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Abstract 21 

Non-noxious warmth reduces both perceived pain intensity, and the amplitude of EEG markers 22 

of pain.  However, the spatial properties of thermo-nociceptive interaction, and the level of 23 

sensory processing at which it occurs remain unclear.  Here, we investigated whether inter-24 

channel warmth-pain interactions occur before or after intra-channel spatial summation of 25 

warmth.  Warm stimuli were applied to the fingers of the right hand.  Their number and 26 

location were manipulated in different conditions.  A concomitant noxious test pulse was 27 

delivered to the middle finger using a CO2 laser.  We replicated the classical suppressive effect 28 

of warmth on both pain perceived intensity and EEG markers.  Importantly, inhibition of pain 29 

was not affected by the location and the number of thermal stimuli, even though they increased 30 

the perceived intensity of warmth.  Our results therefore suggest that the inhibitory effect of 31 

warmth on pain is not somatotopically organized.  They also rule out the possibility that 32 

warmth affects nociceptive processing after intra-channel warmth summation. 33 

Keywords 34 

Somatosensory interaction, spatial summation of warmth, pain inhibition, CO2 laser evoked 35 

potentials, conditioned pain modulation 36 

New & Noteworthy  37 

We used spatial summation of warmth as a model to investigate thermo-nociceptive 38 

interactions.  Painful CO2 laser pulses were delivered during different thermal conditions.  We 39 

found that warmth inhibited pain regardless of its location.  Crucially, spatial summation of 40 

multiple warm stimuli did not further inhibit pain.  These findings suggest that warmth-pain 41 

interaction occurs independently or after spatial summation of warmth.  42 
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Introduction 43 

Interactions between nociception, the neural processing of noxious stimuli, and other 44 

somatosensory sub-modalities have received increasing attention in the last decades probably 45 

due to their potential clinical relevance in the treatment and management of pain (Kennedy et 46 

al. 2016).  For example, non-noxious tactile signals have been shown to inhibit the transmission 47 

of nociceptive information – the well-known Tactile Gate Control (Kakigi and Shibasaki 1992; 48 

Krahé et al. 2015; Mancini et al. 2014b; Marchand et al. 1991; Melzack and Wall 1967; 49 

Moayedi and Davis 2013; Watanabe et al. 1999; Zoppi et al. 1991).  50 

Non-noxious warm signals can also modulate nociception:  warm increases the 51 

tolerance for pain (Casey et al. 1993; Plaghki et al. 2010) and reduces the cortical responses 52 

evoked by noxious stimuli (Tran et al. 2008; Truini et al. 2007).  Similarly, both cold (Bini et 53 

al. 1984; Nahra and Plaghki 2005) and noxious signals (Davis 2013; Nir and Yarnitsky 2015; 54 

Yarnitsky 2010; Yarnitsky et al. 2010) have been reported to affect pain perception.  Moreover, 55 

there is overlap between the temperature ranges at which non-noxious warmth receptors and 56 

nociceptors respond (Chéry-Croze 1983; Plaghki et al. 2010; Schepers and Ringkamp 2010).  57 

However, here we focus on the mild warmth intensity range, where non-nociceptive C-warm 58 

fibers are likely to predominate (LaMotte and Campbell 1978; Meyer and Campbell 1981).  59 

Importantly, while the spatial features of touch-pain interactions have been widely investigated, 60 

spatial organization of warmth-pain interactions has received less attention and remains 61 

unclear.  For instance, Bini et al. (1984) investigated whether other somatosensory sub-62 

modalities (i.e. vibratory, tactile, cold, and warm stimuli) might influence pain.  While 63 

vibrotactile inputs clearly diminished pain perception, and touch and cooling produced some 64 

pain relief, the effects of non-noxious warmth were not clear.  Further, touch-pain interactions 65 

show clear somatotopic organization: nociceptive processing is modulated when the tactile and 66 

pain inputs are both delivered within the same dermatome (Kakigi and Watanabe 1996; 67 

Mancini et al. 2014b; Nahra and Plaghki 2003; Watanabe et al. 1999; Yarnitskya et al. 1997).  68 

While there is both electrophysiological (Tran et al. 2008) and behavioral (Casey et al. 1993) 69 
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evidence suggesting a spatially-specific attenuation of pain after inter-segmental and 70 

contralateral presentation of thermal stimuli, no spatially-specific modulation of pain seems to 71 

occur when thermal stimulation is delivered on more distant skin regions (Price and McHaffie 72 

1988).  In fact, some authors have questioned whether thermal-nociceptive reactions have any 73 

spatial organization at all, and have instead attributed spatially-specific effects to general, 74 

amodal mechanisms such as distraction or shifts in spatial attention (Defrin et al. 2010; 75 

Quevedo and Coghill 2007a, 2007b; Van Ryckeghem et al. 2011). 76 

On the other hand, spatial effects within the thermoceptive system alone have been 77 

extensively studied.  Thermoception is strongly affected by spatial summation (Hardy and 78 

Oppel 1937; Kenshalo et al. 1967; Marks 1974; Marks and Stevens 1973; Stevens and Marks 79 

1971) summation.  Thus, perception of warmth does not only depend on the physical 80 

temperature of the stimulus, but also by where the thermal stimuli are applied (Defrin and Urca 81 

1996; Hardy and Oppel 1937; Kojo and Pertovaara 1987; Machet-Pietropaoli and Chery-Croze 82 

1979), and by how many non-contiguous thermal stimuli are delivered (Hardy and Oppel 1937; 83 

Kenshalo et al. 1967; Price et al. 1989; Rózsa and Kenshalo 1977).  Warmth spatial summation 84 

occurs locally when multiple nearby fibers are simultaneously activated by the warm stimulus 85 

(Greene and Hardy 1958) or even across non-contiguous skin regions (Rózsa and Kenshalo 86 

1977).  Moreover, the spatial summation varies according to the properties of the skin: 87 

compared to hairy skin, glabrous skin shows much larger magnitude of spatial summation 88 

(Defrin et al. 2009). 89 

The level at which spatial summation of warmth occurs is not certain.  Most authors suggest 90 

that warm spatial summation reflects integration of thermal information at second- and third-91 

order neurons in the spinal cord, and/or supra-spinal levels (Herget et al. 1941; Price et al. 92 

1989; Stevens et al. 1974).  Moreover, it remains unclear whether thermo-nociceptive 93 

interactions occur before or after summation of multiple thermal inputs. 94 

 Evidence indicates that thermo-nociceptive interactions are complex and multi-level.  95 

