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1 Introduction

An important application of uncertain reasoning is the problem of combining
reports or data from partially reliable witnesses, experts, sensors, or mea-
surement instruments. In legal cases, for example, testimonies from different
witnesses must be taken into account. Due to the possible unreliability of
witnesses, testimonies do typically not fully confirm each other. Very often,
testimonies are even totally conflicting. Judges or jurors must then resolve
such conflicts and pass their sentence accordingly. Similarly, if several reports
from sensors or data obtained from different measurement instruments are
given, it is typical to have conflicts or inconsistencies. This is again due to the
possible unreliability of sensors or measurement instruments.

The common feature of situations like the ones mentioned above is that con-
firming and/or conflicting information is obtained from partially reliable in-
formation sources . The question of how to combine such information is a very
general problem of uncertain reasoning. We will refer to it as the problem of
partially reliable information sources .

There are numerous ways to attack this problem. In order to simplify matters,
it is usually assumed that:

(1) There are only two alternative hypotheses Hyp and ¬Hyp (e.g. suspect
X is guilty vs. suspect X is innocent).

(2) All sources are structurally identical and are therefore represented by one
particular model and a corresponding set of characteristic parameters.

(3) The sources are conditionally independent given the hypothesis (the hy-
pothesis is the only common parameter that determines the outcomes of
their reports).

These assumptions may appear to be overly idealized, but one can imagine
practical situations in which they are approximately correct (some examples
are given in the following subsection). We will accept these three assumptions
throughout this paper and postpone more general models to future publica-
tions. Because only two alternative hypotheses Hyp and ¬Hyp are considered,
we can distinguish between positive reports and negative reports . In general,
we consider n positive and m negative reports. N = n+m is the total number
of reports.

Any concrete model of partially reliable information sources is supposed to
represent what is known about the source. This is an important remark, and
it means that we distinguish strictly between the true behavior of the sources
and our knowledge about it. Since the true behavior is often inaccessible or
even unknowable, we must think of a model as an imprecise or incomplete
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description of the real world mechanisms that determine the comportment
of an information source. An extreme (but valid) model is the case in which
absolutely no information is available.

1.1 Existing Models

As we will see in Section 3, there is huge number of possible models of par-
tially reliable information sources. A few of them are well-known in the lit-
erature and widely applied in various domains. In the following, we give a
non-comprehensive overview of such existing models. The first two models
can be represented by respective Bayesian networks and require thus the exis-
tence of some prior information on the hypothesis. In the third and the fourth
model, it is possible to include prior information on the hypothesis, but it is
not mandatory. In all four models, the reports of the information sources are
compiled into an overall probabilistic judgment. This paper will show how to
derive these models within a more general framework.

Approach No. 1

A classical way to deal with partially reliable sources is to assume that there is
a certain chance pi = Pr(Repi|Hyp) that source i yields a positive report Repi

if the hypothesis Hyp is true. On the other hand, there is certain probability
qi = Pr(Repi|¬Hyp) that the source yields a positive report Repi if Hyp is
false. qi represents the so-called ratio of false positives and p̄i = 1−pi the ratio
of false negatives . These values are, for example, well documented for many
medical tests.

If N independent information sources of this type provide reports, we obtain
the simple Bayesian network depicted in Fig. 1. The root node HYP is the
parent node of N report nodes REP1 to REPN . The possible values of HYP
are Hyp and ¬Hyp, and the possible values of REPi are Repi and ¬Repi.

REP1 REP2 REPN

HYP

· · ·REP3

Fig. 1. A simple Bayesian model of partially reliable information sources.

Let h = Pr(Hyp) and h̄ = 1 − h denote the prior probabilities of Hyp and
¬Hyp, respectively. If n reports are positive and the remaining m = N − n
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reports are negative, and if we assume to have equal parameters pi = p and
qi = q for all 1 ≤ i ≤ N , then we can apply Bayes’ theorem to obtain the
following posterior probability for Hyp:

Pr′(Hyp) = Pr(Hyp|Rep1, . . . , Repn,¬Repn+1, . . . ,¬RepN)

=
h

h + h̄ (q/p)n(q̄/p̄)m . (1)

For a detailed discussion and interpretation of this formula we refer to [2]. In
Subsection 4.3 we will reproduce the same result as a special case of a more
general model.

Approach No. 2

An alternative approach is to model partially reliable sources on the basis of
reliability variables RELi with Reli and ¬Reli as possible values (see [2] for
a detailed discussion). It is then assumed that the report of a reliable source
(represented by Reli) is positive whenever the hypothesis is true and negative
whenever the hypothesis is false.

More formally, we have Pr(Repi|Hyp, Reli) = 1 and Pr(Repi|¬Hyp, Reli) = 0.
On the other hand, if source i is unreliable, then we suppose the outcome
of REPi to depend only on a randomization parameter ri no matter what
the true state of HYP is. In other words, we assume Pr(Repi|Hyp,¬Reli) =
Pr(Repi|¬Hyp,¬Reli) = ri. Such a constellation leads to the Bayesian net-
work depicted in Fig. 2, in which HYP and RELi are the parents of REPi for
all 1 ≤ i ≤ N .

REP1 REP2 REPN

HYP

· · ·REP3

· · ·REL3REL2REL1 RELN

Fig. 2. Another simple Bayesian model of partially reliable information sources.

Consider again n positive and m negative reports. If we assume the same prior
probability Pr(Reli) = ρ and the same randomization parameter ri = r for
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all 1 ≤ i ≤ N , we can apply Bayes’ theorem to obtain the following posterior
probability for Hyp:

Pr′(Hyp) = Pr(Hyp|Rep1, . . . , Repn,¬Repn+1, . . . ,¬RepN)

=
h

h + h̄
(

ρ̄r
1−ρ̄ r̄

)n(
1−ρ̄r

ρ̄ r̄

)m . (2)

Again, we refer to [2] for a detailed discussion of this result and its relationship
to (1). We will also reproduce this formula in Subsection 4.4 as a special case
of the general model.

Approach No. 3

A third simple model of partially reliable sources results from looking at source
i as somebody who is either telling the truth or who is purposely lying due
to some lack of veracity. Let r and r̄ = 1 − r be the respective probabilities.
Furthermore, in order to simplify matters, suppose that all N information
sources provide positive reports. This means that either they are all telling
the truth with probability rN or they are all lying with probability r̄N , i.e.
all other configurations are logically impossible. Obviously, Hyp must be true
in the first and false in the second case. This leads to a formula for Pr(Hyp)
that goes back to Laplace (see Chapt.XI of [3]) and is closely related to the
Condorcet Jury Theorem discussed in social choice theory (see, amongst many
others, [4–7]):

Pr(Hyp) =
rN

rN + r̄N
=

1

1 + (r̄/r)N
. (3)

It is remarkable that (3) does not depend on a prior distribution of HYP . This
raises the controversial question of whether this formula is a proper posterior
probability in a Bayesian sense. Boole gives a similar formula that includes a
prior distribution of HYP (see Chapt.XXI of [8]). He considers the isomorphic
problem of N independent jurors rendering an unanimous verdict. In Subsec-
tion 4.2, we will reproduce these formulas (both the one with and the one
without a prior distribution over HYP ) in a general form for n positive and
m negative reports. We will then get a clear interpretation of (3) and a better
understanding of its relationship to a purely Bayesian analysis.
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Approach No. 4

Suppose that the source always (with absolute certainty) yields a positive re-
port if Hyp is true, but if Hyp is false, it generates the report at random.
Sources of this type are the basis of so-called probabilistic or randomized al-
gorithms [9], among which probabilistic primality tests are the most famous
instances. They do not determine with certainty whether a number is prime
or not, but for an increasing running time, the error rate diminishes quickly
towards zero. This is acceptable for many practical applications such as public-
key cryptography.

