W) Check for updates

Received: 29 January 2021 Revised: 8 April 2021 Accepted: 14 May 2021

DOI: 10.1111/mila.12387

WILEY

SUBMITTED ARTICLE

Moving beyond content-specific computation in
artificial neural networks

Nicholas Shea'”

!Institute of Philosophy, School of

Advanced Study, University of London, A basic deep neural network (DNN) is trained to exhibit
London a large set of input-output dispositions. While being a
*Faculty of Philosophy, University of good model of the way humans perform some tasks

Oxford, Oxford . . X) . .
automatically, without deliberative reasoning, more is
Correspondence needed to approach human-like artificial intelligence.
Nicholas Shea, Institute of Philosophy,

Senate House, Malet Street, London, .
WCIE 7HU, UK. between two fundamentally different styles of computa-

Analysing recent additions brings to light a distinction

Email: nicholas.shea@sas.ac.uk tion: content-specific and non-content-specific computa-

L . tion (as first defined here). For example, deep episodic
Funding information

This research has received funding from RL networks draw on both. So does human conceptual
the European Research Council (ERC) reasoning. Combining the two takes advantage of the
under the European Union's Horizon

2020 research and innovation programme
under grant agreement No. 681422 a better model of human cognitive competence.
(MetCogCon).

complementary costs and benefits of each. It also offers

KEYWORDS

computation, concepts, content-specific, deep neural networks,
distributed representation, explicit memory

1 | INTRODUCTION

For those of us who have long championed artificial neural networks (ANNs), 2012 was a good
year. Finally, ANNs were starting to out-perform classical computational architectures on some
tasks. Their promise—to be a powerful supplement to the undoubted prowess of classical
computation—was beginning to be fulfilled. Using fast, special-purpose computer chips, a vari-
ety of technical tricks, and huge databases of training data, neural networks with multiple hid-
den layers began to out-compete all other computational systems on several benchmarks
(Buckner, 2018). These deep neural networks (DNNs) have now demonstrated impressive

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2021 The Author. Mind & Language published by John Wiley & Sons Ltd.

156 wileyonlinelibrary.com/journal/mila Mind & Language. 2023;38:156-177.

https://orcid.org/0000-0002-2032-5705
mailto:nicholas.shea@sas.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/mila
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmila.12387&domain=pdf&date_stamp=2021-10-05

SHEA WI L EY | 157

abilities in one domain after another including: image classification (Eslami et al., 2018;
Krizhevsky, Sutskever & Hinton, 2012), strategic games (computer games: Mnih et al., 2015;
Go: Silver et al., 2016), natural language processing (Bahdanau, Cho & Bengio, 2014; Brown
et al., 2020; Floridi & Chiriatti, 2020) and protein folding (Jumper et al., 2021).

In its basic form, a DNN is trained to react to a range of inputs with appropriate outputs.
Training requires a lot of data, carefully curated to avoid falling into unhelpful local minima
(Botvinick et al., 2019; Marcus, 2018). It also calls for prodigious amounts of processor time,
with huge numbers of individual training events. A basic DNN is effectively trained to exhibit,
in parallel, a range of different input—-output dispositions. Once trained, DNNs prove to be
relatively inflexible. When tasked with learning something new—acquiring an additional
input-output disposition—they are always at risk of catastrophically forgetting what has been
so laboriously learnt to date (French, 1999).

Nevertheless, this is probably a good model of some tasks that humans perform automati-
cally, without deliberative reasoning. To approach the goal of human-level Al, other computa-
tional capacities are required. Modellers have experimented with many ways of supplementing
the basic DNN architecture to circumvent its limitations. New developments are emerging all
the time. Some of these supplements make use of a style of computation that is quite different
from the dispositional-style computations performed by a basic DNN. I use “dispositional-style”
to capture the rough but intuitive idea that a computational step may operate within a specific
domain by directly mapping a range of particular inputs to a range of particular outputs. The
aim of this paper is to highlight this distinction and to capture it precisely. To do that I will
introduce a more precise distinction between ‘“content-specific” and ‘“non-content-specific”
computation (defined in Section 4).