Here, we use a paired conditioning-test stimulus paradigm to investigate thermo-nociceptive 96 

interactions.  In particular, we focused on whether these interactions are somatotopically 97 
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organized.  We also investigated if inter-channel thermo-nociceptive interactions occur before 98 

or after intra-channel spatial summation of warmth.  Painful CO2 laser pulses were delivered to 99 

the middle finger, while the location and number of concurrent non-noxious warm stimuli to the 100 

fingers was systematically manipulated to achieve different degrees of spatial summation of 101 

warmth.  We tested four specific hypotheses about warm-pain interaction, using planned 102 

comparisons motivated by established neurophysiological theories about both thermal and 103 

nociceptive channels.  First, we tested the prediction of a warmth gating of pain (Casey et al. 104 

1993; Plaghki et al. 2010; Tran et al. 2008; Truini et al. 2007), where warm stimulation on the 105 

middle finger attenuates perceived pain and nociceptive processing for a noxious laser pulse 106 

delivered to the same middle finger.  A directional prediction is justified, since the literature 107 

agrees that warmth inhibits pain, and, to our knowledge, it has never been reported that 108 

innocuous warm stimulation increases pain and nociceptive processes.  Second, we investigated 109 

whether the warm-inhibits-pain effect remained when the warm stimulus was delivered on the 110 

adjacent index and ring fingers, while noxious stimulation was applied to the middle finger.  An 111 

affirmative result would show some degree of spatial spread in warm-pain interactions.  Indeed, 112 

given the  low spatial resolution (Cain 1973; Nathan and Rice 1966; Simmel and Shapiro 1969) 113 

and high spatial summation (Hardy and Oppel 1937; Marks and Stevens 1973; Stevens and 114 

Marks 1971) of the thermoceptive system, we expect a “perceptual spread of warmth” to the 115 

thermally neutral middle finger (Cataldo et al. 2016; Green 1977, 1978; Ho et al. 2011).  116 

Accordingly, Green (1978) demonstrated referred warmth on a thermally neutral finger when a 117 

thermal stimulation was applied to the adjacent finger:  importantly, the neutral middle finger 118 

felt on average 54.5% less warm than the stimulated adjacent finger.  Third, we tested whether 119 

the warmth gates pain in a spatially tuned fashion by contrasting pain attenuation when warmth 120 

was delivered on the same finger as noxious laser stimulation, versus the situation where 121 

warmth is delivered on fingers adjacent to the noxious stimulation.  Previous studies suggest 122 

that the spatial spread of warmth is partial rather than complete.  For example measures of 123 

thermal referral found that 30% - 60% of the warmth delivered to one finger is perceptually 124 

referred to an adjacent finger (Green 1978).  Thus, we hypothesized that warmth on adjacent 125 
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fingers would produce less pain inhibition than warm on the finger that receives noxious 126 

stimulation.  Fourth and finally, we investigated at which level of the somatosensory processing 127 

pathway, any thermo-nociceptive interaction occurs.  If thermal-nociceptive interaction occurs 128 

after summation of warmth, then progressively increasing the number of fingers that are 129 

simultaneously warmed (i.e., increasing the area of thermal stimulation) while maintaining the 130 

same physical temperature on the middle finger, would produce a stronger suppression of pain.  131 

Conversely, if thermo-nociceptive interaction occurs before or independently of warm spatial 132 

summation, progressively increasing the number/area of warm stimulations would not affect 133 

pain processing.  We therefore constructed a systematic set of stimulation conditions to test 134 

these four directional predictions. 135 

Methods 136 

Participants 137 

The sample size was calculated a priori by means of a statistical power analysis for sample size 138 

estimation based on the results of a previous EEG pilot study (n = 10) testing the same eight 139 

thermal conditions studied here.  The effect size for comparing the electrophysiological 140 

correlate of a painful CO2 laser pulse during no thermal stimulation, warmth on the same 141 

finger, and warmth on the adjacent fingers in the pilot study was η2 = 0.380, considered to be 142 

very large using Cohen's (1988) criteria.  With an alpha = 0.05 and power = 0.80, the projected 143 

sample size indicated for this effect is 11 participants (G*Power 3.1.9.2 software) (Faul et al. 144 

2009).  We tested 15 healthy right-handed volunteers (10 females, mean age ± SD: 25.9 ± 4.3 145 

years).  One participant was excluded because pain threshold could not be reliably established, 146 

leaving a final sample of 14.  This gave sufficient power for the main objectives of this study.  147 

Inclusion criteria for the study were the absence of any history of previous traumatic hand 148 

injury, absence of sensitive skin or skin conditions, abstention from analgesic medication for 24 149 

hours prior the study, and abstention from caffeinated beverages for three hours prior to the 150 

study. 151 
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The experimental protocol was approved by the research ethics committee of University 152 

College London.  Recruitment of participants and experimental procedures were conducted in 153 

accordance with the Declaration of Helsinki.  All participants provided their written informed 154 

consent at the beginning of each experiment, after receiving written and verbal explanation of 155 

the purpose of the study. 156 

 157 

Apparatus 158 

CO2 Laser stimulation 159 

Nociceptive stimulation was delivered on the dorsum of participants’ right middle finger by a 160 

CO2 laser stimulator (Laser Stimulation Device, SIFEC, Belgium), controlled by a computer.  161 

The laser pulse (~100ms) was transmitted via an optical fiber and focused by lenses to a spot 162 

diameter of ~6mm.  A radiometer collinear with the laser beam detected the skin temperature at 163 

the site of stimulation, providing safe and reproducible noxious thermal radiant stimuli at a 164 

ramping rate of ~350°C/s (Churyukanov et al. 2012; Jankovski et al. 2013).   165 

Participants rested their right hand pronated on a molded support.  Vision of the hand 166 

was blocked with a screen.  The laser head was positioned above the hand, with the laser beam 167 

pointing on the dorsal aspect of the middle finger’s intermediate phalanx (see Figure 1).  A 168 

visible helium-neon laser spot was used to point the CO2 laser to the target location.  To ensure 169 

a consistent stimulus location across the experiment, the target area was delimited by a ~12mm 170 

diameter circle drawn on the dorsum of the middle finger.  Extra care was taken during the 171 

testing to prevent any laser stimulation on the skin blackened by the ink, which could affect 172 

absorption of radiant heat (Leandri et al. 2006; Madden et al. 2016).  Participants wore 173 

protective goggles and were asked to maintain their gaze on a fixation cross centrally located in 174 

front of them. Intensity, duration, and timing of the CO2 laser stimuli were controlled by 175 

computer software. 176 
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Prior to the beginning of each experiment, participants were familiarized with the laser 177 

stimuli, through at least 3 stimulations delivered at 46°C (i.e., the standard threshold for 178 

thermal pain (Darian-Smith et al. 1979a, 1979b; LaMotte and Campbell 1978).  Participants 179 

were asked to press a button with their left hand as soon as they felt any stimulation on the 180 

dorsum of the right middle finger and to verbally rate the intensity of the stimulus on a scale 181 

from 0 to 10 where 0 meant “no pain”, 1 “slight pinprick”, and 10 “the worst pain imaginable” 182 

