model) then so is S.

Since every proof is finite, if S is inconsistent then the proof of this is finite.
Take all the members of S required for this proof and we have an inconsistent
finite subset of S. So if there is no such subset then S is consistent.

Now it is easy to express for each number n a first order sentence meaning
‘there are at least n P ’, where P is any predicate. Consider the set S of
sentences:

There are finitely many people

There is at least 1 person
There are at least 2 people
There are at least 3 people
...

Every finite subset of this is consistent. But the whole set S is not consistent.
Therefore (F) above is not expressible in a first order language.

Now consider the set S of sentences:

John is my ancestor
John is not a parent of mine
John is not a parent of a parent of mine
John is not a parent of a parent of a parent of mine
...

Some things admire only each other

which has a very simple first order formulation. Since there cannot be anything outside
the domain of ‘thing’ it is true exactly when something exists! As long as admiration is
not transitive we will have a hard time with

Some things admire all and only each other

the problem is capturing the transitive closure of the non-transitive relation.
8I have shown how to extend the logic to a second order language, the compactness

theorem does not hold for such a logic.
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Except the first, each is easily rendered into first order logic. Every finite
subset of S is consistent, but S is not. Therefore (A) above is not expressible
in a first order logic.

If the Geach sentence (G) is expressible in a first order language then so
is its negation. Consider the set S of sentences:

It is not the case that some critics admire only each other
John is a critic who admires only critics
John is a critic who admires only critics who admire only critics
John is a critic who admires only critics who admire only critics
who admire only critics
...

As the sentences get longer we have to go further down the chain of admira-
tion before we find a non critic. Since each sentence is finitely long we can
be sure the chain can end. So every finite subset of S is consistent, but S is
not. Therefore (G) is not expressible in a first order language.

I shall discuss (C) later.

A.2.2 Geach sentences

The Geach sentence (G) is of interest. Let us look more closely at the Geach
construction

Some P (s), R only each other

where P is a unary predicate and R is a binary relation. A similarity between
the proof that (A) and (G) are not expressible in a first order language
suggests a link between the Geach construction and the following ancestral
constructions

y is an R-ancestor of x
y is in the transitive closure of R from x
there are x1 . . . xn such that xRx1, xiRxi + 1 and xnRy

If R is a binary relation then let R∗ be the transitive closure of R. That is
if xR∗y then y is an R-ancestor of x. Now consider the sentence

(†) ∃x(Cx ∧ ∀y(xR∗y ⊃ Cx))

where R is ‘. . . admires. . . ’ and C is ‘. . . is a critic’. Then † means that there
is a critic who has only critics in the transitive closure of the admiration
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relation from him onwards. That is he admires only critics and they admire
only critics and they. . . . Take all the critics who are admiration ancestors
of this critic, that is a collection of critics who admire only each other.

So, if we have the power to express transitive closures then we can for-
mulate the Geach sentence and Geach constructions.

To go the other way we need to enhance the Geach construction, as it
stands we cannot use it to refer to any particular individual. Here is a minor
enhancement:

there are some P (s) that R only each other and x but not y is
among them.

Now we can express the sentence y is an R-ancestor of x. Take the negation
of the enhanced Geach construction:

it is not the case there are some things that R only each other
and x but not y is among them.

The transitive closure of the R relation from x is the smallest set that
contains x and the members of which R only each other. So if there is no
set, closed under R, that contains x and not y, then y is an R-ancestor of x.

It is easy to verify that the enhanced Geach construction may be ex-
pressed using R∗. Thus being able to express the two Geach constructions
is equivalent to to being able to describe the transitive closer of a binary
relation.