The key mechanism of probabilistic primality tests (and probabilistic algo-
rithms in general) is a repeated test that behaves like an information source
of the above-mentioned type. This means that negative reports only occur (at
random), if the hypothesis is false, i.e. they imply (with absolute certainty)
that the number is not prime. On the other hand, nothing is proved if the re-
port is positive, although every positive report increases the chance of having
a prime number at hand. Suppose we get a sequence of N positive reports, and
let r = Pr(Repi|¬Hyp) be the ratio of false negatives, then the probability of
having a prime number is

Pr(Hyp) = 1− rN , (4)

which converges quickly towards 1 if r is reasonably small. Again, no prior
knowledge on HYP is needed. With a ratio of false negatives r = 1

4
, the best

known probabilistic primality test is the so-called Miller-Rabin test [10].

1.2 Goals and Overview

The goal of this paper is to define a general model of partially reliable sources
from which results like the ones mentioned above drop out as special cases.
We choose Dempster-Shafer theory of evidence (DST) [11–13] and the closely
related theory of probabilistic argumentation [14–17] as the underlying mathe-
matical theories of uncertain reasoning. By looking at the problem of partially
reliable information sources from the perspective of probabilistic argumenta-
tion, we will get a very clear picture of how the general model relates to more
specific models such as the ones discussed above. We will also see that prior
knowledge on HYP , if available, is an important parameter. But interesting
results are also obtained for the case where no prior knowledge is available.
In fact, prior knowledge turns out to be a continuous quantity with “no prior
knowledge” and h = Pr(Hyp) at the opposite ends of the spectrum.
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Section 2 describes the general model and presents the main results. Section 3
proposes a map with numerous concrete models and links them with the main
results of Section 2. Section 4 analyses the most interesting concrete models
more deeply and reveals the relationship to and between the introductory
models of Section 1. Section 5 adds some concluding remarks and raises some
open questions.

2 The General Model

From an abstract point of view, we can say that every information source i
delivers some information Ii about the set of variables d(Ii) = {HYP, REPi}
called domain of Ii. The only common variable over all Ii is HYP , the one we
are interested in. This reflects our assumption of conditionally independent
sources given the hypothesis. As a consequence, before combining the various
pieces of information Ii, it is possible to focus or marginalize them to the
common domain {HYP}. In other words, every information source i delivers

some information Hi = I↓{HYP}
i about HYP . Finally, if we suppose H0 to

represent some given prior knowledge about HYP , the problem is to compute
the combined information

H = H0 ⊗H1 ⊗ · · · ⊗ HN , (5)

and to use H in order to draw conclusions about HYP . This general analysis
of the problem of partially reliable sources is in the spirit of Kohlas’ theory
of information algebras [18]. Its goal is to analyze algebraic systems obtained
from applying two basic operations called combination ⊗ : Ψ× Ψ −→ Ψ and
marginalization ↓: Ψ×D −→ Ψ to a set of information pieces Ψ and a set of
domains D.

2.1 The General Case

From now on, suppose that every piece of information Hi is represented by
an additive mass functions mi : 2HYP −→ [0, 1] in the sense of Dempster-
Shafer theory [11–13]. Note that in our further formal analysis, we will ex-
clusively work with mass functions as representatives of the given knowledge.
Because HYP is a binary variable, there are four possible subsets ∅, {Hyp},
{¬Hyp}, and {Hyp,¬Hyp} to be considered. As a consequence, the corre-
sponding masses mi(∅), mi({Hyp}), mi({¬Hyp}), and mi({Hyp,¬Hyp}) have
to sum up to 1. This means that one can fully specify every function mi by
three parameters only, for example by
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xi := mi({Hyp}) + mi({Hyp,¬Hyp}) = 1−mi({¬Hyp})−mi(∅) ,

yi := mi({¬Hyp}) + mi({Hyp,¬Hyp}) = 1−mi({Hyp})−mi(∅) ,

zi := mi({Hyp,¬Hyp}) .

This particular choice of three parameters seems arbitrary at first sight, but
it will help us to get the most compact formulation of the main results of this
paper (e.g. in Theorem 1). At this point, we do not further try to interpret the
meaning of xi, yi, and zi. We will see in Section 3 that such an interpretation
depends crucially on the concrete model under consideration. The idea here is
to generate general results in the framework of DST. The interpretation of the
results will become clear in Section 4 when concrete models are considered.

If there are N+1 mass functions as specified above (one for the prior knowledge
and N for the reports), then m = m0 ⊗ · · · ⊗mN denotes the combined mass
function obtained from applying Dempster’s rule of combination ⊗ [12,13]. 3

With respect to the combined mass function m, which represents the aggre-
gated information from all sources, we are interested in the degree of support
defined as

dsp({Hyp}) =
m({Hyp})
1−m(∅)

(6)

and the degrees of possibility defined as

dps({Hyp}) = 1− dsp({¬Hyp}) . 4 (7)

This definition implies dsp({Hyp}) ≤ dps({Hyp}) for all possible hypothesis
Hyp. Note that it is possible to interpret the margin dps({Hyp})−dsp({Hyp})
as a quantitative measure of our ignorance with respect to Hyp [19].

3 Without loss of generality, we suppose ⊗ to denote the unnormalized version of
Dempster’s rule. This is useful to keep the proof of the main theorems as simple as
possible. Furthermore, for a given set of reports, it may be useful to interpret m(∅)
as a quantitative measure of the overall conflict between the sources.
4 In accordance with the theory of probabilistic argumentation [14–17], we prefer
to speak about degree of support and degree of possibility of Hyp instead of belief
Bel(Hyp) and plausibility Pl(Hyp), respectively. In [17], degree of support is defined
as the probability of provability of Hyp, which is an ordinary (additive) posterior
probability of the event that the hypotheses Hyp is provable with respect to the
given knowledge. One can also think of degrees of support as probabilistic weights
of arguments and counter-arguments, respectively.
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Theorem 1 If m0 to mN are mass functions over HYP as defined above, then
the degree of support and the degree of possibility with respect to the combined
mass function m are determined by

dsp({Hyp}) =

N∏
i=0

xi −
N∏

i=0
zi

N∏
i=0

xi +
N∏

i=0
yi −

N∏
i=0

zi

= 1−

N∏
i=0

yi

N∏
i=0

xi +
N∏

i=0
yi −

N∏
i=0

zi

, (8)

and

dps({Hyp}) =

N∏
i=0

xi

N∏
i=0

xi +
N∏

i=0
yi −

N∏
i=0

zi

, (9)

respectively.

Proof: We can use the fact that Dempster’s rule of combination corresponds
to multiplication of so-called commonality functions qi defined by qi(H) =∑{mi(A) : A ⊇ H} [12]. In our concrete case, we have

qi(∅) = mi(∅) + mi({Hyp}) + mi({¬Hyp}) + mi({Hyp,¬Hyp}) = 1 ,

qi({Hyp}) = mi({Hyp}) + mi({Hyp,¬Hyp}) = xi ,

qi({¬Hyp}) = mi({¬Hyp}) + mi({Hyp,¬Hyp}) = yi ,

qi({Hyp,¬Hyp}) = mi({Hyp,¬Hyp}) = zi .