One standard view in cognitive science is that ANNs (connectionist systems) have a funda-
mental limitation in the structure of their representations: that they lack compositionality
(Fodor & McLaughlin, 1990; Fodor & Pylyshyn, 1988; Smolensky, 1988). That is, their represen-
tations are not built out of recombinable elements. While agreeing with the importance of
compositionality, the distinction in this paper runs deeper. It is found, not in the way represen-
tations are structured, but in how they are processed, in the kinds of computations which the
system can perform. I build on existing views of computational capacities, in particular
the importance of variable binding and of role-filler independence. My category of non-content-
specific computation generalises both of these ideas, in different ways. Although the capacity
for variable binding or role-filler independence is often taken to be simply superior, the contrast
between two forms of computation that I draw here allows us to see why there are substantial
benefits in a system that has access to both forms of computation. Giving DNN models the
capacity for non-content-specific computation is an essential step on the road to building fully
functional human-like artificial intelligence. Human cognition has the benefits of this hybrid,
and I argue that in fact concepts act as mediators between the two forms of computation. That
puts concepts at the heart of the special power of human cognition.

The paper is structured as follows. Section 2 looks at memory and at models that supple-
ment the basic DNN architecture with an “episodic memory” store: a record of each stimulus or
situation encountered. Section 3 connects this advance to an older literature on the benefits of
separating memory from computation. Section 4 argues that to use explicit memories in this
way calls for a new computational capacity, the ability to perform non-content-specific compu-
tations. Section 5 illustrates this distinction by reference to human conceptual thought. I argue
that human concepts are involved in computations of both kinds, and mediate between them.
With the distinction then clearer, Section 6 circles back and asks which transitions within a

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

&I_WI LEY SHEA

DNN model count as content-specific and which as non-content-specific. Section 7 describes
how the distinction relates to several other ways that theorists have sought to contrast ANNs
with classical computational systems.

2 | OBSTACLES AND SOLUTIONS

ANNSs are trained to have a certain input-output profile. For example, one set of images is
mapped to the output “train,” another set to the output “cherry,” and so on. During training,
inputs are presented for which the desired outcome is known. Gradually, the strength of the
connections between network units is adjusted. By cycling through a wide range of inputs,
making tiny adjustments each time, the network can eventually be trained to produce the right
output for all of the trained inputs. Various arrangements help with this endeavour, like depth,
and training some layers before others. These also encourage the network to find a solution
which generalises to new samples (Bottou, 2014). The trained system is thus designed to
approximate a desired non-linear function from input space (e.g., image bitmaps) to output
space (e.g., labels) (Botvinick, Wang, Dabney, Miller & Kurth-Nelson, 2020).

Memory and computation are combined, unlike in a classical computer. The computations
performed by the trained system map specific regions of input space to specific regions of out-
put space. Given input I, it outputs O;. Its memory of training episodes is implicit in its disposi-
tion to make that transition. The whole weight matrix has been adjusted to achieve the I, — O,
disposition, while at the same time preserving all the other dispositions called for by the train-
ing set: I, — O,, Is — O,, I, — O3, and so on. The computation requires it to do something dif-
ferent with inputs in the I; region from what it does with inputs in the I, region. Rather than
transforming all inputs according to a common principle, to a first approximation the appropri-
ate output to inputs in region I; says nothing about how the network should respond to inputs
in region I,.

Precisely because of this, there is a constant threat that the adjustments needed to ensure
I, — O, will undermine those put in place to achieve I, — O, (French, 1999). That it was even
possible, for real world data sets, to find a weight matrix which would achieve all the different
required input-output dispositions at the same time was a significant discovery. It turned out
that, even when there are hundreds or thousands of different input—output dispositions to be
achieved, learning by backpropagation of error can find a solution that achieves them all at
once. Even then, there is an ever-present risk of interference—catastrophic forgetting—if the
trained network is tasked with learning more. That is because the way inputs in the I; to I,
regions are transformed into outputs is often uninformative about what should be done with a
new input I, , 1, unlike when inputs are processed according to a common principle which
does not depend on their specific content.