A.2.3 Ancestral relations

The ability to express the transitive closure accords us with great power.
For example we can once and for all define the natural numbers. Instead of
using the first order induction axiom we let R be such that

xRy ≡ y = s(x)

where s is the successor function. We then add the rule that

∀x(Nx≡ (x = 0 ∨ 0R∗x))

where N is to mean ‘. . . is a number’.
Actually, with sufficient cunning we do not even need this much, the

original Geach sentence can characterise the numbers without modification.
We require only that we have enough rules for arithmetic for guarantee that
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0 has no predecessor
Every number is 0 or is a successor (has a predecessor)
Only numbers are successors of things

these are easily rendered in first order logic. We then need only add a clause
that

(†) It is not the case that some successors are predecessors of
only each other

To see that this is sufficient it is enough to show that this entails second
order induction. Suppose that F0 and ∀x(Fx⊃Fs(x)) and now hypothesise
that that ∼Fa. Let P be ‘. . . is a predecessor of. . . ’. Then

(Pyx ∧ ∼Fx)⊃∼Fy

now consider X = z : ¬Fz. Since F0 is follows that 0 6∈ X. Furthermore if
x ∈ X then ∼Fx and so ∀yPyx⊃∼Fy and so y ∈ X, thus

∀x∀y((x ∈ X ∧ Pyx)⊃ y ∈ X)

So X is a set of objects that are predecessors of only each other. But this
is contrary to †, therefore the hypothesis is not true so Fa is true. Since a
was arbitrary we may conclude that

[F0 ∧ ∀x(Fx⊃ Fs(x))]⊃ ∀xFx

and since F was arbitrary we may conclude its second order generalisation.
Once we have a predicate N that really does mean ‘dots is a number’ and

has no non-standard interpretation we can use usual recursive techniques to
define pretty much anything we like. For example if F is a unary predicate
let us define a binary predicate G such that

G(F, 0) =df there are no F
G(F, 1) =df there are no F or there is exactly one F
G(F, n) =df C(F,n-1) or there are exactly n− 1 F

and the right hand sides are easily rendered into first order logic. Since
we are sure that this definition covers all the numbers (and there are no
non-standard numbers lurking around for which C might not do what it is
supposed to do), then

∃x(Nx ∧ C(F, x))

means ‘there are finitely many F ’.
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A.2.4 Ancestral sentences

We can give inference rules for the ancestral operator. I give them here for
the ancestral relation on a binary relation and I claim these are rules we do
use:

tRt2
t1R

∗t2
∗I t1R

∗t2 t2Rt3
t1R

∗t3
∗P

t1R
∗t2 A[x/t1]

»»»»A[x/c]n ©©©cRdn
....

A[x/d]
A[x/t2]

∗E(n)
provided t1 and t2 are free for x in A
and provided c and d do not occur in
any formulae or assumptive rule ap-
plications on which A[x/d] depends
(except A[x/c] and Rcd), nor in A

The elimination rule ∗E is a form of induction rule. It would require some
complex logical machinery to prove normalisation for rules such as these,
I shall not do it here. I shall content myself to argue that the meaning of
an ancestral operator is not fixed entirely by these rules. It is bold enough
to claim that people use the rule ∗E (I do claim it) but it is perhaps too
bold to claim that we use them knowingly let alone as a definition. The
meaning of the ancestral operator is fixed by or experiences which help
us develop a concept of an ancestor or something that can be reached by
repeatedly carrying out some operation. I claim that if we experience enough
domino effects we develop a concept of a domino effect and thereby come to
understand an ancestral operator ∗ on a binary relation. We can see that if
the first domino is knocked down and the dominos are placed appropriately
that all dominos will be knocked down, regardless of how many there are.
We see this, I claim, mostly by our experience of domino effects.

Because we do not understand the ancestral operator by definition but
mainly by a relation to our experience of structural properties of the world
there is no question of a non-standard interpretation of our ancestral con-
nective. The ancestral operator should be interpreted as expressing the real
ancestral relation that exists between objects in the world. More precisely,
we fix the meaning of the ancestral operator by our experience of objects
entering into domino effects, such objects always make up standard models
for the ancestral operator, thus our ancestral operator should always receive
a standard interpretation.9

9A standard model for the ancestral operator is one where if aR∗b then there really is
a finite sequence c1 . . . cn such that aRc1 and ciRci+1 (1 ≤ i < i) and cnRb. We can find
models that validate the rules for ∗ above but where this is not the case, such models are
non-standard.
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A.2.5 Plural predication

We can use the Geach construction to express plural predications. The
idea is this: a sentence like ‘some people lifted a piano’ may be para-
phrased as ‘some people lifted a piano together with only each other’, where
‘. . . lifted. . . together with. . . ’ is a three place predicate. It just so happens
that we can express that particular Geach construction in first order logic
(the trick is in the logic of ‘together with’.