(Tran et al. 2008).  Participants were informed that they were not restricted to use integers.  The 183 

reports from the familiarization phase were not further analyzed.  184 

Thermal stimulation 185 

Thermal stimuli were applied to the volar intermediate phalanges of the right index, 186 

middle and ring fingers by means of three 13mm-diameter Peltier thermodes (Physitemp 187 

Instruments Inc, NTE-2A, New Jersey, USA).  The mechanical contact between all three 188 

thermodes and the corresponding digits remained constant throughout.  Non-noxious warm 189 

thermal stimulation could be delivered through any combination of the three thermodes (see 190 

Figure 1).  The thermode temperature for neutral baseline was set at 32°C.  The temperature of 191 

warm stimulation was always 40°C based on a pilot study (n = 10) in which we ensured that 192 

this intensity was not perceived as painful. 193 

Before the beginning of the experiment, participants were familiarized with the warm 194 

stimuli, which were randomly applied by the thermodes on one or more fingers.  Participants 195 

were asked to verbally rate the thermal sensation felt from the middle finger thermode only, on 196 

a scale from 0 to 10 where 0 meant “no warmth”, 1 “barely warm”, and 10 “very hot” (Tran et 197 

al. 2008).  Participants were informed that they were not restricted to use integers.  The reports 198 

from this familiarization phase served to encourage participants to attend to the warmth 199 

sensation and were not further analyzed.  Participants were asked to report throughout the 200 

experiment if the sensation on the fingertips was ever painful or slightly uncomfortable.  No 201 

participants reported painful sensation from the thermal stimulation. 202 



9 

 

EEG recording and LEP analysis 203 

EEG Laser Evoked Potentials (LEPs) are considered an objective measurement of nociception 204 

(Bromm and Treede 1987), which consists of several transient responses that are time locked 205 

and phase locked to the onset of painful laser stimuli (Mouraux and Iannetti 2008).  EEG data 206 

were acquired from the scalp at a sampling rate of 2048 Hz using an Active Two BioSemi EEG 207 

amplifier and ActiView software (Biosemi, Amsterdam, The Netherlands).  Sixteen Ag-AgCl 208 

active electrodes were positioned on the scalp according to the 10-20 International System.  209 

Electro-conductive gel was used to keep the impedance of all electrodes < 5kΩ throughout the 210 

experiment.  An external electrode placed on the nose was used as reference.  211 

Electrooculographic signals (EOG) for eye movements and eye-blinks monitoring were 212 

simultaneously recorded.   213 

EEG data were processed using EEGlab (Delorme and Makeig 2004) running on 214 

MATLAB.  Continuous raw data for each participant in each block were recorded and stored on 215 

ActiView, and successively imported on EEGlab for off-line analysis.  Data were resampled to 216 

250Hz, and then bandpass filtered between 1Hz and 30Hz.  EEG epochs were extracted from 217 

the continuous data using a window analysis time of 3000ms (from -1000ms to 2000ms relative 218 

to the CO2 laser pulse).  The mean signal immediately preceding the laser stimulus (from -219 

500ms to 0ms) was set as baseline and removed from each epoch.  Artefacts originating from 220 

eye-blinks and ocular movements were identified and pruned by means of Independent 221 

Component Analysis (ICA) (Delorme and Makeig 2004; Jung et al. 2001; Makeig et al. 1997).  222 

For each participant, all the independent components representing artefacts or non-cortical 223 

processes, such as eye movements or facial muscle activity were manually selected and 224 

rejected.  The criteria for the identification of muscular artefacts were based on each 225 

component’s scalp topography, power spectrography, inter-trial coherency, and intra-trial time 226 

course. 227 

Laser-evoked potentials (LEPs) data analysis were computed on the signal recorded at 228 

the vertex (electrode Cz) referenced to the nose.  Epochs from each specific experimental 229 
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condition were averaged within participants and time-locked to the onset of the CO2 laser pulse.  230 

Then, the main negative (N2 wave) and positive (P2 wave) vertex components associated with 231 

LEPs were identified and selected on the basis of their latency and polarity.  N2 and P2 232 

components were defined as the most negative and positive biphasic deflections between 150ms 233 

and 500ms after stimulus onset (Hu et al. 2014; Iannetti et al. 2008).  The peak amplitude of 234 

these components was used for statistical analysis. 235 

Experimental design and procedure 236 

We designed a within-subject paradigm where participants’ magnitude estimates of pain, and 237 

LEPs amplitudes were tested in a series of planned comparisons involving eight different 238 

thermal conditions (see Figure 1).  In condition 1, noxious CO2 laser pulses were delivered to 239 

the middle finger in absence of any thermal stimulation, providing a baseline measure of pain 240 

perception.  In the remaining conditions, the site of thermal stimulation (index, middle, or ring 241 

finger; condition 2, condition 3, and condition 4) and the number of thermally stimulated 242 

fingers (one: conditions 2 to 4; two: conditions 5 to 7; or three: condition 8) were 243 

systematically manipulated to produce different levels of spatial summation of warmth. 244 

The experiment took place in a temperature-controlled room at 23°C.  The superficial 245 

skin temperature of the hand dorsum was systematically measured at several points during the 246 

experiment by means of an infrared thermometer (Precision Gold, N85FR Maplin, UK) and was 247 

kept between 28°C and 32°C (mean baseline temperature ± SD: 30°C ± 1.4°C).  First, laser-248 

induced pain thresholds were established through an adaptive psychophysical staircase 249 

procedure: the first stimulus of the staircase was set at 40°C, and the intensity of the following 250 

stimuli was adaptively changed according to participants’ to the CO2 laser stimulation reaction 251 

times (RTs) (Arendt-Nelsen and Bjerring 1988; Mancini et al. 2014a).  A RT criterion of 650ms 252 

was used to discriminate between C (≥650ms) and Aδ fibers (<650ms) (Churyukanov et al. 253 