As a consequence, we get q(∅) = 1, q({Hyp}) =
∏N

i=0 xi, q({¬Hyp}) =
∏N

i=0 yi,
and q({Hyp,¬Hyp}) =

∏N
i=0 zi. This leads to m(∅) = 1−∏N

i=0 xi −
∏N

i=0 yi +∏N
i=0 zi, m({Hyp}) =

∏N
i=0 xi −

∏N
i=0 zi, m({¬Hyp}) =

∏N
i=0 yi −

∏N
i=0 zi, and

m({Hyp,¬Hyp}) =
∏N

i=0 zi. Finally, (8) results from applying (6) to m({Hyp})
and m(∅). Similarly, (9) is obtained from (7) and m({¬Hyp}).
2

For the particular case of two positive reports, the result of Theorem 1 corre-
sponds to Lambert’s discussion of the problem of unreliable testimonies (see
Chapt.V of [20]).

2.2 Identical Sources

Now let there be n positive and m = N −n negative reports from structurally
identical sources in the sense of the remark of Section 1. Suppose that the
positive reports m1 to mn are determined by parameters x1, y1, and z1. Sim-
ilarly, let x2, y2, and z2 be the parameters for the negative reports mn+1 to
mN . Finally, if x, y, and z are the parameters of the prior knowledge m0, we
can transform the results of Theorem 1 into
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dsp({Hyp}) =
x xn

1x
m
2 − z zn

1 zm
2

x xn
1x

m
2 + y yn

1 ym
2 − z zn

1 zm
2

, (10)

dps({Hyp}) =
x xn

1x
m
2

x xn
1x

m
2 + y yn

1 ym
2 − z zn

1 zm
2

. (11)

These two formulas can be regarded as the key to a general solution of the
problem of partially reliable sources in the restricted setting of independent
but identical sources and two alternative hypotheses. At this point, we do not
further comment on these results. Instead, we will introduce concrete models
of partially reliable sources in Section 3. Various applications of the above
formulas will be illustrated in Section 4.

2.3 Special Cases of Prior Knowledge

Let us have a closer look at some special cases. First, consider the case where
a prior distribution h = Pr(Hyp) is given. This means that x = h, y = h̄, and
z = 0 are the parameters of the prior knowledge represented by m0. Note that
z = 0 implies dsp({Hyp}) = dps({Hyp}). The expressions in (10) and (11)
can then be transformed into

dsp({Hyp}) = dps({Hyp}) =
h

h + h̄ (y1/x1)
n(y2/x2)

m . (12)

Furthermore, consider a case in which the prior knowledge is completely prej-
udiced by h = 0 or h = 1. Then the above formula simplifies to dsp({Hyp}) =
dps({Hyp}) = 0 and dsp({Hyp}) = dps({Hyp}) = 1, respectively. Such a
definite prejudice can therefore not be changed even if |n − m| tends to ∞.
Other interesting cases result from x1 = y1 or x2 = y2. It means that respec-
tive (positive or negative) reports do not make a difference and are thus of no
value. Note how the corresponding expressions drop out of the denominator of
(12). If all reports are valueless, that is if simultaneously x1 = y1 and x2 = y2,
then dsp({Hyp}) = dps({Hyp}) = h, as one would expect.

Second, consider the case of z = 1. This is a situation where no prior knowledge
is available. It implies x = 1 and y = 1. As a consequence, we get

dsp({Hyp}) =
xn

1x
m
2 − zn

1 zm
2

xn
1x

m
2 + yn

1 ym
2 − zn

1 zm
2

, (13)

dps({Hyp}) =
xn

1x
m
2

xn
1x

m
2 + yn

1 ym
2 − zn

1 zm
2

. (14)
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Note that the same result is obtained by omitting the prior knowledge m0 from
the beginning. In general, we have 0 < z < 1. We will discuss in Subsection 3.6
how to interpret this general situation. Prior knowledge will then turn out to
be a continuous quantity in which z determines its strength and with “no prior
knowledge” and h = Pr(Hyp) as opposite extreme cases.

3 Taxonomy of Models

So far, we have discussed the general case in which prior knowledge, positive
reports, and negative reports are all characterized by three parameters. The
question now is how to derive these parameters from concrete models like the
ones introduced in Section 1.

Before doing so, we will first identify a variety of distinct models and discuss
their respective relationships. To describe and classify these models, we use
the expressive power of propositional logic as proposed by the theory of prob-
abilistic argumentation [15,16]. This means that a specific model (M) will be
expressed by a respective set Σ(M) of propositional sentences. The result will
be a concise and comprehensive model taxonomy , which will serve as a general
guideline for solving the problem of partially reliable information sources.

3.1 Overview

As mentioned before, it is important to distinguish between the true behav-
ior of an information source and our knowledge about the source. Since the
former is often inaccessible or unknowable, a model must always be seen as
a representation of the latter. For example, there will be a model (I) in the
model taxonomy that represents a situation of total ignorance about how the
source generates its reports.

Without loss of generality, let’s assume that a particular information source
generates its report according to s independent variables. One of them may
be the hypothesis in question. If all s variables are binary (exactly two possi-
ble outcomes), then there are 2s possible configurations to be considered. In
each of these 2s cases, the source may either produce a positive or a negative
report. Since we may or may not know how the source behaves for a specific
configuration, we must distinguish between Rep, ¬Rep, and Rep ∨ ¬Rep as
possible outcomes. As a consequence, the total number of possible models is
m(s) = 32s

, that is m(0) = 3, m(1) = 9, m(2) = 81, and so on. Note that
every model obtained for s− 1 variables is equivalent to a model obtained for
s variables. The model taxonomy will include models up to s = 4.
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Among the variety of possible models, some are more interesting than others.
Certain pairs of models, for example, are equivalent up to symmetry. We
will try to restrict the model taxonomy to the most interesting ones, and
exclude unnecessary redundancies. There will be a general distinction between
complete and incomplete models. In total, we will discuss 21 different models
of partially reliable information sources.

3.2 Complete Models

A model is called complete, if the way a report is generated is known for each
possible configuration of relevant variables, otherwise it is called incomplete
(or partial) [21]. We have thus c(s) = 22s

complete and i(s) = m(s)− c(s) =
32s − 22s

incomplete models. Let us first try to classify the most interesting
complete models. We will describe them both informally and with suitable
sets Σ(··) of propositional sentences. The sets of propositions appearing in Σ(··)
will be denoted by V(··), or V for short, i.e. we have s = |V |−1. Our taxonomy
of complete models will be exhaustive for s ≤ 2 (up to symmetry).

Let us first look at the trivial case of s = 0, which implies V = {Rep}. The
way the source generates its reports is thus not influenced by anything, not
even by the hypothesis itself. In this sense, we speak of a non-informative
source. For s = 0, there are two different types of non-informative sources:

s = 0

Non-
Infor-
mative

• Yes-Man (Y): Delivers always a positive report. As an exam-
ple, one can think of an extreme progressive who approves any
political reform without thinking of it. Another example is a
shorted electrical circuit causing a constant output.

Σ(Y) = {Rep}

• Naysayer (N): Delivers always a negative report. As an exam-
ple, one can think of an extreme conservative who rejects any
political reform or progress.

Σ(N) = {¬Rep}

Now let’s look at the possible models obtained for s = 1. This means that the
report depends on a single variable, and we must thus discriminate on whether
this variable is the hypothesis or not. Formally, we will make a distinction
between V = {Hyp, Rep} and V = {R,Rep}. In the former informative case,
it is assumed that the source is conscious about the true state of the hypothesis
(and makes use of it). There are two such alternatives:
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s = 1

Infor-
mative

• Perfect Source (P): Delivers always the right report. In the
sense that the true state of the hypothesis is unambiguously de-
termined by a single report, this is a perfect information source.
In practice, assuming a perfect source may not be very realistic.

Σ(P) = {Hyp ↔ Rep}

• Anti-Perfect Source (A): Delivers always the wrong report.
By symmetry, this is also a perfect information source, because
the true state of the hypothesis is again unambiguously deter-
mined by a single report.