What I shall do is enhance the language so that for every n-ary predicate
like ‘. . . lifts. . . ’, there is an n + 1-ary predicate ‘. . . lifts. . . together with. . . ’
(and also ‘. . . together with. . . lifts. . . ’).

The language

Let there be two sorts of predicate, simple predicates and complex pred-
icates.10 Every complex predicate is associated with (or derives from) a
simple predicate.

Let us use F, F1, F2 . . . , G,G1 . . . to denote simple predicates. Every
complex predicate is denoted by F i1...im where F denotes an n-ary simple
predicate, and 1 ≤ ij ≤ n, and i1 < i2 · · · < im, and where each ij is a
positive integer.

The complex predicate symbols F i1...im , will not be used to construct
any formula of the language so they need not be given and arity (i.e. we
need to say whether they are n-ary for any n).

Any variable is a term, any constant is a term. Call a variable or a
constant a simple term. If if t1 and t2 are simple terms then f(t1, t2) is a
term, call it a complex term. Notice that if f(t1, t2) is a term then neither
t1 nor t2 contain f themselves.

• If F is an n-ary simple predicate and none of t1 . . . tn contain f (i.e.
they are all variables and constants), then

Ft1 . . . tn

is a simple atomic formula.

• If F is an n-ary simple predicate and some of t1 . . . tn contain f , then

Ft1 . . . tn

is a complex atomic formula.
10Semantically, both simple and complex predicates are assigned sets of n-tuples of

elements, though there are extra conditions on the set of n-tuples that can be assigned to
a complex predicate.
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The intuitive interpretation

If F unary then Ft should be read as:

t is F

but Ff(t1, t2) should be read as

t1 and t2 together (i.e. collectively), possibly among others, are
F

If F is binary then we may form three types of complex atomic formula using
simple terms t1, t2, t3, t4: Ff(t1, t2)t3, Ft1, f(t2, t3) and Ff(t1, t2)f(t3, t4).
The interpretation of Ff(t1, t2)t3 is

t1 and t2 together, possibly among others, relate by F to t3

and Ft1f(t2, t3) is

t1 relates by F to t2 and t3 together, possibly among others

and Ff(t1, t2)f(t3, t4) is

t1 and t2 together relate by F to t3 and t4 together.

Here are examples of how F relates to F i1...im for the case where F is
binary.

• if F is ‘. . . is walking’, then Ff(. . . , . . . ) is ‘. . . is walking possibly
among others together with. . . (this is also how to interpret F 1)

• if F is ‘. . . lifts. . . ’ then

1. F 1 is ‘. . . together with. . . lifts. . . ’

2. F 2 is ‘. . . lifts. . . together with. . . ’ weighs. . . ’

3. F 1,2 is ‘. . . together with. . . lifts. . . together with. . . ’

It should be apparent that F i1...im is a more abstract representation of F
where the ij-th arguments of F are complex terms.

The construction ‘together with’ allows us, in a particular case, to use a
collective property. If we wish to say that John lifted two stones (together,
possibly among others) we may express this as:

There are at least two stones x and y and John weighed x to-
gether with y.
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We can use the Geach sentence to express collective properties like (C) above
as follows:

‘Some people are walking’ is

some people are walking together with only each other.

and ‘John weighs some stones’ is

‘some stones are weighs by John together with only each other’.

