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1. Introduction. Attempts to utilize the probability calculus to prove or
disprove various inductive or inductive skeptical theses are, I believe,
highly problematic. Inductivism and inductive skepticism are substan-
tive (logically consistent) philosophical positions that do not allow of
merely formal proofs or disproofs. Often the problems with particular
alleged formal proofs of inductive or inductive sceptical theses turn on
subtle technical considerations. In the following I highlight such con-
siderations in pointing out the flaws of two proofs, one an alleged proof
of an inductive sceptical conclusion due to Karl Popper, the other an
alleged proof of an inductivist thesis originally due to Harold Jeffreys
and later advocated by John Earman. Surprisingly, in examining Pop-
per’s argument it is shown that certain apparently weak premises, often
embraced by both inductivists and deductivists, lend themselves to in-
ductive conclusions. However it is argued that those premises are still
philosophically substantive and not amenable to a purely formal dem-
onstration. The lesson to be learnt here is twofold. First, we need to
be very careful in determining which formal theses entail, and which
are entailed by, inductive skepticism and inductivism. Second, we need
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to take great care in laying out and examining the assumptions pre-
sumed in formal arguments directed for and against such formal theses.
In a follow up article I will consider various attempts by David Stove
and Karl Popper and David Miller to identify the exact content of
inductive skepticism and propose a new identification based on the
theory of content developed in Gemes 1994. Finally I will compare this
new version with that proposed recently in Alberto Mura 1990.

2. Popper’s Proof of the 0 Probability of Law Statements. Notoriously,
Popper argues that every (non-tautologous) law-like universal gener-
alization (hereafter LUG) has a prior probability of 0.! From this claim
it follows that there can be no inductive confirmation, or, at least,
probabilistic support, for LUGs, for it follows from the Probability
Calculus that where a statement h has a prior probability of 0, for any
evidence e, the posterior probability of h on e is 0.2 Popper produces
a strictly a priori argument for that claim that LUGs have O prior
probability. Here are the nuts and bolts of Popper’s formal argument.
Let L be any LUG and let E,, E,, . . ., be distinct instances of L.3
Now since for any ieN, L + E, P(L) = lim P(E, & E, & .. . &E)).

Assume The Principle of Independence of Instances of LUGs (here-
after, Instantial Independence), that is, that distinct instances ofa LUG
are probabilistically independent, that is, for any n, P(E, & E, & . . &
E) = P(E) X P(E,) X .. X P(E,). Then, further assuming The Prin-
ciple of Regularity for Instances of LUGs (hereafter, Instantial Regu-
larity), that is, that the instances of a LUG have a prior probability of
less than 1, in particular, for any ieN, P(E;,) < 1, and The Principle of
the Simple Exchangeability of Instances of LUGs (hereafter, Simple Ex-
changeability of Instances), that is, for any 1, jeN, P(E) = P(E), it
follows that

1. A classic statement of Popper’s argument occurs in Appendix *vii of Popper 1972.
In fact, while in the following we talk of law-like universal generalizations, this is in
deference to Popper’s talk of law statements. No substantive position about the nature
of laws need be here assumed. Talk of law-like universal generalizations could be re-
placed by talk of non-tautologous, non-contradictory universal statements without any
effect on subsequent arguments.

2. Where the probability of e is itself 0 the posterior probability of h on e is 0 or
undefined.

3. E,, E,, etc., are instances in the logician’s sense. That is, where L is a universal
generalization (without vacuous quantifiers), an instance results from eliminating the
outer most quantifier of L and uniformly replacing occurrences of the variable bound
by that quantifier with an individual constant.
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lim P(E, &. .& E,) = lim P(E,))» = 0.43
n—o n—oo

Therefore P(L) = 0. And since for any statement S, P(S) = 0, P(L) = 0.
Let us call this the ““0 Probability of LUGs Argument.”

3. A Problem for the Principle of Instantial Irrelevance. Typically in-
ductivists have attacked Popper’s assumption that distinct instances are
probabilistically independent. In particular, they claim that Instantial
Independence begs the question against inductivism. In fact, it is ar-
gued in Gemes (1989) that Instantial Independence itself conflicts with
other tenets of Popperian philosophy. In other words, one does not
have to be an inductivist to reject Instantial Independence. Here is a
generalized version of that argument. Instantial Independence entails

P(aa,/aa,) = P(aa,), €))

where [aa, | and [aa,] are distinct instances of the LUG [ (x)(ax) |.
Note, for our purpose a may well be a conditional predicate of the
form ‘if x has property P then x has property Q’. Now clearly any
Popperian inductive sceptic will endorse the claim

P(aa/(a, # 2,)& aa,) = P(aa,). Q)

By substituting ‘((a, = a,)&aa,)V((a, # a,)&aa,))’ for the first occur-
rence of its logical equivalent ‘aa,” in (1) we get,

P(((a; = a,)&oa,)V((a, # a,)&aa,)/aa,) = P(aa,). (€)

By the standard disjunction principle for mutually exclusive dis-

4. Note, Simple Exchangeability for Instances of LUGS is not equivalent to (full) Ex-
changeability, as introduced by De Finetti. For more on this see Section 6, below.