Σ(A) = {Hyp ↔ ¬Rep}

In the non-informative case of V = {R, Rep}, the report is supposed to depend
on a single random event R with a given prior probability r = Pr(R). In
analogy to the models (P) and (A), that is by replacing Hyp by R, we obtain
two non-informative models (R) and (R′), respectively. Since they are perfectly
symmetric with respect to R and ¬R, only one of them is needed. Let’s skip
(R′) and focus on (R):

s = 1

Non-
Infor-
mative

• Randomizer (R): Delivers its report according to the outcome
of a random event R with probability r = Pr(R).

Σ(R) = {R ↔ Rep}

If we switch to s = 2, the situation gets a bit more complicated. In the non-
informative case of V = {P, Q,Rep}, i.e. if we suppose the reports to be
influenced by two independent random events P and Q with corresponding
prior probabilities p = Pr(P ) and q = Pr(Q), it is easy to see that every
model of that kind is reducible to the (R) model. The idea is to identify the
disjunction of configurations for which we get positive reports with R, and
its complement with ¬R (or vice versa). Note that this works for all non-
informative models with s ≥ 2. Here it means that only the informative case
of V = {Hyp, R,Rep} is relevant.

Interesting informative models are the ones that are obtained from mixing the
randomizer model (R) with (Y) and (N). There are four such alternatives:
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s = 2

Infor-
mative

• Yes-Man/Randomizer (YR): If the hypothesis is true, the
report is always positive, otherwise it is generated at random.
Test functions of probabilistic algorithms are of that kind (see
Section 1).

Σ(YR) =

 Hyp → Rep

¬Hyp → (R ↔ Rep)


• Randomizer/Yes-Man (RY): If the hypothesis is true, the

report is generated at random, otherwise it is positive. This is
the inverse of the (YR) model.

Σ(RY) =

 Hyp → (R ↔ Rep)

¬Hyp → Rep


• Naysayer/Randomizer (NR): If the hypothesis is true, the

report is always negative, otherwise it is generated at random.
This is the negative counterpart of the (YR) model.

Σ(NR) =

 Hyp → ¬Rep

¬Hyp → (R ↔ Rep)


• Randomizer/Yes-Man (RN): If the hypothesis is true, the

report is generated at random, otherwise it is negative. This is
the inverse of the (NR) model and the negative counterpart of
the (NR) model.

Σ(RN) =

 Hyp → (R ↔ Rep)

¬Hyp → ¬Rep



Another interesting mixed model is the one obtained from combining (R) with
(R′). Logically, this is equivalent to a source who knows the true state of the
hypothesis, but who chooses to give the correct report only under certain
circumstances. This seems to be the more intuitive view, and we can look at
it as the result of mixing the (P) and (A) models. It corresponds to the third
approach discussed in Section 1 (Laplace, Condorcet, Boole, etc.), and as we
will see in Section 4, it leads to a formula equivalent to (3). As an example,
one can think of a defendant in court who denies being guilty.
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s = 2

Infor-
mative

• Occasional Liar (L): Delivers the right report only under
certain random circumstances, that is according to a random
event R with probability r = Pr(R). Because the true state of
the hypothesis is known, this is a source that behaves like an
occasional liar.

Σ(L) = {Hyp ↔ (R ↔ Rep)} ≡ {R ↔ (Hyp ↔ Rep)}

Before looking at the case s = 3, let’s recapitulate the models analyzed up to
this point. The following table lists all possible configurations of positive or
negative reports for s = 2 and V = {Hyp, R,Rep}. The total number of such
configurations is 222

= 16, which corresponds to the total number of complete
possible models c(2) = 16. It turns out that in each of these cases, we have
either one of the 10 models already discussed or a symmetric one (with respect
to R and ¬R). In this sense, our taxonomy of complete models is exhaustive
for s ≤ 2.

Hyp ∧R Hyp ∧ ¬R ¬Hyp ∧R ¬Hyp ∧ ¬R

Rep Rep Rep Rep ⇒ (Y)

Rep Rep Rep ¬Rep ⇒ (YR)

Rep Rep ¬Rep Rep ⇒ symmetric to (YR)

Rep Rep ¬Rep ¬Rep ⇒ (P)

Rep ¬Rep Rep Rep ⇒ (RY)

Rep ¬Rep Rep ¬Rep ⇒ (R)

Rep ¬Rep ¬Rep Rep ⇒ (L)

Rep ¬Rep ¬Rep ¬Rep ⇒ (RN)

¬Rep Rep Rep Rep ⇒ symmetric to (RY)

¬Rep Rep Rep ¬Rep ⇒ symmetric to (L)

¬Rep Rep ¬Rep Rep ⇒ symmetric to (R)

¬Rep Rep ¬Rep ¬Rep ⇒ symmetric to (RN)

¬Rep ¬Rep Rep Rep ⇒ (A)

¬Rep ¬Rep Rep ¬Rep ⇒ (NR)

¬Rep ¬Rep ¬Rep Rep ⇒ symmetric to (NR)

¬Rep ¬Rep ¬Rep ¬Rep ⇒ (N)

For s = 3, a comprehensive discussion of all c(3) = 256 complete models
would go beyond the scope of this paper. In this subsection, we will only add
one more model, the one that, as we will see, includes all previously discussed
models as special cases. Further complete models for s = 3 will be discussed
in Subsection 3.4.
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The idea is to mix the (R) model with itself, but instead of considering a
single random event R, we suppose the report to depend on two distinct and
independent random events P and Q, coinciding with P in case of Hyp and
with Q in case of ¬Hyp. In other words, false positives are produced by ¬P and
false negatives by Q. For p = Pr(P ) and q = Pr(Q), this model corresponds
to the first Bayesian network discussed in Section 1.

s = 3

Infor-
mative

• Indicator (D): Depending on whether Hyp is true or false, the
correct report is only delivered under certain circumstances P
and ¬Q, respectively. As an example, one can think of a medical
test producing false positives and false negatives, respectively.

Σ(D) =

{
Hyp → (P ↔ Rep)
¬Hyp → (Q ↔ Rep)

}

Figure 3 (see below) summarizes all complete models discussed in this subsec-
tion. The (D) model is in the center and contains all other models as special
cases. For example, if P is always true (p = 1), and by renaming Q by R, we
see that (D) degenerates into (YR). The (YR) model itself degenerates into
(Y) and (P), if R is either true (r = 1) or false (r = 0), respectively. Another
example is the (L) model, which degenerates from (D) whenever P and Q
exclude each other (logically speaking, for P ↔ ¬Q). From (L), if R is either
true or false, we get (P) and (A), respectively.

Q¬Q

R ¬R
R ¬R

R ¬R¬R R

P ¬P

¬RR

¬RR

Indicator D

Randomizer R

Liar L

R ↔ Rep

Hyp ↔ (R ↔ Rep)

YR

RY

NR

RN

Perfect P

Hyp ↔ Rep

Yes-Man Y Naysayer N

Anti-Perfect A

Hyp ↔ ¬Rep

¬RepRep

Hyp → (P ↔ Rep)

¬Hyp → (Q ↔ Rep)

Hyp → Rep

¬Hyp → (R ↔ Rep)

Hyp → ¬Rep

¬Hyp → (R ↔ Rep)

Hyp → (R ↔ Rep)

¬Hyp → ¬Rep

Hyp → (R ↔ Rep)

¬Hyp → Rep

P ↔ Q

P ↔ ¬Q

Fig. 3. The taxonomy of complete models. A dotted arrow from one model to another
means that the latter is a special case of the former.
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3.3 Incomplete Models

Let’s now turn our attention to incomplete models. Recall that the total num-
ber of incomplete models is i(c) = 32s − 22s

, i.e. i(0) = 1, i(1) = 5, i(2) = 65,
and so on. Again, many of them are equivalent up to symmetry, and they need
not all to be mentioned explicitly. Furthermore, we will not consider cases in
which the positive (negative) outcome of a random event R is known to gener-
ate a positive (negative) report, but not the other way round. In other words,
we will not discuss models that are incomplete with respect to random events
R, for example Σ(··) = {R → Rep}, Σ(··) = {Hyp → (R → Rep)}, or likewise.
In the next subsection, we will look at some of them from a different angle.