But, actually, we can express this in first order logic. For ‘together with,
possibly among others’ is transitive, symmetric and reflexive. For example,
if Peter walks together with Jane and Jane is together with Jack, then Peter
is together with Jack. So if F is n-ary then F i1...im is transitive, reflexive
and symmetric with respect to the arguments that are placed within the
square brackets.

The formal interpretation

I shall now sketch and explain the intended semantics for the language above.

• Each n-ary simple predicate F is given the interpretation |F | of a set
of n-tuples of elements of a certain domain.

• Each n + m-ary complex predicate F i1...im is given the interpretation
|F i1...im | of a set of n-tuples such that

if z ∈ |F i1...im | then the ij-th members of z are set of ele-
ments of a certain domain D, and the other members of z
are merely elements of D.

So for example, if F is ternary then |F 1,3| is a set of n-tuples the first
and third members of which are sets (of elements of D) but the second
members of which is an element of D.

• If v is a valuation and t is a simple term then v(t) is an element of the
domain (all valuations agree on v(t) if t is a constant).

• If v is a valuation and t is a complex term f(t1, t2) then v(t) is the set
{v(t1), v(t2)} (note that t1 and t2 are simple terms)

• If Ft1 . . . tn is a simple atomic formula then
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v(Ft1 . . . tn) = T iff 〈v(t1) . . . v(tn)〉 ∈ |F |.
• If Ft1 . . . tn is a complex atomic formula where ti1 . . . tim are all the ti

(of t1 . . . tn) that are of the form f(t, t′) then

v(Ft1 . . . tn) = T iff there is an n-tuple z s.t. z ∈ |F i1...im |
and z is identical to 〈v(t1) . . . v(tn)〉 except that the ij-th
members of z are supersets of the ij-th members of 〈v(t1) . . . v(tn)〉.11

Notice that in this interpretation f(t, t′) is not interpreted as an object, it
is interpreted in terms of a more complex predication. For example, if F is
binary then Ftf(t′, t′′) expresses what F 2tt′t′′ would express if we allowed
it to be a formula of the language.

Thus we have what looks like a term f for a plural objects, but we
need not interpret it as a referring expression. We interpret it as extending
the predicate of which it is an argument to a more complex predicate (the
predicate extended by ‘. . . together with. . . ’. So, for example, we can get by
without interpreting the use of ‘and’ in ‘Russell and Whitehead’ as forming
a plural term that refers to some plural object composed of Russell and
Whitehead.

A.2.6 Rules for plural predication

In the presentation of the following rules let F be an n-ary simple predicate
symbol.

We must add these rules:

Symmetry

Ft1 . . . tn[t/f(t′′, t′)]
Ft1 . . . tn[ti/f(t′, t′′)] where ti is a simple term.

For example, suppose F is binary, then Ff(a, b)x ` Ff(b, a)x.

Reflexivity (introduction)

Ft1 . . . tn
Ft1 . . . tn[ti/f(ti, ti)] where ti is a simple term.

For example, suppose F is binary, then Fab ` Faf(b, b), and Faf(b, c) `
Ff(a, a)f(b, c).

11i.e. the members of 〈v(t1) . . . v(tn)〉 that are sets are subsets, though not necessarily
proper subsets, of the members of z that are sets. The members of z and 〈v(t1) . . . v(tn)〉
that are sets occupy the the same positions in the orderings of z and 〈v(t1) . . . v(tn)〉.
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Transitivity

Ft1 . . . tn[ti/f(t, t′)] Ft1 . . . tn[ti/f(t′, t′′)]
Ft1 . . . tn[ti/f(t, t′′)] where ti is a simple term.

As an example suppose F is binary, then Ff(a, b)x, Ff(b, c)x ` Ff(a, c)x.