2012; Jankovski et al. 2013).  If RT to the preceding stimulus was ≥650ms, the laser intensity 254 

of the next stimulus was increased until the RT fell below 650ms, producing the first reversal.  255 

Conversely, if RT to a stimulus were shorter than 650ms, the laser intensity of the upcoming 256 
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stimulus was decreased.  The step size of the staircase was progressively reduced after each 257 

reversal, from 4°C, to 2°C, and finally 1°C.  After the third reversal, any intensity producing an 258 

Aδ-like response (RT <650ms) was repeated three times.  The pain threshold was defined as the 259 

lowest laser intensity inducing two out of three consecutive Aδ-like responses.   260 

After pain thresholds were established, the EEG cap was mounted, and the experiment 261 

began.  Participants completed eight blocks of 16 trials each.  In each block, the eight different 262 

thermal conditions described above (see Figure 1) were presented twice, in a fully randomized 263 

order, giving a total of 128 trials.  To assure attention to the stimuli, a beep signaled the 264 

beginning of each trial.  Before and after the trial, the temperature of the thermodes was set at 265 

32°C.  After the beep, the thermal stimulation on the designated finger/s ramped up to 40°C at a 266 

rate of ~2°C/s and remained steady for the entire duration of the trial.  After a random delay 267 

from the beginning of the thermal stimulation (5-6s), a 100ms CO2 laser pulse was delivered to 268 

the dorsum of the right middle finger.  The intensity of the laser stimulation for each participant 269 

was set at the individual pain threshold +6°C and remained fixed throughout the entire 270 

experiment. Participants were asked to maintain gaze on a central fixation cross placed in front 271 

of them, and to attend to the thermal and laser stimuli.  After 3s, a further beep occurred, and 272 

participants verbally rated the intensity first of warmth, and then of pain providing a number 273 

from 0 to 10 for each sensation based on the initial training with these scales (see above).  For 274 

example, if the subject said “3, 5” that meant that their rating was 3 for the perceived warmth 275 

on the middle finger and 5 for laser pain on the same finger (Tran et al. 2008).  To prevent any 276 

possible effect of sensitization or habituation of the thermoreceptors/nociceptors at the site of 277 

stimulation (Iannetti et al. 2004; Kleinböhl et al. 2006), the inter-trial interval varied randomly 278 

between 12s and 27s, and the position of the laser beam on the finger was adjusted slightly 279 

between trials. 280 

 281 

 282 

*** Please insert Figure 1 here *** 283 
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 284 

 285 

Statistical analysis 286 

Behavioral and EEG data were analyzed using SPSS software (IBM SPSS Statistics for 287 

Windows, version 22.0. Armonk, NY). 288 

Our experimental design aimed to address four independent research questions to 289 

investigate the spatial and summative properties of warmth-nociceptive interaction (see Table 290 

1).  We therefore used a priori planned comparisons between specific experimental conditions, 291 

as follows.  First, to test whether warmth inhibits pain delivered at the same skin site (Casey et 292 

al. 1993; Plaghki et al. 2010; Tran et al. 2008; Truini et al. 2007), we compared the no thermal 293 

stimulation condition (condition 1) to the warmth on the same finger condition (condition 3).  294 

Second, to test whether warmth on adjacent fingers (Cataldo et al. 2016; Green 1977, 1978; Ho 295 

et al. 2011) could similarly inhibit pain, we compared condition 1 (no thermal stimulation) with 296 

the average of conditions 2 and 4 (warmth on adjacent index/ring fingers).  We found no 297 

statistical evidence for perceptual differences between these fingers when stimulated alone (p > 298 

0.200 for all variables studied), vindicating our a priori decision to average over across index 299 

and ring finger stimulations.  Third, to test whether the warmth-pain interaction is spatially 300 

specific, we compared pain inhibition in condition 3 (warmth on the same finger) with the 301 

average of conditions 2 and 4 (warmth on index/ring finger; i.e. adjacent fingers) (see question 302 

3 in Table 1 for the coefficient used for the comparison).  Finally, to test the effect of 303 

progressive spatial summation of multiple simultaneous thermal stimuli, we performed a linear 304 

trend analysis, with weights −1, 0, and 1 for the conditions where warmth was applied on one 305 

(average of condition 2, 3, and 4), two (average of condition 5, 6, and 7), or three fingers 306 

(condition 8) (Hays, 1994 ; Mancini et al. 2014b). As all our hypothesis are unidirectional and 307 

supported by previous evidence (Cataldo et al. 2016; Green 1977, 1978; Ho et al. 2011; Plaghki 308 

et al. 2010; Tran et al. 2008; Truini et al. 2007), we used one-tailed paired sample t-tests 309 

throughout.  Statistical tests were considered significant if p < 0.05.  Non-significant results 310 
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were further investigated through Bayesian one sample t-tests analyses, using JASP (version 311 

0.8.0.1; JASP Team 2016, University of Amsterdam) to determine whether results supported 312 

the null hypothesis, or could alternatively reflect insufficient statistical power  (Rouder et al. 313 

2009; Wetzels and Wagenmakers 2012).  EEG data were tested for normal distribution using 314 

Kolmogorov-Smirnov normality test (see Table S1 in the Supplementary Material: 315 

https://doi.org/10.6084/m9.figshare.7808420.v2).  Out of the six Kolmogorov-Smirnov 316 

tests, only one showed significant non-normality, due to a single outlier.  Because within-317 

subjects ANOVA is relatively robust to violations of the normality assumption (Boneau 1960), 318 

we decided not to remove outliers or transform data. 319 

 320 

 321 

*** Please insert Table 1 here *** 322 

 323 

  324 
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Results 325 

Detailed LEP analysis is reported in the Supplementary Material (see Figure S1 326 

https://doi.org/10.6084/m9.figshare.7808420.v2).  Means and standard deviations of 327 

subjective ratings and LEPs are described in supplementary Table S2 328 

(https://doi.org/10.6084/m9.figshare.7808420.v2). 329 

 330 

Planned comparison 1: Does warmth inhibit pain delivered to the same finger? 331 

We first compared warmth magnitude estimates between condition 1 (no thermal stimulation) 332 

and condition 3 (warmth on the middle finger).  As predicted, ratings of warmth were 333 

significantly higher when the thermal stimulus was presented on the middle finger (condition 3, 334 

mean ± SD: 2.82 ± 1.512) than during the no-warmth condition (condition 1, mean ± SD: 0.54 335 