5. Popper does not in fact explicitly make the assumption of Simple Exchangeability
of Instances of LUGs. Strictly speaking, neither this assumption nor even Regularity
is needed for the proof. What is needed is some set of assumptions which entails

(A) For any LUG L, where {E,, E,, . . .} is the set of the infinite distinct instances of
L, there is some subset S of infinite cardinality of {E,, E,, . . .} and some number r
such that r < 1 and for any E,, if E;&S then, P(E)) = r.

In fact, Popper’s presentation of the proof in his 1972 makes no assumption ruling out
the possibility that as n increases P(E,) approaches 1. Simply replacing Simple Ex-
changeability for Instances of LUGs with the claim that as n increases P(E,) approaches
1 would render the argument for the 0 probability of Laws invalid. However that claim
is so far-fetched it would be fairly uncharitable to fault Popper for ignoring it. Note,
replacing the assumptions of Simple Exchangeability of Instances of LUGs and Reg-
ularity with (A) itself would complicate the details but not the end results of the various
arguments below.
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juncts—where p and q are mutually exclusive, P(pvg/r) = P(p/r) +
P(q/r)—we get from (3),

P((a, = ay)&aa,/aa,) + P((a, # a,)&aa,/aa,) = P(aa,)). 4

By the standard conjunction principle—P(p&q/r) = P(p/r) X
P(g/p&r)—we get from (4),

P(a, = a,Jaa,) X P(aa/(a, = a,)&aa,) + P(a,
# a,Jaa,) X P(aa/(a, # ay)&aa,) = P(aa;). (5)

Now since (a, = a,)&aa, + aa,, P(aa,/(a, = a,)&axa,) = 1. So from
(5) we get,

P(a, = a,Jaa,) X 1 + P(a, # a,/aa,) X P(aa,/(a, # a,)&aa,)
= P(aa,). (6)

Substituting by (2) for the bold-faced expression in (6), we get
P(a, = a,/aa,) + P(a, # a,)/aa,) X P(aa,) = P(aa,). @)
Dividing throughout (7) by P(aa,) we get
P(a, = a,/aa,)/P(aa,) + P(a, # ay)/laa,) = 1. ®)

Now as an instance of the standard negation principle—P(p/q) +
P(~p/q) = 1—we have

P(a, = a,/aa,) + P(a, # a/aa,) = 1. )
From (8) and (9) it follows that
P(a, = a,/aa,)/P(ea,) = P(a, = a,/aa,). (10)

From (10), dividing through by P(a, = a,/aa,), assuming
P(a; = a,/aa,) # 0, we get

P(aa,) = 1. (11

Let us call the above argument, for reasons soon to become appar-
ent, The Popperian Argument against Instantial Regularity, Identity,
or Instantial Independence, for short, PARII. Now the conclusion of
PARII, namely P(xa,) = 1, is not consistent with The Principle of
Instantial Regularity used in the 0 Probability of LUGs Argument
above. To avoid that conclusion one must deny one of the premises or
assumptions of the argument. Clearly the option of denying the induc-
tive sceptical thesis (2), P(xa,/(a;, # a,)&cxa,) = P(aa,), is not open to
Popperians. On the other hand to deny (1), P(aa,/aa,) = P(aa,), is to
deny the Principle of Instantial Independence which is crucial to the 0
Probability of LUGS Argument. To avoid this problem a Popperian
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might deny the assumption P(a, = a,/aa,) # 0 used in PARIIL. Without
the claim that P(a, = a,/aa,) # 0 the move from (10) to (11) would be
invalid. Indeed Miller (1990), replying to Gemes (1989), claimed that
Popperians are committed to the claim that P(a, = a,) = 0 and hence,
a fortiori, to its consequence P(a, = a,/aa,) = 0.¢ The claim that P(a,
= a,) = 0 need not be a gratuitous piece of dogmatism but rather
simply reflect a somewhat parochial insistence that the language we are
working in uses uniquely designating individual constants. The prob-
lem with this reply is that it does not sit well with The Principle of
Instantial Regularity of the 0 Probability of LUGs Argument. Let us
consider why.

4. A Popperian Argument for A Priori Infinite Populations. For the 0
Probability of LUGS Argument to work there must be an infinite num-
ber of distinct instances E,, E,, etc., for any arbitrary LUG L. So there
must be an infinite number of individual constants in the language in
which L and its instances are expressed. Now typically a LUG will be
(logically equivalent to) a universal conditional of the form [(x)(ox =
¢x) 1, where both ¢ and ¢ are non-contradictory, non-tautologous
predicates. Now suppose we allow that there may only be a finite num-
bers of os. Then, given the Popperian assumptions that there are an
infinite number of uniquely naming constants c,, ¢,, etc, that instances
are probabilistically independent and exchangeable, it follows that the
prior probability that any arbitrary constant c,, ieN, names a ¢ will be
0. In other words, given that there may only be a finite number of os,
from the Popperian assumptions mentioned above, it follows that
P(oc;) = 0 and hence P(~oc;) = 1. Further, under those assumptions,
and since ~o¢; | oc, = g, it follows that P(cc, = ¢c;) = 1. But this
conclusion contradicts The Principle of Instantial Regularity of Pop-
per’s 0 Probability of LUGs Argument. The assumption, that all in-
stances of a generic LUG [ (x)(c = ¢x) | have a prior probability less
than 1 is only acceptable, given Popper’s other assumptions, if we a
priori accept that there are infinitely many os. Note, it will not do
simply to assume that our domain of quantification contains an infinite
number of individuals be they in Popper’s words “infinite with respect
to the number of distinguishable things, or of spatio-temporal regions”
(Popper 1972, 363). What Popper needs for his argument to go through
for all LUGs of the form [ (x)(cx — ¢x) 1 is the assumption that there
is an infinite number of cs. Where the domain of quantification is in-
finite but we allow there may only be a finite number of ¢’s in that

6. A slight and irrelevant change of notation from that of Gemes 1989 and Miller 1990
is used here.
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domain then, where our language contains an infinite number of
uniquely designating exchangeable individual constants and instantial
independence holds, the probability that arbitrary individual constant
¢; names a ¢ will be 0.