Elimination

A further rule is this:

Ft1 . . . tn[ti/f(t, t′)]

((((((((((
Ft1 . . . tn[ti/f(t, c)]....

t = c

F t1 . . . tn[ti/t]

where c is a constant that does
not occur in any formulae or
assumptive rule applications on
which t = c depends, except
Ft1 . . . tn[ti/f(t, c)], and c does not
occur in Ft1 . . . tn[ti/f(t, t′)]. Also
where ti is a simple term.

as example of this rule in action, suppose F is binary and we can deduce that
Ff(aa)f(bd) and that Ff(ac)f(bd) ` c = a (where c meets the restriction)
then we may conclude that Faf(bd). 12 To see that this rule is sound
suppose that John wrote a book together with, among others, himself, and
suppose further that anyone who wrote the book with John is in fact John.
In other words, suppose John wrote the book alone. Then, we may say
simple that John wrote a book.

12Those who do not like the use of t1 = c in the inferential premise may use this rule
instead:

Ft1 . . . tn[ti/f(t, t′)]

((((((((
Ft1 . . . tn[ti/f(t, c)],©©Xti....

Xc

Ft1 . . . tn[ti/t]

with the same condition on c and where X is a simple atomic predicate that occurs in no
assumptions or weak rule applications on which Xc depends (except Xti) and is not F ,
and no application of the plural predicate rules above are applied to X in the deduction
of Xc. Similarly we could replace the introduction rule for = with a rule like:

©©Xt2....
Xt1

t1 = t2

with a similar restriction on X. Given this restriction, the deduction of Xt1 does not
depend on anything about X and so X may be replace throughout by A to obtain a
deduction of A[x/t1] from A[x/t2] which legitimates the usual elimination rule for =.
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If B is a binary predicate then the binary the binary relation R such
that R(x, y)↔Baf(x, y) is transitive and hence is identical to its transitive
closure (identical to its ancestral relation). So sentences like (C) are first
order definable after all:

There is a stone x and there is a stone y and John lifts x together
with y, and for any z if John lifts x together with z then z a stone.

is a first order analysis of (C), more formally let L be ‘. . . lifts. . . ’ and S be
‘. . . is a stone’ and let a be John:

∃x∃y[Sx ∧ Sy ∧ Laf(xy) ∧ ∀z(Laf(xz)⊃ Sz)]

Using this extra construction we avoid explicitly predicating over collections,
plural predication becomes predicating with a plural predicate rather than
predicating over a plural entity. Actually, we can formalise ‘John lifts some
stones’ in a simpler way:

∃x[Sx ∧ Laf(xx) ∧ ∀z(Laf(xz)⊃ Sz)]

and so I claim that the construction ‘some stones . . . ’ is sometimes ∃x(Sx∧
. . . x . . . ) and, in plural cases, it is ∃x(Sx ∧ . . . f(xx) . . . ).

Therein lies my analysis of plural predication. We do not require a sec-
ond order language or second order quantification in order to obtain plural
predication, first order logic can handle it if we enrich its language of predi-
cates. Of course, second order logic is still required to express more complex
sentences about pluralities (but it is not required for plural predication).

Here are some more examples:

John and Mary are moving a piano

let a and b be John and Mary respectively, let M be ‘. . . is moving. . . ’, and
let P be ‘. . . is a piano’:

∃x(Px ∧ ∀y∀z(Mf(yx)z ≡ ((x = a ∨ x = b) ∧ (y = a ∨ y = b))))

John and Mary and Peter are moving a piano

let c be Peter, the formalisation is:

∃x(Px∧∀y∀z(Mf(yx)z≡((x = a∨x = b∨x = c)∧(y = a∨y = b∨y = c))))

Some critics are moving a piano
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∃x∃α∀y(Px ∧ α(y)⊃ (Cy ∧ ∀z(Mf(yx)z ≡ α(z))))

which is the formalisation of ‘there is a piano that some critics are moving
together with only each other’. We can formalise the sentence without using
any second order quantifiers:

∃x∃z(Px ∧ Cz ∧Mf(zz)x ∧ ∀y(Mf(zy)x⊃ Cy))

With this analysis we should be careful always to use present tense predicates
and a tensed modal operator rather than tensed predicates. So ‘John and
Mary moved a piano’ should be analysed as ‘in the past (John and Mary
are lifting a piano)’.