± 0.608) (t13 = -6.158, p < 0.001; 95% CI: -∞, -1.625; Cohen’s d = 2.148) (Figure 2A). 336 

Second, to investigate the effect of warmth on co-located pain, we performed planned 337 

comparisons on both perceptual and electrophysiological responses to pain.  A planned 338 

comparison on the magnitude estimates of pain showed that participants’ pain rating during the 339 

no-warmth condition (condition 1, mean ± SD: 3.2 ± 1.354) significantly decreased by 11.6% 340 

when a concomitant thermal stimulation was delivered on the same finger (condition 3, mean ± 341 

SD: 2.83 ± 1.007) (t13 = 2.106, p = 0.028; 95% CI: 0.061, +∞; Cohen’s d = 0.314) (see Figure 342 

2B).  Concomitant warmth had a modulatory effect on the N2, but not on the P2 component 343 

(see Figure 2C and D).  The peak amplitude of the N2 wave was significantly higher when pain 344 

was delivered in absence of warmth (condition 1, mean ± SD: -15.23 ± 7.282) than when a 345 

thermal stimulus was simultaneously presented on the same finger (condition 3, mean ± SD: -346 

11.06 ± 4.137) (t13 = -2.13, p = 0.027; 95% CI: -∞, -0.723; Cohen’s d = 0.730) (see Figure 2C).  347 

This reduction corresponded to a relative change of the 27.4%.  The P2 wave did not show any 348 

significant modulation (t13 = 0.116, p = 0.455; 95% CI: -1.875, +∞; Cohen’s d = 0.026).  A 349 

Bayesian paired sample t-test supported the null result (BF01 = 4.026, error < 0.001%), 350 

suggesting that this result was not due to a lack of statistical power (Rouder et al. 2009; 351 
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Wetzels and Wagenmakers 2012). Dissociations between N2 and P2 components have been 352 

previously reported (Tran et al. 2008).  Thus, both behavioral and electrophysiological 353 

correlates of pain were attenuated by a concomitant warm stimulus delivered to the same 354 

finger. 355 

Planned comparison 2: Does warmth inhibit pain delivered on an adjacent 356 

finger? 357 

A direct comparison between ratings of warmth in condition 1 (no thermal stimulation) and the 358 

average of conditions 2 and 4 (warmth on the adjacent fingers) was significant (t13 = -8.476, p < 359 

0.001; 95% CI: -∞, -1.080; Cohen’s d = 1.797) with participants rating warmth on the middle 360 

finger as significantly higher when the thermal stimulus was presented on the adjacent fingers 361 

(average of conditions 2 and 4, mean ± SD: 1.9 ± 0.909) than during the no-warmth condition 362 

(condition 1, mean ± SD: 0.54 ± 0.608) (see Figure 2A). 363 

The planned comparison between participants’ pain ratings during no-warmth (condition 1) and 364 

warmth on the adjacent fingers (average of conditions 2 and 4) was statistically significant (t13 365 

= 4.184, p = 0.001; 95% CI: 0.321, +∞; Cohen’s d = 0.474).  Baseline pain on the middle finger 366 

(mean ± SD: 3.2 ± 1.354) dropped by the 17.3% when a warm stimulus was delivered to either 367 

of the adjacent fingers (mean ± SD: 2.647 ± 0.983) (see Figure 2B).  The subjective perception 368 

was supported by a decrease of the 22.2% in the amplitude of the N2 component (see Figure 369 

2C).  This effect did not formally reach the conventional boundaries for statistical significance 370 

(t13 = -1.769, p = 0.050; 95% CI: -∞, 0.016; Cohen’s d = 0.629).  However, a Bayesian paired-371 

sample t-test showed that it is very unlikely that this result could be explained by the null 372 

hypothesis (BF01 = 0.572, error < 0.001%).  The amplitude of the P2 component was not 373 

modulated by warmth (t13 = 0.043, p = 0.483; 95% CI: -1.767, +∞; Cohen’s d = 0.009; BF01 = 374 

3.822, error < 0.001%).  Warmth delivered on an adjacent finger had a significant suppressive 375 

effect on pain perception and LEPs. 376 
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Planned comparison 3: Is the suppressive effect of warmth on pain spatially 377 

graded?  378 

The previous results showed that a warm stimulus delivered either onto the same or an adjacent 379 

finger was able to reduce both the subjective perception of pain and the amplitude of the N2 380 

LEP component associated to it.  We conducted a further planned comparison on the same 381 

(condition 3) and adjacent fingers (average of condition 2 and 4) conditions to investigate 382 

whether this inhibitory effect of warmth on pain was spatially graded. 383 

Importantly, although perceived warmth between same and adjacent fingers was 384 

significant (t13 = 3.267, p = 0.003; 95% CI: 0.420, +∞; Cohen’s d = 0.754) (see Figure 3A), 385 

neither magnitude estimates of pain (t13 = 1.441, p = 0.087; 95% CI: -∞, 0.407; Cohen’s d = 386 

0.184), nor LEP amplitudes (N2: t13 = 0.967, p = 0.176; 95% CI: -0.654, +∞; Cohen’s d = 387 

0.209; P2: t13 = -0.13, p = 0.449; 95% CI: -∞, 1.102; Cohen’s d = 0.019) were significantly 388 

different in the two thermal conditions (see Figure 2B, C, and D).  While the Bayesian analysis 389 

on the behavioral data was inconclusive (BF01 = 0.881, error < 0.001%), those on the LEPs data 390 

strongly favored the null hypothesis (N2: BF01 = 6.521, error < 0.001%; P2: BF01 = 3.358, error 391 

< 0.001%).  Therefore, perceptual and electrophysiological correlates of pain were not 392 

statistically different when a warm stimulus was delivered to the same finger or to the adjacent 393 

fingers.   394 

Planned comparison 4: Does warmth summation cause graded inhibition? 395 

To test whether spatial summation increases with number of thermal stimuli, we performed a 396 

linear trend analysis on warmth intensity ratings during single (average of conditions 2, 3, and 397 