It is not being claimed here that the consequence of The Principle
of Instantial Regularity that for any LUG [(x)(cx — ¢x)] and any
individual constant ¢;, P(oc; = ¢c;) < 1 fails if we assume a priori that
there are only finitely many os and that instances are exchangeable and
independent. This latter claim is of no great interest since the a priori
claim that there are finite os is inadmissible. Rather the claim is that
the conjunction of the claims

Uniqueness of Reference: (a,)(a,)(j # k = P(a; = a,) = 0), (12)

Instantial Independence of Antecedents of Conditional LUGS:
For any conditional LUG of the form ‘(x)(cx — ¢x)’, (13)
where a,, . . ., a,, are distinct individual constants,
P(ca, & .. & ca,) = P(oa,) x .. x P(ca,),

Instantial Regularity for Instances of the Antecedents of
Conditional LUGs: Where ‘c; is an instance of the antecedent (14)
of a conditional LUG of the form ‘(x)(cx = $x)’, P(ca;) > 0,

Simple Exchangeability of Antecedents of Conditional LUGs:
Where ¢; and ¢, are individual constants, for any conditional (15)
LUG of the form ‘(x)(cx = ¢x)’, P(c¢) = P(cc,),

entail, given the standard axioms of probability,
The probability that there are an infinite number ofos is 1.7 (16)

To prove this it will suffice the prove that the conjunction of (12) to
(15) above entails

For any (finite) m the probability there are at least mos is 1, (16%)
since (16*) clearly entails (16.)

7. Strictly speaking, one does not need (Partial) Instantial Regularity or Simple Ex-
changeability of Antecedents of LUGs to get this conclusion. (14) and (15) could be
replaced, salva validitate, with the premise

Where {ca,, ca,, . ..} is the set of all the distinct instances of (x)(cx) there is some
subset S of infinite cardinality of {ca,, ca,, . . .} and some number n such that n >
0 and for any E, if E€S then, P(E) = n.

8. Consider the infinite set of statements {“There is at least 1 dog’, “There are at least 2
dogs’, . ..., ‘There are at least n dogs’, . . . .}. Where each member of this set is true
the statement ‘There are an infinite number of dogs’ is also true. So where each member
of this set has a probability of 1, and hence the whole set has a probability of 1, the
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Before providing the proof, it is worth noting that (13) is a conse-
quence of the Popperian Principle of Instantial Independence given
that ‘(x)ox’ itself counts as a LUG. To deny that ‘(x)ox’ counts as a
LUG is to put far too much weight on the notion of what counts as a
LUG (Cf. endnote 1). In any case, a Popperian cannot deny (13) with-
out endorsing the thesis

For some value of n, n = m, P(oa,, ,/oa,& . .. &oc,) # P(ca,, ). Yet
where the Popperian (12) is true this thesis is frankly inductivist and
hence not open to Popperians. (14) is a consequence of the Popperian
Principle of Instantial Regularity. The later entails that for generic con-
ditional LUGs of the form ‘(x)(ox — ¢x)’, P(ca; = ¢a;) < 1. This, in
turn, entails P(~ca;) < 1, and hence, P(ca;) > 0. Finally Simple Ex-
changeability of Instances entails Simple Exchangeability of Antece-
dents of Conditional LUGs given that ‘(x)(ox)’ counts as a LUG. In
any case, to accept Simple Exchangeability of Instances while denying
Simple Exchangeability of Antecedents of Conditional LUGs is simply
too bizarre to warrant serious consideration.

Proof That (12)—(15) Entail (16*)

Assume (12)—(15)

Let m be any arbitrary (finite) number.

Now in a language where by stipulation names name uniquely, that
is where (12) holds, any m lengthed conjunction of distinct atomic wffs
of the form [oc1, where o is a predicate and c is an individual constant,
entails the claim that there are at least m os. For instance ‘ca,;&oca,’
entails ‘There exist at least 2 6°s’. Similarly, any n-lengthed disjunction
of such m lengthed conjunctions entails that there are at least m os.
For instance, ‘((ca,&oca,)v(ca,&ca,))’ entails “There are at least 2 os’.
So the probability of any n-lengthed disjunction of such m-lengthed
conjunctions must be less than or equal to the probability of the claim
‘There are at least m 6s°.°

We now show that

Lim P((ca, & .. & ca,)v .. v(ca, . & .. &oca,,) = L.
For notational convenience let ‘c,,’ abbreviate the claim ‘(ca, & .. &
ca,)’, ‘c,, abbreviate the claim ‘(c,, & . . & 0a,,,)’, etc. Let P(c,,) =

statement ‘There are an infinite number of dogs’ has a probability 1.