In the simplest case of s = 0, only one model is possible. It stands for the
case in which absolutely nothing is known about the source. This is the most
trivial model among all, and it does not allow any meaningful conclusions. In
other words, reports obtained from such an unknown source are of no value
with respect to Hyp.

s = 0

Non-
Infor-
mative

• Ignorant (I): Nothing is known about the source, except that
either a positive or a negative report is delivered.

Σ(I) = {Rep ∨ ¬Rep} ≡ {>} ≡ {}

For s = 1 and V = {Hyp, Rep}, we have i(1) = 5 incomplete models, but one
of them degenerates into the non-informative model (I). The four remaining
informative models are obtained from mixing (I) with the models (Y) and (N),
respectively.

s = 1

Infor-
mative

• Yes-Man/Ignorant (YI): If the hypothesis is true, the report
is known to be always positive, but nothing is known about the
case ¬Hyp. As an example, one can think of a probabilistic
algorithm and a corresponding test with an unknown ratio of
false negatives.

Σ(YI) = {Hyp → Rep}

• Ignorant/Yes-Man (IY): If the hypothesis is false, the report
is known to be always positive, but nothing is known about the
case Hyp.

Σ(IY) = {¬Hyp → Rep}
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s = 1

Infor-
mative

• Naysayer/Ignorant (NI): If the hypothesis is true, the report
is known to be always negative, but nothing is known about the
case ¬Hyp.

Σ(NI) = {Hyp → ¬Rep}

• Ignorant/Naysayer (IN): If the hypothesis is false, the re-
port is known to be always negative, but nothing is known
about the case Hyp.

Σ(IN) = {¬Hyp → ¬Rep}

Numerous incomplete models exist for s = 2 and V = {Hyp, R,Rep}. The
most interesting ones are obtained from mixing the models (I) and (R). There
are two such alternatives, each of them corresponding to one “half” of the
complete model (D). Hence, they represent situations in which either the ratio
of false positives or the ratio of false negatives is known, but not both of them
at same time.

s = 2

Infor-
mative

• Randomizer/Ignorant (RI): If the hypothesis is true, the
report is known to be generated at random, but nothing is
known about the case ¬Hyp. As an example, on can think of a
medical test for which the ratio of false positives is known, but
with an unknown ratio of false negatives.

Σ(RI) = {Hyp → (R ↔ Rep)}

• Ignorant/Randomizer (IR): If the hypothesis is false, the
report is known to be generated at random, but nothing is
known about the case Hyp. As an example, on can think of a
medical test for which the ratio of false negatives is known, but
with an unknown ratio of false positives.

Σ(IR) = {¬Hyp → (R ↔ Rep)}

Figure 4 gives an overview of all incomplete model discussed up to this point.
It indicates that the models (YI) and (NY) are special cases of (RI), whereas
(IY) and (IN) are special cases of (IR). The (I) model is the least complete
one among all. Recall that the taxonomy shown in Fig. 4 is not exhaustive
and restricted to s ≤ 2. Further (complete and) incomplete models will be
discussed in the following subsection.
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Ignorant I

Rep ∨ ¬Rep ≡ #

YI 

IN 

NI 

IY

¬Hyp → ¬Rep ¬Hyp → Rep

Hyp → Rep Hyp → ¬Rep

IR

RI 

Hyp → (R ↔ Rep)

¬Hyp → (R ↔ Rep)

¬RR

¬R R

Fig. 4. The taxonomy of incomplete models. A dotted arrow from one model to
another means that the latter is a special case of the former.

3.4 Reliability-Based Models

Based on the complete and incomplete models introduced in the previous two
subsections, we will now show how to build so-called reliability-based models .
The idea is similar to the second approach in Section 1, which is based on a
reliability variable REL with Rel and ¬Rel as possible values. One can think
of two distinct operating modes, one always producing the right report, the
other one not. The respective probabilities are ρ = Pr(Rel) and ρ̄ = 1− ρ =
Pr(¬Rel). We will always suppose REL to be probabilistically independent
of any other random event like P , Q, or R.

In the rest of the paper, we will assume that a reliable source behaves in an
ideal or perfect way, that is according to the (P) model. Note that not only
the (P) but also the (A) model, by symmetry, behaves perfectly. All other
previously discussed models are imperfect . We may thus combine the two
perfect models (P) and (A) with the sixteen imperfect ones. Our convention
is to write (PM) and (AM) for the respective combinations of (P) and (A)
with any imperfect model (M). Formally, if Σ(M) is the set of sentences of
an imperfect model (M), and σ(M) = ∧Σ(M) the corresponding conjunction of
sentences, then the models (PM) and (AM) are by

Σ(PM) =

Rel → (Hyp ↔ Rep)

¬Rel → σ(M)

, Σ(AM) =

Rel → (Hyp ↔ ¬Rep)

¬Rel → σ(M)

.

Some of the reliability-based models are more interesting than others. In gen-
eral, one can say that the (PM) models are more interesting than the (AM)
models, because the latter are obtained from the former by symmetry. In the

19



following, our focus will be on the (PM) models. Note that any combination of
(P) with a complete (incomplete) model is again complete (incomplete). Fur-
thermore, it is clear that all reliability-based models models are informative
with respect to the hypothesis.

Let us first look at possible complete models. Recall that our taxonomy of
complete models is exhaustive for s ≤ 2 (up to symmetry). Consequently, by
combining (P) with the two trivial models (Y) and (N), we have s = 2, i.e. we
must obtain two previously discussed complete models. In fact, it is easy to
see that (PY) is logically equivalent to (YR), whereas (PN) is equivalent to
(RY). Similarly, if (A) instead of (P) is used as perfect model, we get logically
equivalent counterparts for (NR) and (RN), respectively. Another possible
combination, namely the (PL) model, drops out, because by substituting Rel∨
R by another random event R ′ with r′ = Pr(R ′) = 1 − ρ̄ r̄, it is reducible to
a simple (L) model.

Among the six remaining models, the most interesting ones are (PR) and (PD).
The former is characterized by V = {Hyp, Rel, R, Rep} and thus s = 3. With
V = {Hyp, Rel, P, Q, Rep} and s = 4, the (PD) model is the most general
and accurate one among all complete models discussed in this paper. A full
model specification for (PD) consists of three parameters ρ, p, and q, which
corresponds to the number of parameters in the general model of Section 2.
We have thus reached the maximal level of generality, that is models with
s = 4 or beyond need not to be considered.

s = 3

• Perfect/Randomizer (PR): If the source happens to be unre-
liable, the report is generated at random. The second model of
Section 1 is of that kind.

Σ(PR) =

 Rel → (Hyp ↔ Rep)

¬Rel → (R ↔ Rep)



s = 4

• Perfect/Indicator (PD): If the source happens to be unreli-
able, it behaves like an indicator (D), i.e. it may generate false
positives and false negatives.