4), double (average of condition 5, 6, and 7), and triple finger stimulation (condition 8).  As 398 

expected, warmth perception on the middle finger parametrically increased along with the 399 

number of stimulated fingers (t13 = 7.728, p < 0.001; 95% CI: 1.465, +∞; Cohen’s d = 4.129).  400 

Thermal stimulation on the middle finger was rated lower when one finger was stimulated (2.21 401 

± 1.034) and linearly increased when two fingers (3.4 ± 1.304) and three fingers (4.33 ± 1.801) 402 

were simultaneously stimulated (see Figure 3A). 403 
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To test whether spatial summation of multiple simultaneous thermal stimuli had a 404 

graded inhibitory effect on pain processing, we conducted a linear trend analysis with weights 405 

−1, 0, and 1 on the conditions where warmth was applied on one (average of condition 2, 3, and 406 

4), two (average of condition 5, 6, and 7), or three fingers (condition 8).  The analyses showed 407 

no effect of spatial summation of warmth on either pain perception (t13 = -1.22, p = 0.141; 95% 408 

CI: -∞, 0.104; Cohen’s d = 0.653), nor LEPs (N2: t13 = -0.158, p = 0.438; 95% CI: -1.882, +∞; 409 

Cohen’s d = 0.085; P2: t13 = -0.115, p = 0.455; 95% CI: -∞, 0.687; Cohen’s d = 0.062).  410 

Increasing the number of simultaneous thermal stimuli did not affect subjective perception of 411 

pain (one finger: 2.708 ± 0.965; two fingers: 2.732 ± 0.949; three fingers: 2.509 ± 0.965) (see 412 

Figure 3B) nor the amplitude of N2 (one finger: -11.59 ± 3.404; two fingers: -11.66 ± 3.458; 413 

three fingers: -11.74 ± 5.458) or P2 (one finger: 10.02 ± 4.374; two fingers: 10.93 ± 4.777; 414 

three fingers: 9.97 ± 4.536) LEP components (see Figure 3C and D). 415 

We then performed a Bayesian analysis to determine whether the data supported the 416 

null hypothesis or could be due to a lack of statistical power.  We found that the null hypothesis 417 

was always more than 3 times more likely than the alternative hypothesis (magnitude estimates 418 

of pain: BF01 = 7.208, error < 0.001%; N2: BF01 = 3.284, error < 0.001%; P2: BF01 = 4.021, 419 

error < 0.001%), suggesting that the absence of a linear trend among conditions with increasing 420 

number of thermal stimuli was not simply due to a lack of statistical power.  Therefore, 421 

perception and EEG markers of pain were not affected by different amounts of spatial 422 

summation of warmth. 423 

 424 

 425 

*** Please insert Figure 2 here *** 426 

 427 

 428 

*** Please insert Figure 3 here *** 429 

  430 
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Discussion  431 

Here we investigated the spatial properties of warmth-pain interaction and the level of 432 

somatosensory processing at which this sensory interaction takes place.  We exploited, 433 

seemingly for the first time, the properties of spatial summation of warmth to modulate 434 

perception of warmth without modifying skin temperature at a given target location.  We 435 

manipulated the number/area and the location of warm thermal stimuli during concomitant 436 

noxious laser stimulation.  Our results replicated the well-known suppressive effect of warmth 437 

on pain processing observed in previous studies (Casey et al. 1993; Plaghki et al. 2010; Tran et 438 

al. 2008; Truini et al. 2007).  Specifically, ongoing thermal stimulation induced a significant 439 

attenuation of both subjective (magnitude estimates) and objective (LEPs) correlates of laser-440 

induced pain.  Warmth had similar inhibitory effects on pain not only when the two stimuli 441 

were delivered to the same finger, but also when they were located on adjacent fingers.  Thus, 442 

thermal inhibition of pain did not require strict spatial coincidence.  This suggests that effect of 443 

warmth on nociceptive pathways and pain perception does not follow a strongly somatotopic 444 

gradient. 445 

Moreover, we found no evidence that the number/area of warm stimuli influenced either 446 

pain ratings or LEP amplitudes.  Thus, delivering warmth to one, two or three digits did not 447 

linearly modulate pain sensation evoked by laser stimulation.  This results thus rule out a model 448 

in which warm inputs first undergo spatial summation, followed by a subsequent suppressive 449 

effect of the total warm signal on nociception.  That model would predict a linear decreasing 450 

trend in pain ratings and LEP amplitudes as the number/area of warm stimuli increased – since 451 

this would have produced a stronger, summated warm signal that might potentially inhibit 452 

nociceptive signaling.  Our linear trend analysis clearly showed that while thermal perception 453 

was strongly affected by the number of simultaneous stimuli presented, neither perceptual nor 454 

electrophysiological correlates of pain delivered during thermal stimulation followed this trend.  455 

In fact, using Bayesian methods, we found statistical evidence that no such trend existed.  456 

Summation of warmth did not influence the degree of pain suppression.  We therefore conclude 457 
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that the modulation of nociception by warmth occurs either prior to, or independently of intra-458 

channel spatial summation of multiple thermal inputs. 459 

 460 

Spatial organization of warmth-pain interaction 461 

Previous works have investigated the spatial gradient of thermo-nociceptive interaction (Casey 462 

et al. 1993; Price and McHaffie 1988; Tran et al. 2008).  These studies suggested that warmth-463 

pain interaction is non-somatotopic.  Tran and colleagues (2008) systematically manipulated 464 

the site of thermal stimuli presented during painful electrical pain stimulation.  Their data 465 

showed that the cortical response associated with pain-related Aδ fibers was equally affected by 466 

warmth C fibers conditioning at intrasegmental, intersegmental, and even contralateral 467 

stimulation sites (Tran et al. 2008), suggesting a diffuse, rather than spatially-dependent 468 

interaction mechanism.  Although their study used intraepidermal nociceptive stimulation, in 469 

contrast to the laser stimulation used here, we also did not observe any difference in the 470 

modulation of pain when the thermal and noxious stimuli were presented on to different 471 

fingers.  As a consequence, a strictly somatotopic account of warmth-pain interaction can be 472 

ruled out. 473 

One possible limitation of this study is that the effect of spatial summation was 474 

investigated only across digits, rather than across more distant body parts.  Previous studies 475 

have shown that inhibitory interactions between multiple nociceptive stimuli occur across the 476 

whole body (Le Bars 2002; Le Bars et al. 1979b, 1979a; Villanueva and Le 1995; Yarnitsky 477 