9. The crucial point here is that where P(ca,&ca,) = r and, P(a, = a,) = 0, hence P(a,
# a,) = 1, PAx)Ty)(ox&oy&(x # y)) = r, since (ca,&ca,) & (a, # a,) +
@Fx)y)(ox&oy&(x # y)). By the same token, where P((ca, & . . & ca,) v. . v(0ag,_ 4,
& .. &oca,,) = s and (a)(a)(j # k = P(a; = a,) = 0) it follows that P(There are at
least m os) = s.
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b. Then, given (13) and (15), it follows that P(c,) = (0y,) = ... =
(Cum) = b.

NOW, P(Gm v GZm) = P(Gm) + P(GZm) - P(O_m & G(sz)
=b+ b — P(s,) X P(Gy/5,)

=b + b — P(c,) X P(oy,) [by (13)]
=2b — (b X b)

=2b — b?

=1-(1 - by

More generally for any n, where n > 0,
Pc,v..vo,,)=1—-(1 — b

This we show by induction.
Basis Step:
P(c,) =D
1-(1-Db'=Db

Therefore wheren = 1,
P(c,v..vo,,) =1— (1 — b
Inductive Step:

Assume: P(c,v..vo,,) =1 — (1 — b
To Prove: P(6,, V.. VGOg,pn) = 1 — (1 — b+l
P(G,V..VGOuipm) = P(6, V.. V0,V Cuinm)
Plc,v..vo, + P(Ouinm —
P((6, V.. V 6,)&(0 1 1ym))
l1-1-Dbr+0b-
[P(6,V..VO,) X P(Cyy1m/OnV - . VOl
I =0 =Dbr+b-[1-(1~=Db)) X POu.lby 13)°
I1-0—-Dbr+b—-J1—-(1-D>br XDb]
1 -1 -=Dbr+Db—-1[b—Db(1l~— Dby
1
1

I

I

—(1=byr+b-b+bd - Dby
— (1 = by + bl — by

1+ b(l — by — (1 — by

~ (1 -b){d - by

___(1__.b)n+1

I T T I

10. The proof of claim that (13) entails that P(G, 1)/Cn V . . V Gpp) = P(G(41ym) T leave
as an exercise to the reader. Hint: Consider the claim P(ca,/ca, v 0a,) = P(ca;). Now
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Therefore Lim P(c,,v..vo,,) = Lim1 — (1 — b)~.
Now from (13), (14) and (15) if follows that 0 < b = 1,' so
Lml - (1 - by =1

Therefore Lim P(c,,v...vo,,) =1

5. Popper’s Dilemma. To make the argument for the claim that the
prior probability of any LUG is 0 Popper needs to assume Instantial
Independence, Instantial Regularity and Simple Exchangeability of In-
stances. Instantial Independence prima facie entails the Instantial In-
dependence of Antecedents of Conditional LUGS, that is, (13) above.
At any rate we saw above that Popperians are in no position to deny
(13) without lapsing into inductivism. Instantial Regularity entails In-
stantial Regularity for Instances of the Antecedents of Conditional
LUGs, that is, (14) above. Simple Exchangeability of Instances entails
Simple Exchangeability of Instances of Antecedents, thatis, (15) above,
or at least is unacceptable without it. The PARII argument above dem-
onstrates that a commitment to Instantial Independence can only avoid
inductivism at the price of rejecting Instantial Regularity or accepting
the Uniqueness of Reference claim, (12) above. Popper notoriously
rejects all forms of inductivism. So, given his acceptance of Instantial
Regularity, his only remaining option is that, favored by Miller, of
accepting (12). But, as demonstrated above, this combination of claims,
(12), (13), (14) and (15) saddles him with an inadmissible a priori com-
mitment to the claim that there are infinitely many os, where o is any
predicate capable of serving as the antecedent term of a simple con-
ditional LUG.

In other words, Popper’s 0 Probability of LUGs Argument thus
faces the following dilemma: (i) if we allow that in the relevant language
individual constants may name non-uniquely, the combination of In-
stantial Independence and Instantial Regularity is tenable only at the

P(caj/oa, v ca,) = [P(ca;) X P(oa, v ca,/ca;)] +~ P(ca, v oa,) = [P(ca,) X (P(ca,/
ca,) + P(oca,/oa;) — P(ca,&oa,/ca,))] +~ P(oa, v oa,). Now given (13), P(ca,/ca;) =
P(ca,), P(ca,/ca;) = P(ca,) and P(ca,&oca,/ca;) = P(ca,&oca,). So, given (13), P(ca,/
ca, v oa,) = [P(oca,) X (P(ca,) + P(oa,) — P(ca,&oca,))] ~ P(ca, v oa,) = [P(ca,) X
(P(oa, v 0a,))] + P(ca, v oa,) = P(ca,).

11. By stipulation, b = P(ca, & .. & ca,,). From the axioms of probability it follows
that P(ca, & . . & oa,,) = 1. So we merely need prove that P(ca, & . . & oa_) > 0. Now
(13) entails that P(ca, & .. & ca,) = P(ca,) x . . x P(ca,). (15) entails that P(ca,) =
P(ca,) = .. P(ca,). So P(ca, x . . x 0a,;) = P(ca,)™. Now (14) entails that P(ca,) > 0,
hence, since by stipulation m is a finite number, P(ca,)™ > 0.
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price of inductivism;'? (ii) if we insist that in the relevant language the
individual constants name uniquely, the consequence of Instantial Reg-
ularity that every instance of the generic LUG [(x)(cx — ¢x)1 has a
probability less than unity combined with Simple Exchangeability of
Instances and Instantial Independence is a priori acceptable only if we
assign a priori a probability of 1 to the claim that there are infinitely
many os.