Σ(PD) =


Rel → (Hyp ↔ Rep)

¬Rel → (Hyp → (P ↔ Rep))

¬Rel → (¬Hyp → (Q ↔ Rep))


Among the possible combinations obtained from incomplete models, (PI) is the
simplest and most important one. The following discussion will be restricted
to it.
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The (PI) model represents a situation in which the behavior of the source is
only partially known. As an example, one can think of a technical sensor with
various unknown failure modes. In case of Rel with probability ρ, that is if the
sensor works properly, it produces the correct report, but nothing is known
about the report (and therefore about the hypothesis) in case of ¬Rel. We can
look at the (PI) model as the “upper half” of the complete model (L).

s = 3

• Perfect/Ignorant (PI): If the source happens to be unreliable,
the behavior of the source is unknown

Σ(PI) = {Rel → (Hyp ↔ Rep)}

As we will see in Section 4, the lack of knowledge of an incomplete model
will lead to different values for dsp({Hyp}) and dps({Hyp}). In general, the
amount of lacking information is quantified by dps({Hyp}) − dsp({Hyp}), a
quantity sometimes called degree of ignorance [17].

3.5 Computing the Parameters

Now let our attention be directed to the determination of the parameters x1,
y1, z1 for positive reports and x2, y2, z2 for negative reports. The problem is to
transform the logical description of the various models into corresponding mass
functions. A general solution of this transformation problem is described in
[16]. The common frame of discernment of all possible models is the Cartesian
product

Θ = HYP ×REP

= {Hyp ∧Rep, Hyp ∧ ¬Rep, ¬Hyp ∧Rep, ¬Hyp ∧ ¬Rep} .

For illustrative purposes, we will focus on the discussion of the (PR) model.
All other models can be analyzed in an analogous way. At the end of this
subsection, we will summarize all other results as a theorem.

The (PR) model contains two randomization parameters ρ and r. Because we
assume the corresponding events Rel and R to be probabilistically independent
(according to the remark in the previous subsection), there are four possible
combined events Rel∧R, Rel∧¬R, ¬Rel∧R, ¬Rel∧¬R with probabilities ρr,
ρr̄, ρ̄r, ρ̄ r̄, respectively. In the context of probabilistic argumentation, these
combined events are called scenarios [15,17].
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Each of the scenarios has certain consequences for the possible true state of
Θ. Let ΓPR(s) denote the set of possible states of Θ if scenario s is assumed to
be the true one. In the (PR) model, which is defined by two logical statements
Rel → (Hyp ↔ Rep) and ¬Rel → (R ↔ Rep), this means that

ΓPR(Rel ∧R) = {Hyp ∧Rep, ¬Hyp ∧ ¬Rep} ,

ΓPR(Rel ∧ ¬R) = {Hyp ∧Rep, ¬Hyp ∧ ¬Rep} ,

ΓPR(¬Rel ∧R) = {Hyp ∧Rep, ¬Hyp ∧Rep} ,

ΓPR(¬Rel ∧ ¬R) = {Hyp ∧ ¬Rep, ¬Hyp ∧ ¬Rep} .

Together with the probabilities indicated above, we obtain a mass function
mPR over Θ. The only non-zero masses are

mPR({Hyp ∧Rep, ¬Hyp ∧ ¬Rep}) = ρr + ρr̄ = ρ ,

mPR({Hyp ∧Rep, ¬Hyp ∧Rep}) = ρ̄r ,

mPR({Hyp ∧ ¬Rep, ¬Hyp ∧ ¬Rep}) = ρ̄ r̄ .

Now suppose that the information source provides a positive report. The above
mass function has then to be conditioned on Rep. The result is a new mass
function m+

PR over Θ with

m+
PR({Hyp ∧Rep}) = ρ ,

m+
PR({Hyp ∧Rep, ¬Hyp ∧Rep}) = ρ̄r ,

m+
PR(∅) = ρ̄ r̄ .

Finally, projecting m+
PR from the original frame of discernment {HYP, REP}

to the new frame {HYP} means to replace {Hyp∧Rep} by {Hyp} and {Hyp∧
Rep,¬Hyp∧Rep} by {Hyp,¬Hyp}. The result of this is a mass function m+

PR

over HYP with

m+
PR(∅) = ρ̄ r̄ ,

m+
PR({Hyp}) = ρ ,

m+
PR({¬Hyp}) = 0 ,

m+
PR({Hyp,¬Hyp}) = ρ̄r .
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According to the definition of the parameters xi, yi, and zi in Subsection 2.1,
this implies

x1 = ρ + ρ̄r = 1− ρ̄ r̄ ,

y1 = 0 + ρ̄r = ρ̄r ,

z1 = ρ̄r ,

which are the three parameters for positive reports in the (PR) model. In the
case of a negative report, the analysis is analogous. We derive from mPR a
new mass function m−

PR over Θ with

m−
PR({¬Hyp ∧ ¬Rep}) = ρ ,

m−
PR(∅) = ρ̄r ,

m−
PR({Hyp ∧ ¬Rep, ¬Hyp ∧ ¬Rep}) = ρ̄ r̄ .

Projecting m−
PR in the same way as above from {HYP, REP} to {HYP} then

leads to

m+
PR(∅) = ρ̄r ,

m+
PR({Hyp}) = 0 ,

m+
PR({¬Hyp}) = ρ ,

m+
PR({Hyp,¬Hyp}) = ρ̄ r̄ ,

from which we obtain the parameters for negative reports in the (PR) model:

x2 = 0 + ρ̄ r̄ = ρ̄ r̄ ,

y2 = ρ + ρ̄ r̄ = 1− ρ̄r ,

z2 = ρ̄ r̄ .

A similar procedure works for all other models. In most cases, the analysis is
at least as simple as it is here. We will provide all other results as a theorem.
For more information about the transformation from logical models into mass
function we refer to [16].

Theorem 2 The results shown in the following table are the parameters for
the models introduced in the previous subsection.
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Positive Report Negative Report

Model x1 y1 z1 x2 y2 z2

(Y) 1 1 1 0 0 0

(N) 0 0 0 1 1 1

(P) 1 0 0 0 1 0

(A) 0 1 0 1 0 0

(R) r r r r̄ r̄ r̄

(YR) 1 r r 0 r̄ 0

(RY) r 1 r r̄ 0 0

(NR) 0 r 0 1 r̄ r̄

(RN) r 0 0 r̄ 1 r̄

(L) r r̄ 0 r̄ r 0

(D) p q pq p̄ q̄ p̄q̄

(I) 1 1 1 1 1 1

(YI) 1 1 1 0 1 0

(IY) 1 1 1 1 0 0

(NI) 0 1 0 1 1 1

(IN) 1 0 0 1 1 1

(RI) r 1 r r̄ 1 r̄

(IR) 1 r r 1 r̄ r̄

(PR) 1− ρ̄ r̄ ρ̄r ρ̄r ρ̄r̄ 1− ρ̄r ρ̄r̄

(PD) 1− ρ̄p̄ ρ̄q ρ̄pq ρ̄p̄ 1− ρ̄q ρ̄p̄q̄

(PI) 1 ρ̄ ρ̄ ρ̄ 1 ρ̄

For lack of space, we abstain from giving an explicit proof of the above theorem
and refer to the discussion earlier in this subsection. In Section 4, we will
analyze the most interesting models by inserting the corresponding parameters
into (10) and (11).

3.6 Modeling Prior Knowledge

Prior knowledge, if available, is an important factor to be considered. It is
usually the product of previous reports from partially reliable sources that are
not further specified. Or it may simply reflect a personal opinion, sentiment,
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or prejudice regarding the true state of HYP . We will not further take the
origin of the prior knowledge into account. This means that HYP is the only
variable to be considered. As a consequence, we can represent prior knowledge
as a mass function over HYP specified by parameters x, y, and z as explained
before.