2010; Yarnitsky et al. 2010).  Additionally, we have only tested glabrous skin.  We cannot 478 

exclude different patterns of warm-nociceptive interaction in glabrous and hairy skin, due 479 

either to differences in innervation density, or to factors such as skin thickness and heat 480 

transfer.  Therefore, further studies could address whether thermo-nociceptive interactions also 481 

occur on a larger scale and on both glabrous and hairy skin.  Given the different innervation 482 

territories and segmental projections of the median and ulnar nerves, one may expect that 483 

warmth delivered on the index vs the ring finger might show different interactions with pain 484 
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delivered on the middle finger (Fardo et al. 2018).  However, while this hypothesis would 485 

predict a significant difference in pain ratings and/or LEPs between our condition 2 (warmth on 486 

the index finger) and condition 4 (warmth on the ring finger), we found no evidence for any 487 

difference in sensory ratings or LEPs (p > 0.200 in all cases).  This is in line with previous 488 

studies (Green 1978; Marotta et al. 2015) showing that the differing segmental projections of 489 

medial and ulnar nerves have little to no on interactions between simultaneous thermal or 490 

thermo-tactile stimuli.  Finally, while we assume that warmth-induced pain relief reflects a 491 

central interaction, we cannot entirely exclude a contribution of some unknown peripheral 492 

interactions, e.g. through vascular effects.  However, the fact that we delivered warm stimuli on 493 

the fingertips, and laser pain on the middle finger dorsum, makes explanations based on local 494 

peripheral changes unlikely. 495 

 496 

Spatial summation of warmth during warmth-pain interaction 497 

Magnitude estimate of warmth delivered to the middle finger was heavily dependent on the 498 

number of warm stimuli presented at the same time on adjacent fingers, supporting evidence for 499 

a spatial summation of warmth (Hardy and Oppel 1937; Kenshalo et al. 1967; Marks 1974; 500 

Marks and Stevens 1973; Stevens and Marks 1971).  However, this increase in the perceived 501 

intensity of warmth did not produce a linear decrease in the perceived pain as well as in LEPs 502 

amplitudes.  Thus, interaction between warmth and pain may involve a binary, rather than 503 

proportional, inhibitory mechanism.  Inter-channel interaction between warmth and pain, then, 504 

must be mediated through a widely-distributed, non-somatotopic, all-or-nothing mechanism.  505 

This interaction mechanism would be independent from the intra-channel convergence and 506 

summation that characterizes purely thermal inputs.  If warmth-pain interaction occurs 507 

subsequent to spatial summation, the stronger thermal signal that we observed for more 508 

numerous warm stimuli should produce a stronger suppression of nociceptive information. 509 

Tran and colleagues (2008) showed that the physical intensity of a thermal stimulus 510 

affects nociceptive processing in a graded manner: the Aδ-mediated cortical responses induced 511 
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by electrical epidermal stimulation were much more attenuated by a 50°C, than a 37°C, C fiber 512 

conditioning stimulus.  This suggests that spatial-summation-induced increases in perceived 513 

warmth, might produce a similar monotonic, progressive reduction of pain and nociceptive 514 

cortical responses.  Conversely, our findings clearly show that warmth-pain interaction is an 515 

all-or-nothing phenomenon.  Neither pain ratings nor LEPs showed progressive modulation by 516 

increasing levels of perceived warmth. 517 

 When warm stimulation is applied on the index and/or ring finger of one hand, an 518 

illusory perception of warmth occurs on the thermally neutral middle finger (Cataldo et al. 519 

2016; Green 1977, 1978; Ho et al. 2011).  This phenomenon, known as Thermal Referral, has 520 

been linked to spatial summation mechanisms occurring within the thermoceptive system 521 

(Cataldo et al. 2016).  In the present study, when a single adjacent (index or ring) finger was 522 

thermally stimulated, ratings of warmth on the middle finger were significantly higher than the 523 

no warmth condition.  Although the thermal state of the middle finger was in fact neutral in 524 

each of these conditions, all participants reported higher perception of warmth during thermal 525 

referral condition compared with no thermal stimulation.  This indicates that an illusory spread 526 

of perceived warmth across digits, also occurred in our paradigm.  527 

 528 

Mechanisms underlying warmth-pain interaction 529 

Different theories have been proposed to explain thermo-nociceptive interactions.  Based on the 530 

finding that higher-intensity stimulation to one pathway produces a stronger inhibitory effect on 531 

the other, Truini and colleagues (2007) proposed that the Aδ-C interaction is based on a first 532 

come, first served principle, where only the earliest signals can induce cerebral responses.  533 

LEPs would then reflect the output of a network detecting rapid temporal changes in firing 534 

relative to a preceding state (Garcia-Larrea 2004; Truini et al. 2007).  A similar conclusion in 535 

the spatial domain has been proposed by Churyukanov and colleagues (2012), who postulated 536 

that Aδ fibers acts as local change detectors, rather than pure level detectors.  The threshold for 537 
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Aδ fibers input would not depend only on the physical energy applied, but also on the 538 

background input from C fibers innervating the skin surrounding the stimulated area. 539 

Our findings that behavioral and electrophysiological correlates of pain are not affected 540 

by spatial summation of warmth do not contradict, but rather extend the previous models, by 541 

showing that the temporal-contrast mechanism described by Truini and colleagues (2007) takes 542 

place at early stages of thermo-nociceptive processing.  That is, pain modulation occurs before 543 

multiple warmth sources are spatially summated into an illusory percept of increased apparent 544 

warmth (see Figure 4).  In contrast, a model based on strictly peripheral spatial change 545 

detection cannot readily explain our results.  This model would predict the strongest Aδ 546 

response (i.e. higher pain levels) when C fibers firing from the same immediate area is lowest.  547 

In our design, this would imply lower pain ratings when warmth was delivered on the same 548 

finger as pain, and higher pain ratings when warmth was delivered on the adjacent fingers.  Yet, 549 

we observed a strong pain suppression for the middle finger also when the index and ring 550 

fingers received warmth.  Therefore, sensory mechanisms located at higher levels than those 551 

detecting the relative firing rate between digit-specific Aδ and C afferents fibers must underlie 552 

the suppression of pain by warmth. 553 

Noticeably, our results do recall another well-known phenomenon, called Diffuse 554 

Noxious Inhibitory Control (DNIC) in the animal literature (Le Bars et al. 1979a, 1979b; 555 