The main upshot of this is that, even granting all Popper’s claims
about independence of individuals and instances, we are not compelled
to accept that LUGs such as ‘All ravens are black’ and ‘All electrons
repel each other’ have an a prior probability of 0 save we accept a
priori that there are an infinite number of ravens and electrons. Such
assumptions are presumably indefensible a priori, as they are a pos-
teriori, to both inductivists and deductivists alike.

Deductivists who eschew such a priori assumptions about population
sizes may react here by simply rejecting the Popperian claim that LUGs
have a prior probability of 0. Popperians, on the other hand, cannot take
such a simple route. At least, in as much as they, following Popper, are
committed to Simple Exchangeability of Instances, Instantial Regular-
ity, Instantial Independence, and the Uniqueness of Reference of indi-
vidual constants, they are committed to the implausible claim that for
any predicate ¢ capable of serving as the antecedent of a LUG [(x)(cx
— ¢x)1there is probability of 1 that there are infinitely many os.

6. Simple Exchangeability and Induction. Perhaps some enthusiastic
readers will think that there is a proof of induction in all this. Thus
they may reason: Given the total unacceptability of the infinite popu-
lations thesis and the trivial thesis of the uniqueness of reference (a
matter of selecting an appropriate language) all we need to get induc-
tion (where names name uniquely Instantial Dependence is a form of
inductivism; for more on this see Section 8 below) is the presumably
uncontroversial principles of Instantial Regularity and Simple Ex-
changeability of Instances. The reasoning here is that since we have
seen that (12)—(15) entail the unacceptable (16) and (12), (14) and (15)
are beyond reproach the only viable option is to reject (13), and hence
to reject Instantial Independence. If we were to raise questions about

12. More particularly, as demonstrated by PARII, the combination of P(aa, = «a,/
aa,) # 0, P(aa,/aa,) = P(aa,), and P(aa,) < 1 is inconsistent with the inductive sceptical
thesis P(aa,/(a, # a,) & aa,) = P(aa,). Note, this only temporarily leaves open the
possibility that the Popperian might not actually endorse P(a, = a,) = 0 but only claim
that P(a, = a,/aa,) = 0. For, by a similar argument, basically substituting ‘~aa,” for
‘aa,” and ‘~aa,’ for ‘aa,’ throughout PARII, the Popperian will be forced to endorse
P(a, = a/~aa,) = 0. This together with P(a, = a,/aa,) = 0 entails P(a, = a,) = 0.
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(15), that is, Simple Exchangeability of Antecedents of Instances, they
may take courage from the fact that this type of Exchangeability is
prima facie far less problematic than De Finetti’s Full Exchangeabil-
ity.”? Very true. For instance, Full Exchangeability, that is, the claim
that for any statements S and S’ where S’ is solely the result of a
permutation of some of the individual constants of S, (P(S) = P(S’),
commits one to the claim

P(ca,,/oa,&~0ca,&ca,&~0ca,&ca.&~ca,&ca,&~ca,
&ca,&~0ca,,) = P(oa,,/oa,&~0ca,&ca,&~ca,&oa; 17
&~oca&oa,&~ca,&ca,&~0a,).

Now one might reject (17) on the grounds that one takes the evidence
statement ‘(ca,&~oca,&ca,&~0ca,&ca;&~ca,&oa,&~ca&ca,&
~0a,,) as giving some grounds for believing that all individual con-
stants with odd numbered subscripts name os and all individual con-
stants with even numbered subscripts name non os. In contrast, the
Simple Exchangeability of Antecedents of Instances does not commit
one to (17). Still, even granting that Full Exchangeability is more con-
troversial than Simple Exchangeability of Antecedents of Instances, 1
strongly urge the reader to reconsider the claim that Simple Exchange-
ability of Antecedents of Instances is itself totally uncontroversial. Or,
rather, I urge the reader to carefully consider to what extent Simple
Exchangeability of Antecedents of Instances is less controversial than
induction itself.

To pinpoint what is, perhaps, questionable about the Simple Ex-
changeability of Antecedents of Instances it will help to focus on the
following principle;

The Principle of Simple Exchangeability: For any constants a; and
ay, P(Otaj) = p(aa,).

Clearly this Simple Exchangeability is not something we should en-
dorse for any predicate whatsoever. For instance, suppose the language
L includes the primitive predicates ‘M’, and ‘S’ where ‘M’ and ‘S’ re-
spectively have the sense of the English predicates ‘is metal’ and ‘is
silver’. Further suppose L contains the defined predicate ‘H’ introduced
as follows;

Hx = 4 (x = 2,&Mx&Sx) v (x # a,&MXx).

13. De Finetti did not actually endorse Full Exchangeability. Rather he demonstrated
some of the fascinating consequences of acceptance of this and other notions of Ex-
changeability. Cf., for instance, “Foresight: Its Logical Laws, Its Subjective Sources”,
in Kyburg Jr. and Smokler 1964.
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In this case accepting Uniqueness of Reference and Simple Exchange-
ability applied to ‘H’ would commit us to the prima facie unacceptable
claim P(Sa,/Ma,) = 1.