We have shown in (10) and (11) how the presence of prior knowledge over HYP
influences the overall judgement of HYP . And we have already discussed two
special cases of z = 0 (a prior probability h = Pr(Hyp) is given) and z = 1
(no prior knowledge available). In order to get a proper interpretation of these
parameters, i.e. an interpretation that is applicable to the general case of
0 ≤ z ≤ 1, consider the following two models (C) and (V):

• Confidence (C): Let there be a prior distribution over HYP in which one is
more or less confident. This means that in some cases, the prior distribution
happens to be a reasonable one that is built on solid ground, but it may also
be an arbitrary result of some misinformation. Suppose that the strength
of the confidence is expressed by the probability γ = Pr(Con) of an event
Con. We can then look at Hyp as an event which depends primarily on Con
and secondarily on a random event H with h = Pr(H). Logically, this can
be expressed by

Con → (H ↔ Hyp) .

Note that nothing is said about Hyp in case of ¬Con. As an example, think
of flipping a coin that has been drawn at random from a bag that initially
contained two fair and one unknown coin. This particular case could be
represented by γ = 2

3
and h = 1

2
.

• Interval-Valued Probabilities (V): Suppose that it is not possible to
specify a prior distribution over HYP precisely, but let there be an interval
probability [`, u] that specifies lower and upper bounds for a precise value of
h = Pr(Hyp). In other words, we assume to have two parameters ` and u
with ` ≤ h ≤ u instead of a single parameter h.

According to [22], imprecise probabilities may have various sources. Most
intuitively, one could say that the impreciseness is due to some lack of infor-
mation. In this sense, the degree of impreciseness u− l reflects the amount
of available prior knowledge. Clearly, [0, 1] and [h, h] are the opposite ex-
treme cases of total ignorance and a precise parameter h, respectively. In
the context of probabilistic argumentation or DST, it is also possible to con-
sider the results obtained from previously evaluating reports from partially
reliable information sources as probability intervals [dsp(Hyp), dps(Hyp)].

Both models (C) and (V) correspond to a situation in which the holder of
the prior knowledge is not totally sure about the opinion or feeling she or he
has about Hyp. In practice, such a situation seems to be rather typical than
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exceptional. The parameters x, y, and z for the general model are given in the
following theorem. Note that both the (C) and the (V) model can be combined
with any other model discussed in the previous section. For example, we will
call (CPI) the model that is obtained from the combination of the (C) and
the (PI) model.

Theorem 3 The results shown in the following table are the parameters for
the models of prior knowledge introduced above.

Model x y z

(C) 1− γh̄ 1− γh γ̄

(V) u ¯̀ u− `

Proof: The (C) model implies ΓC(Con ∧ H) = {Hyp}, ΓC(Con ∧ ¬H) =
{¬Hyp}, and ΓC(¬Con ∧H) = ΓC(¬Con ∧ ¬H) = {Hyp,¬Hyp} with proba-
bilities γh, γh̄, γ̄h, and γ̄h̄, respectively. This means that mC({Hyp}) = γh,
mC({¬Hyp}) = γh̄, and mC({Hyp,¬Hyp}) = γ̄, from which we can derive
x = γh + γ̄ = 1 − γh̄, y = γh̄ + γ̄ = 1 − γh, and z = γ̄. In the (V) model, if
the parameters ` and u are interpreted as dsp(Hyp) and dps(Hyp) of a previ-
ous evaluation, we have directly mV({Hyp}) = `, mV({¬Hyp}) = 1− u, and
mV({Hyp,¬Hyp}) = u−`. This implies x = `+u−` = u, y = 1−u+u−` = ¯̀,
and z = u− `.
2

Note that the models (C) and (V) are not so much different as they appear to
be at first sight. In fact, it is always possible to transform parameters γ and
h unequivocally into parameters ` and u and vice versa:

• from (C) to (V): ` = γh , u = 1− γh̄ ,

• from (V) to (C): γ = 1− (u− `) , h = `
1−(u−`)

.

Hence the (V) model can be simulated by the (C) model (and vice versa). To
avoid redundancies and to keep things simple, we will restrict the following
discussion to the (C) model.

A pleasant property of the (C) model is the possibility to vary the strength
of the prior knowledge continuously between 0 and 1 with the parameter γ.
The situation where no prior knowledge is available is represented by γ = 0
and it implies x = y = z = 1. On the other hand, if we consider a situation
where a precise prior probability h = Pr(Hyp) is available, we have γ = 1 and
therefore x = h, y = h̄, and z = 0. This leads to the reduction of (10) and
(11) to (12).
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4 Case Studies

The purpose of this section is to examine certain models of partially reliable
sources more closely. A good candidate for a further analysis is the indicator
model (D). As demonstrated earlier, (D) is the most general complete model of
Fig. 3. Even more general is the (PD) model. Because of the practical difficulty
to specify all of its three parameters, we prefer to analyze the (PR) rather than
the (PD) model. Another reason for this is the fact that the (PR) model makes
a direct connection to one of the introductory examples in Section 1. For the
same reason, we will also take a close look at the models (L) and (YR). Because
of its simplicity, another interesting model is (PI).

In combination with the (C) model for prior knowledge, we will talk about the
(CPI), (CL), (CD), (CPR), or (CYR) model, respectively. The corresponding
expressions for degree of support and degree of possibility are obtained by
substituting the parameters in (10) and (11) by the respective values of Theo-
rem 2 and 3. Note that the general case of 0 < γ < 1 does not allow significant
simplifications. Our discussion will thus focus on the two extreme cases γ = 0
and γ = 1, which means that we can also derive the results from (12), (13),
and (14).

We will use δ = n −m to denote the margin between positive and negative
reports and N = n + m for the total number of reports. In many practical
applications one would expect the results to depend on both δ and N . For
example, 10 positive and 0 negative reports seem to be a different situation
than 1010 positive and 1000 negative reports [2,7]. We will see that some
models give the same degrees of support and possibility for both situations.

4.1 The Model (CPI)

Consider the (PI) model in which the outcome of REP only depends on REL.
For γ = 0 (no prior knowledge), we can transform (13) and (14) into

dsp(Hyp) =
1− ρ̄n

1 + ρ̄δ − ρ̄n
, (15)

dps(Hyp) =
1

1 + ρ̄δ − ρ̄n
. (16)

This seems to be a reasonable result, because for ρ > 0 both dsp(Hyp) and
dps(Hyp) converge towards 1 for n → ∞ (and m fixed) and towards 0 for
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m →∞ (and n fixed). Note that this is true for any ρ > 0. Furthermore, the
results depend on both δ and N . If δ is fixed, ρ > 0, and N →∞, then

dsp(Hyp) = dps(Hyp) =
1

1 + ρ̄δ
. (17)

Now look at the case γ = 1 where a prior probability h = Pr(Hyp) is given.
This allows the derivation

dsp(Hyp) = dps(Hyp) =
h

h + h̄ρ̄δ
(18)

from (12). This result converges again towards 1 and 0 for n → ∞ (and m
fixed) and m →∞ (and n fixed), respectively. Note that (18) is only a function
of h, ρ, and δ, but not of N .

4.2 The Model (CL)

Consider the (L) model that distinguishes between truth telling and lying. As
a consequence z1 = z2 = 0, we get dsp(Hyp) = dps(Hyp) independently of γ.
If prior knowledge is not available, i.e. if γ = 0, it follows from (13) and (14)
that

dsp(Hyp) = dps(Hyp) =
1

1 + (r̄/r)δ
. (19)

For m = 0, this result includes Laplace’s formula (3) as a special case. Note
that r = 1

2
implies dsp(Hyp) = dps(Hyp) = 1

2
. Otherwise, if there are infinitely

many positive reports, i.e. for n →∞ (and m fixed), we get

dsp(Hyp) = dps(Hyp) =

 1, if r > 1
2
,

0, if r < 1
2
.