Villanueva and Le 1995), and Conditioned Pain Modulation (CPM) in human studies (Davis 556 

2013; Nir and Yarnitsky 2015; Yarnitsky 2010; Yarnitsky et al. 2010).  CPM has been 557 

described as a specific nociceptive mechanism where ‘pain inhibits pain’, and seems relevant 558 

for our results in two key ways.  First, it has been consistently shown that the inhibitory effect 559 

of ‘pain on pain’ applies across the whole body, without apparent somatotopic spatial gradients 560 

(Le Bars 2002; Le Bars et al. 1979b, 1979a; Villanueva and Le 1995; Yarnitsky 2010; 561 

Yarnitsky et al. 2010).  Second, Granot and colleagues (2008) also demonstrated that once the 562 

analgesic effect on a test pain stimulus was evoked by a required degree of conditioning 563 

painfulness, no further suppression occurred when the intensity of the conditioning stimulus 564 

was increased.  This led to the interpretation that the CPM is an all-or-nothing, rather than a 565 
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graded phenomenon, where the ascending activity in the spinal pain tracts is sufficient to 566 

activate a descending modulatory response, regardless of whether the final cortical experience 567 

induced by that barrage is painful or not (Granot et al. 2008).  Our results suggest that these key 568 

properties of CPM, namely non-gradedness and lack of spatial specificity, also apply to the 569 

‘warmth inhibits pain’ interaction.   Similarly to CPM, warmth-related thermoceptive channels 570 

may interact with nociceptive pathways through an endogenous descending modulatory system, 571 

possibly originating in the brainstem (Granot et al. 2008). 572 

 573 

*** Please insert Figure 4 here *** 574 

 575 

Conclusion  576 

Our study suggests four main results.  First, behavioral and electrophysiological correlates of 577 

pain are attenuated by concomitant non-noxious warm stimulation delivered to the same finger.  578 

Second, pain is also inhibited when warmth is delivered to an adjacent finger, suggesting that 579 

interaction between warmth and pain occurs through a mechanism that is not strictly 580 

somatotopic.  Third, warmth on adjacent fingers produces as much pain inhibition as warm on 581 

the finger that receives noxious stimulation, suggesting that the warmth-pain interaction is not 582 

spatially graded.  Fourth, the analgesic effect of warmth does not have a direct proportional 583 

relationship with the magnitude of perceived warmth.  In particular, increases in perceived 584 

warmth induced by spatial summation do not produced additional inhibition of pain levels 585 

evoked by noxious laser stimulation, nor of cortical responses to the noxious laser stimulus.  586 

Therefore, the interaction between warmth and nociceptive modalities is independent from the 587 

convergence and summation taking place within the warm channel.  This might have important 588 

clinical implications, providing a novel approach for the treatment and management of pain 589 

involving non-noxious thermal stimulation. 590 

 591 
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Figure Captions 780 

Figure 1.  Thermo-nociceptive conditions. 781 

Painful stimuli were delivered to the dorsum of participants’ right middle finger through a CO2 laser 782 

pulse.  Thermal stimuli were delivered by three 13 mm diameter Peltier-based thermodes applied at the 783 

level of the intermediate phalanges of right index, middle, and ring fingers.  Warm stimulation was 784 

given in eight different conditions (see numbers).  We then contrasted combinations of conditions in 785 

order to test four directional hypotheses regarding thermal-nociceptive interactions (see method). a. no 786 

warmth, laser only condition; b. warmth and laser pain on the middle finger; c. laser pain on the middle 787 

finger and warmth on the index or ring finger (i.e. adjacent fingers condition). 788 

 789 

Figure 2.  Effect of location of thermal stimulation on warmth (W) and laser pain (L) processing. 790 

A. Magnitude estimate of warmth.  Compared with the laser only (no warmth) condition, participants 791 

perceived higher intensities of warmth in both thermal conditions (same/adjacent finger).  Crucially, 792 

perceived warmth on the middle finger was significantly higher when the thermal stimulus was delivered 793 

on the middle finger itself (Mid), rather than on an adjacent finger (avg. Ind, Rin).  B. Magnitude 794 

estimate of pain.  Pain perception was significantly reduced in both thermal conditions (same/adjacent 795 

finger/s), compared with no thermal stimulation.  However, same and adjacent finger conditions were 796 

not statistically different.  C. N2 wave.  Peak amplitude of N2 component was significantly reduced in 797 

both thermal conditions compared with no thermal stimulation condition.  However, the amount of pain 798 

suppression was the same irrespectively of the site of stimulation.  D. P2 wave.  P2 component was not 799 

affected by neither of the thermal conditions.  Error bars represent the standard error of the mean. 800 

n.s., p > 0.05; +, p = 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001. 801 

 802 

Figure 3.  Effect of number of thermal stimuli on warmth perception (A), pain perception (B), and 803 

N2 (C) and P2 (D) LEP components. 804 

A. Magnitude estimate of warmth.  Increasing the number of fingers thermally stimulated induced a 805 

significant monotonic increase in the apparent intensity of warmth on the middle finger.  However, 806 

neither perceptual (B) nor electrophysiological (C and D) correlates of pain were affected by the number 807 

of simultaneous thermal stimulations.  Grey lines represent data from single participants.  Colored lines 808 

represent the average across participants.  Colored shading of black lines represents the standard error of 809 

the mean. ***, p < 0.001. 810 

 811 

Figure 4.  Schematic model of warmth-pain interaction.  812 

Our results suggest that the inter-channel interaction between warmth and pain occurs before of, or 813 

independently from intra-channel convergence and summation of warmth. 814 











Table 1.  Table of coefficients for the four research question 

 
Thermal conditions 

No 
warmth 

Index 
warm 

Middle 
warm 

Ring 
warm 

Ind+Mid 
warm 

Ind+Rin 
warm 

Mid+Rin 
warm 

All 
warm 

1.  Does warmth on 
the same finger 
inhibit pain? 

-1 0 1 0 0 0 0 0 

2.  Does warmth on 
the adjacent fingers 
inhibit pain? 

1 -1/2 0 -1/2 0 0 0 0 

3. Is the effect of 
warmth on pain 
spatially specific? 

0 -1/2 1 -1/2 0 0 0 0 

4. Does warmth 
summation cause 
graded inhibition? 

n/a -1/3 -1/3 -1/3 0 0 0 1 

Table 1 shows the coefficients used to test our four research questions.  See text for explanation. 

 


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1