Rather than adopting Simple Exchangeability simpliciter we should
at most accept Simple Exchangeability on a predicate by predicate ba-
sis. As a matter of fact, I think we do generally take the basic predicates
of our preferred languages to obey Simple Exchangeability. To a cer-
tain extent, obeying Simple Exchangeability is indeed a sine qua non
for being a bona fide basic predicate.!* From the above we know that
that is tantamount to saying that being a predicate suitable for induc-
tion is a sine qua non for being a bona fide basic predicate. However
the claim that genuine basic predicates obey Simple Exchangeability is
one that needs substantive philosophical justification and is not sus-
ceptible of a merely formal proof.

It has long been known that (full) Exchangeability combined with
Regularity rules out Instantial Independence.'* However that kind of
Exchangeability is not without its critics. Above we have seen that the
much weaker notion of Simple Exchangeability of Antecedents of In-
stances does not sit well with Instantial Independence for a language
whose individual constants name uniquely. That, I believe, is as close
to a merely formal proof of induction that we will get.

7. The Earman-Jeffreys Proof that the Positive Probability of LUGs
entails Inductivism. It is important to note the limits of the argument
of Section 3-5 above. It is not an argument for the conclusion that all
or some LUGs must have a prior probability greater than 0. Rather,
I claim to show that Popper’s a priori argument for the claim that all
LUGs have a probability of 0 is flawed. How does this relate to the
question of inductive skepticism? In fact both a hardcore inductivist
and hardcore inductive sceptic are free to accept or reject the claim that
LUGs have 0 probability. For instance an inductivist while assigning
a 0 probability to the claim ‘(x)(Rx — Bx)—say, the claim that all
ravens are black—might still claim that ‘Ra,&Ba,&a, # a,’ is favorably
relevant to ‘Ra, — Ba,’; this is indeed the position taken in Carnap 1962.
On the other hand, an inductive sceptic might assign a probability
greater than 0 to ‘(x)(Rx— Bx)’ while claiming, among other things, that,
for instance, ‘Ra,&Ba,&a, # a,’ is irrelevant to ‘Ra, — Ba,’.

14. One might further claim that obeying Simple Exchangeability is a sine qua non for
being a predicate capable of figuring in genuine law statements.

15. See, for instance, Jurgen Humburg’s “The Principle of Instantial Relevance” and
Haim Gaifman’s “Applications of De Finetti’s Theorem to Inductive Logic”. Both
appear in Carnap and Jeffrey 1971.
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John Earman (1985), following Harold Jeffreys (1957), has ad-
vanced an interesting argument for the conclusion that, contra the
claim above, the rejection of the claim that LUGs have 0 probability
entails a form of inductivism.!¢ Here is a version of the Earman-Jeffreys
argument.

Consider the universal generalization ‘(x)(ax)’ and its instances,
‘aa,’, ‘aa,” etc. Note, for our purpose a may well be a conditional
predicate of the form ‘if x has property P then x has property Q’. Now
for any neN,

P((x)(ax)/(aa, & .. & aa, ;)
_ P(()(ex))
P(aa,)) x .. x P(aa,, /(ca, & .. & aa,))’
Now if P((x)(ax)) > 0 then as n increases the denominator of the right
hand side of (18) will eventually become smaller than the numerator

yielding, contra the axioms of probability, a total value greater than 1,
unless

(18)

lim P(aa,, /(ca, & . . & aa,)) = 1. (19)

Where (19) is true Earman says ‘(x)(ax)’ is “weakly projectible in the
future moving instance sense’ (1985, 522). For Earman (19) is a type
of instance induction.!’

Yet does acceptance of (19) really amount to some form of induc-
tivism? I will soon argue that a deductivist can accept (19) without in
any way compromising his deductivist scruples.

8. A Deductivist Argument For Earman’s Weak Projectibility. Before
commencing with our central argument, it is perhaps worth noting that
a deductivist might accept (19) simply because he rejects the Regularity
Principle (n)P(aa,) < 1. For instance, he might accept the claim, where

16. We take the liberty of assuming that LUGS form a subclass of the set of universal
hypotheses which are the explicit subject of Earman 1985 and Jeffreys 1957. While
Earman and Jeffreys tend to talk of universal hypotheses and Popper tends to talk of
law-statements nothing here hangs on this difference.

17. In Earman 1985 the notion of being “weakly projectible in the future moving in-
stance sense” is presented under the section heading “Instance Induction: Marching
into the Future”. In Earman’s reprise of this material in his excellent 1992, he repeats
(p. 95) the claim that Jeffreys has shown that the assignment of a non-0 prior probability
of universal generalizations ““is a sufficient condition for instance induction” and there
claims that this will be demonstrated later in Section 7 of the same chapter. Yet, inter-
estingly, in that section (pp. 104-113) Jeffreys’ result is glossed as “A Proof of the
sufficiency for weak Projectibility” and all explicit reference to “instance induction”
has been dropped.
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n = 1, P(a,) = 1. Alternatively, he might accept (19) simply because
he rejects the Simple Exchangeability Principle (1)(G)(P(aa;) = P(aay)).
For instance, he might accept the claims, P(aa,) = .9, P(aa,) = .99,
P(P(aa;) = .999 etc. In either of these cases his acceptance of (19)
involves no inductivist commitment on his part. However, both these
deductivist routes to accepting (19) lack credibility. We will now ex-
plore a deductivist rationale for accepting (19) which involves neither
a rejection of Simple Exchangeability or Regularity.