(20)

On the other hand, if there are infinitely many negative reports, i.e. for m →∞
(and n fixed), we obtain

dsp(Hyp) = dps(Hyp) =

 0, if r > 1
2
,

1, if r < 1
2
.

(21)

28



Note that (20) and (21) is essentially the Condorcet Jury Theorem discussed
in social choice theory [4–7]. The problem with (19), (20), and (21) is that the
results only depend on r and δ, but not on N (see [7] for a profound discussion
on this).

Now consider the case of γ = 1 with a given prior probability h = Pr(Hyp).
This allows the transformation of (12) into

dsp(Hyp) = dps(Hyp) =
h

h + h̄ (r̄/r)δ . (22)

This result is similar to the one given in (19) and demonstrates the impact of
the prior probability h. The formula corresponds to the one given by Boole
[8]. The parameters on which (22) depends are h, r, and δ, but not N .

4.3 The Model (CD)

Recall that (D) is a generalization of (L). The idea of distinguishing between
between two parameters p and q is the same as in the first introductory model
in Section 1. If there is no prior knowledge, i.e. if γ = 0, we can transform
(13) and (14) into

dsp(Hyp) =
1− qn q̄m

1 + (p/q)n(p̄/q̄)m − qn q̄m
, (23)

dps(Hyp) =
1

1 + (p/q)n(p̄/q̄)m − qn q̄m
. (24)

Consider the general case in which both p and q are strictly between 0 and 1.
First, consider the special case of p = q. This allows to write (23) as

dsp(Hyp) =
1− qn q̄m

2− qn q̄m
= 1− dps(Hyp) . (25)

So both dsp(Hyp) and dps(Hyp) convere towards 1
2

for both n → ∞ (and m
fixed) or m → ∞ (and m fixed). This means that an information source of
this kind is valueless.

Second, let p be different from q. Then n →∞ and a fixed m implies
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dsp(Hyp) = dps(Hyp) =

 1, if p > q ,

0, if p < q .
(26)

Similarly, the case of m →∞ and a fixed n implies

dsp(Hyp) = dps(Hyp) =

 0, if p > q ,

1, if p < q .
(27)

Thus, if the (PI) model is used to describe medical tests, for example, the
parameter p is expected to exceed q.

Finally, consider the case of γ = 1 and h = Pr(Hyp). By inserting the corre-
sponding parameters into (12), we obtain

dsp(Hyp) = dps(Hyp) =
h

h + h̄ (q/p)n(q̄/p̄)m . (28)

This result reproduces (1) that we obtained in Section 1 with the aid of
Bayesian networks (see [2] for details). We get dsp(Hyp) = dps(Hyp) = h
for p = q, which again means that the information is of no value. If p is dif-
ferent from q and 0 < h < 1, the limits for n →∞ and m →∞ are the same
as in (26) and (27).

4.4 The Model (CPR)

The next model we analyze here is the one that corresponds to the second
introductory example in Section 1. Since ρ = 0 leads to (CR) and ρ = 1 to
(CP), we suppose 0 < ρ < 1 throughout the discussion. We start again with
the case of no prior knowledge represented by γ = 0. This allows us to write
(13) and (14) as

dsp(Hyp) =
1−

(
ρ̄r

1−ρ̄ r̄

)n

1 +
(

ρ̄r
1−ρ̄ r̄

)n [(
1−ρ̄r

ρ̄ r̄

)m
− 1

] , (29)

dps(Hyp) =
1

1 +
(

ρ̄r
1−ρ̄ r̄

)n [(
1−ρ̄r

ρ̄ r̄

)m
− 1

] , (30)
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respectively. Furthermore, we obtain dsp(Hyp) = dps(Hyp) = 1 for n → ∞
and dsp(Hyp) = dps(Hyp) = 0 for m →∞. Finally, if δ is fixed and N →∞,
then the result converges to

dsp(Hyp) = dps(Hyp) =


1, if r > 1

2
,

1

1+( 1−ρ
1+ρ)

δ , if r = 1
2
,

0, if r < 1
2
.

(31)

Now consider the case of γ = 1 and h = Pr(Hyp). We can then derive

dsp(Hyp) = dps(Hyp) =
h

h + h̄
(

ρ̄r
1−ρ̄ r̄

)n(1−ρ̄r
ρ̄ r̄

)m (32)

from (12). This formula corresponds to the one obtained in Section 1 with the
aid of a Bayesian network. Provided that 0 < h < 1, as one would expect,
both dsp(Hyp) and dps(Hyp) converge towards 1 for n → ∞ (and m fixed)
and towards 0 for m →∞ (and n fixed). If δ is fixed, then N →∞ lets (32)
converge to

dsp(Hyp) = dps(Hyp) =


1, if r > 1

2
,

h

h+h̄( 1−ρ
1+ρ)

δ , if r = 1
2
,

0, if r < 1
2
.

(33)

Note that this result depends on ρ and δ only if r = 1
2
.

4.5 The Model (CYR)

To conclude this section, let us take a closer look at the (CYR) model. It has
an interesting property, namely that a single negative report is enough to set
both dsp(Hyp) and dps(Hyp) to 0. For γ = 0, that is if no prior information
is available, the general result for n positive and m negative reports is as
follows: 5

5 To derive (34) and (35) from (13) and (14), respectively, we assume 00 = 1 to
be true. Note that this is not a fundamental mathematical truth, but a definition
accepted by most mathematicians and often used to simplify formulas [23].
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dsp(Hyp) =

 1− rn, if m = 0,

0, if m ≥ 1 ,
(34)

dps(Hyp) =

 1, if m = 0 ,

0, if m ≥ 1 ,
(35)

As long as there are only positive reports, that is for m = 0 and thus N = n,
the above result for dsp(Hyp) corresponds to formula (4) of the last introduc-
tory example. It describes thus the output reliability delivered by a proba-
bilistic algorithm after N successful runs. For r > 0 and N →∞, it converges
towards 1.

In the case of γ = 1 with a given prior distribution h = Pr(Hyp), we can
simplify (12) into

dsp(Hyp) = dps(Hyp) =


h

h+h̄rn , if m = 0 ,

0, if m ≥ 1 .
(36)

Again, as long as there are only positive reports, this result converges towards
1. On the other hand, a single negative report is sufficient to set both dsp(Hyp)
and dps(Hyp) to 0.

5 Conclusion

This paper approaches the problem of independent and partially reliable infor-
mation sources from a very general perspective by using the theory of prob-
abilistic argumentation as modeling framework and Dempster-Shafer’s the-
ory of evidence as the underlying mathematical mechanisms. The result is a
generic model with a number of possible instantiations. The paper illuminates
the relationship between the various instantiations and analyses correspond-
ing conclusions. It also discusses the role of prior knowledge and proposes a
model in which the influence of a given prior probability is controlled by a
continuous parameter γ.

There are a number of open questions. One of them concerns the problem of
choosing the “right” model. We do not exclude the possibility of arguing in
favor or against certain models, but we can’t and we don’t want to give a
definite answer here. In our view, the choice of the model crucially depends on
the specific application at hand and the nature of the available information.
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In this sense, we think that all models are legitimate. We plan to study some
applications in future work.

Another open question is the treatment of dependencies. Relaxing the assump-
tion of independent sources would certainly make the analysis more compli-
cated, but it would also allow us to model a broader class of cases. This
important topic is also postponed to future publications.
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