Suppose a committed deductivist accepts the following prima facie
not implausible claims,

For any i, jeN, P(a; = a) > 0 (20)
For any i, j, k, IeN, if i # j and k # 1,
and P(ai = aj) = P(ak = a])a (21)
For any distinct names a,, . ...a,, P(a, = a, &....&a, = a,_))

=P@,=a)x....xP@, =a,_)). (22)
These together entail

Lim P(aa,,, = a,v...va,,, = a,) = 1.18° (23)

n—oo

Where P(e’) = 1, P(h/e) = P(h/e&e’). So given (19), (20), and (21),
Ligl P(ca,, /(ca, & .. & aa,))
= Ii;igl P((aa,, /(ca, & .. & aa,)) 24)
&(,,, =av..va,; =a)) = 1.2

Note, the claim

18. Let S be the infinite set consisting of all statements of the form raj = a,| where i,
jeN and i # j. Then we could obtain (23) from (22) and assumption that for some
infinite sub-set S’ of S, there is some r such that r > 0, and for any s, if s&S’ then P(s)
= r. This assumption is entailed by, but does not entail, the conjunction of (20) and
21).
19. Note, a proof of this can be constructed on the lines of the proof of section 4 above,
yielding the result that, where P(a;, = a,) = band 0 <b =1,

Lim P(a,,, = a,v...va,,, =a)=Liml ~ (1 — by =1.
See the proof of section 4 above and let ‘c,,” abbreviate ‘a,,, = a,’, ‘c,,’ abbreviate
‘a,.; = a,, etc.
20. A referee from this journal claims that (24) does not follow from (20) to (22) unless
one adds the premise

For any n, P(aa,& . . . & aa,) = e for some fixed e > 0. (22a)

As of yet I have not fully understood the referee’s grounds for this claim. What I shall
note here is that the above argument is framed by the supposition that a deductivist
can accept the claim that P((x)ax) > 0 without lapsing into inductivism. But note, where
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Lim P((ca,, /(ca, & .. & va)) & (a,,;, = a,Vv..va,,, = a,)) = L.
n—xe

does not involve the slightest semblance of inductivism since the evi-
dence statement ‘((ea; & .. & aa,) & (@,,; = a;, v..va,,, = a,))
deductively entails the hypotheses ‘aa, ., .

The substantive point here is that a deductivist may allow that as
positive instances accumulate the probability that the next instance is
positive increases. He may do so not because he admits even a whiff
of inductivism but because he allows that as instances pile up the prob-
ability that the individual mentioned in the next case has already been
covered by one of the past cases approaches unity. That is to say, a
deductivist can accept (19), not because he induces from the character
of known individuals to the character a wholly unknown separate in-
dividual, but because as instances pile up he gives an ever greater prob-
ability to the claim that the next instance will involve an individual that
is already included in one of the previous instances. Paradigmatically,
induction involves inferring from observed individuals to unobserved
individuals. This is not the same as inferring from known instances to
distinct instances. Distinct instances need not involve distinct individ-
uals. What makes two instances of a generalization distinct is the fact
that they contain orthographically distinct individual constants. This
leaves open the possibility that these different constants actually refer
to one and the same individual.

Note, it is not being argued here that a deductivist needs to accept
any of (20), (21), or (22). The point is that a deductivist who does so
may accept Earman’s (19) without admitting even a whiff of inductiv-
ism. In other words, mere acceptance of (19) does not in itself commit
one to some form of inductivism, even where one accepts Regularity
and Simple Exchangeability of Instances.?!

To see how a deductivist can allow that as positive instances of a
given universal generalization accumulate the probability that the next
instance is positive rises imagine the following scenario. Two bird spot-

P((x)ax) > 0, for any n, P(x)ax/aa,& . . . & aa,) > 0. But P(x)ax/aa,& . . . & aa,) =
P((x)ax)/P(aa,;& ... & aa,). So where P((x)ax) > 0, P(aa,& ... & aa,) = P((X)ax,
otherwise P((x)ax)/P(aa,& . . . & aa,) > 1 contra the axioms of the probability calculus.
So P((x)ax) is the required fixed e > 0. So if the referee is right we need merely add to
(20)-(22) the premise

P(x)ax >0 (22b)
in order to derive the needed (22a). This renovation still preserves our original claim
that a deductivist can accept (22b) and hence (19) without lapsing into deductivism.
21. Of course, (19), when combined with certain other claims, for instance, the claims
OGXA #5) = Pa; = a) = 0), ()(j)(P(aa;) = P(aa))), and P(aa,) < 1, suffices to commit
one to some form of inductivism.
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ters, Indi and Didi, are trying to determine if all the swans in a partic-
ular locale are white. Before making observations both Indi and Didi
agree that the probability that any given swan is white is r. After ob-
serving many swans all of which are white Indi asks Didi if he agrees
that the probability that the next swan they observe is white is greater
than r. Didi agrees. With a cry of triumph Indi, a confirmed inductivist,
reproaches Didi, a professed deductivist die-hard, “You see Didi you
do have inductivist tendencies despite yourself. On the basis of past
observed white swans you increase the probability you assign to the
claim that the next swan will be white.” To this Didi simple replies,
“No Indi, you are jumping the gun. While I do allow that our obser-
vations of many and only white swans increases the probability that
the next swan will be white, I countenance this increase only because
the more swans we observe the higher the probability that the next
swan we observe is identical to one we have already observed. Indeed,
the more swans we observe the more certain I become that the next
one we observe will be identical to one we have already observed. Now
if we had marked each of the swans we had observed then as we ob-
served more white swans, and assuming there is in fact a next unmarked
swan, I would not have increased the probability I attribute to the claim
the next unmarked swan will be white. That would be to reason from
that which is known to be observed to that which is known to be un-
observed. That would be to assign probabilities inductively. In our
present case I am merely reasoning from that which is known to be
observed to that which has an ever rising probability of being among
the already observed. This involves no element of inductivism.””2?
Can the Earman-Jeffreys argument for instance “‘induction” be fixed
up by assuming, a la Popper, that each constant of the language in ques-
tion names uniquely? Making this assumption would rule out our hy-
pothetical deductivist’s assumption (20) which was part of his wholly
deductivist argument for Earman’s (19). In fact, this kind of attempted
fix-up will fail as long as we allow that there may be only finite individ-
uals of the kind in question. To see this consider the following scenario.
Didi and Indi are examining birds for color. Among other things,
they are particularly wondering if all swans are white. To make sure
they do not count the same swan twice they mark each swan after
examining it. After examining and marking many white swans and no
non-white swans Indi asks Didi if he agrees that as they examine and
mark more and more white swans the probability that for the next thing
they examine if it is an unmarked swan then its white has increased.

22. To avoid irrelevant details we here leave aside all considerations about the possi-
bility of swans changing color over time.
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Didi agrees. Indi cries with triumph “So Didi, you are an inductivist
despite yourself!”” To this Didi calmly rejoins “No Indi, I allow no hint
of inductivism. However I do allow that there might well be only a
finite number of swans in the universe. So as we keep observing distinct
white swans and then mark them I raise the probability that for the
next thing we examine if it is an unmarked swan then it is white simply
because as we examine and mark more and more white swans I con-
tinually raise the probability that we have exhausted the population of
unmarked swans. Assuming we have exhausted the unmarked swans
it follows trivially that if the next thing we examine is an unmarked
swan then it will be white.”?

9. Concluding Remarks. In fact, assuming Instantial Regularity and
Simple Exchangeability, something like the Earman-Jeffreys proof may
be developed to show that providing we assume there are infinitely
many os we cannot accept that a LUG of the form [(x)(cx—dx)1has a
non-zero prior probability without some commitment to inductivism.
This conclusion is an equivalent of our earlier conclusion that, assum-
ing Instantial Regularity and Simple Exchangeability, if we accept that
there are infinitely many os and that instances of LUGS are probabil-
istically independent of each other, then we are committed to the claim
that the LUGS of the form (x)(cx—¢x)1have a probability of 0.
Popper and Earman agree that if one wishes to avoid inductivist
assumptions one must accept the claim that all LUGs have a prior
probability of 0. Popper takes this as good grounds for assigning 0
prior probability to all LUGs. Earman takes this as grounds for being
an inductivist. This seems to be a classic case of one man’s modus
ponens being another man’s modus tolens: If some LUGS have a
non-zero prior probability then some form of inductivism holds; Pop-
per takes the modus tolens option and concludes that all LUGs have a
prior probability of 0; Earman suggests we take the modus ponens op-
tion and conclude that some form of inductivism holds. In fact, we are

23. Note, it is not being claimed that where one takes the population of os to be finite,
increasing the probability of the claim ‘If there is a next ¢ distinct from previously
observed os it will have property ¢’ on the observation of an ¢ that has property ¢ is
never inductive. However if one increases the probability merely because that obser-
vation leads one to increase the probability that there is no next ¢ distinct from pre-
viously observed os then one’s increase need reflect no inductivism. What makes for
inductivism is, for instance, a commitment to raise the probability of ‘If there is a next
o distinct from previously observed os it will have property ¢’ on the evidence ‘Ob-
served o’s have been ¢ and there will be a next o distinct from previously observed os’.
Such a commitment is an inductive commitment irrespective of whether one takes the
population of ¢’s to be finite, infinite, or unknown.
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not forced to make such a choice. One can accept that some LUGs
have a non-zero prior without accepting any inductivist claim. For
instance, one might assign a non-zero prior probability to the claim
that all ravens are black, while admitting no inductivist thesis, simply
because one allows that there might be only a finite numbers of ra-
vens.?*

In beginning this essay, I sounded a warning about attempts to use
the probability calculus to construct merely formal proofs of inductive
or inductive sceptical theses. More charitably, one might view Earman,
Jeffreys, and perhaps even Popper, as trying to use the probability
calculus to show how inductive and inductive sceptical conclusions fol-
low from various other substantive assumptions. In this case I would
still urge caution. We need to be cautious, first, about exactly what
assumptions are needed to get the arguments going and, second, about
exactly which conclusions count as inductive or inductive sceptical con-
clusions.
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24. The claim that there might be only a finite number of ravens does not conflict with
the claim that there are potentially infinitely many ravens. While law-like statements
about ¢’s are true of potentially infinite number of ¢’s this does not entail that there
are in fact infinitely many o’s. If in fact there are only a finite number of electrons in
the universe this would not prevent ‘All electrons repel each other’ being a law state-
ment. A finite world is not ipso facto a lawless world. The conventional requirement
that genuine law-like statements be unrestricted does not guarantee infinite numbers of
any specific kind of entities.