A note on representations and levels. I am concerned with representations at the level of
distributed patterns of activation, not the activity of individual nodes. In a DNN architecture,
the functional level that connects with what the system has been trained to do—the tasks it has
been designed to perform (Shea, 2018)—consists of the transformation of distributed patterns of
activation from input layer, through intermediate layers, to output layer. In a representational
explanation which captures the way it performs its task (Cichy, Khosla, Pantazis, Torralba &
Oliva, 2016; Kriegeskorte & Diedrichsen, 2019), the representations are distributed patterns of
activation in the state space of each layer (Shea, 2007). This is the level at which it has been
trained to implement a mapping that takes different regions of input space to different outputs.

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- fonm ArIgIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

SHEA WI L EY | 159

At lower levels we find common principles at work, for example, in the way the activation of
individual units is convolved with a weight matrix, summed, and passed through an activation
function. At a still lower level we find at work the common principles of solid-state physics.
DNN models are implemented in classical computers. At the level of implementation, we find
variables and what I will characterise as non-content-specific computations. My claim about
content-specific computation in DNNs applies at the level of the neural network model (how-
ever it is implemented): The level where the representations are distributed patterns of activa-
tion. This is the level of interest for us: It is where the DNN architecture is distinct from a
classical computational architecture.

The recent success of DNNs is not just a matter of brute force statistical learning. It also
depends on direct hand-design of architectural features and algorithmic biases (Botvinick
et al., 2019, p. 417). For example, convolutional DNNs build in an architectural bias that capital-
ises on the translational invariance of images. In this case there are interesting parallels with
the way real brains perform the same task (Cichy et al., 2016; Yamins et al., 2014). The architec-
tural features in the model may correspond to evolved architectural constraints and learning
biases in the brain. The critical periods observed for some forms of human learning (Werker,
Gilbert, Humphrey & Tees, 1981) may be an adaptation to prevent catastrophic forgetting of
what has been learnt by the brain. This suggests that DNNs are a good model of some cognitive
tasks, tasks that humans perform rapidly and without deliberate reasoning. Where the system
has access to enough experience, and the task environment is sufficiently stable, this proves to
be an excellent computational solution. Although learning-heavy, it is computation-light. In
exercising its trained disposition, the appropriate output is generated quickly. That is quite
unlike, for example, the processing time called for in a model-based system that performs a tree
search through a causal model of the domain. A deep network proceeds via several intermedi-
ates, but each is typically a direct input-output step, a dispositional-style computation.

These points apply equally to the newer Al systems that combine deep neural networks with
reinforcement learning: deep RL. In deep RL, computational outputs are not specified directly,
as in a DNN doing supervised learning to produce labels in response to images, say. Instead, the
system relies on a reinforcement signal to learn a non-linear mapping from inputs to state
values or action values (Botvinick et al., 2020). These systems retain the computational effi-
ciency of earlier DNNs, and share the same drawbacks, being data inefficient and relatively
inflexible when outcome values change (Hassabis, Kumaran, Summerfield &
Botvinick, 2017, p. 252).

Botvinick et al. (2019) describe two leading techniques deployed to overcome these limita-
tions. The first is to train a deep RL network on a range of related reinforcement learning tasks,
so-called “meta-RL.” Standardly, DNNs bring to a problem only a weak inductive bias (assump-
tions about the task domain). They learn very slowly. Increasing the learning rate leads to cata-
strophic interference between different input-output mappings. With meta-RL, the way activity
unfolds over time in the trained network, without changing connection strengths, achieves
something that amounts to reinforcement learning. The dynamics of the trained network effec-
tively implements an RL algorithm for rapidly learning the contingencies in a particular RL
problem. Its training has given it an overall inductive bias that is appropriate to the kinds of
RL problems it will face. For example, a meta-RL system might be tasked with learning which
pictures are likely to be rewarded. The system's dynamics keeps track of the changing probabili-
ties that different stimuli will deliver rewards. When state values or probabilities change, the
system can rapidly adjust to the new environment without having to alter the weight matrix.

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

16°_|_WI LEY. SHEA

The disposition to do rapid reinforcement learning of the appropriate kind is embedded within
the input-output profile of the trained dynamic system.

The second tactic described by Botvinick et al. (2019) is to add episodic memory: explicit
representations of previously encountered states and rewards (Blundell et al., 2016;
Gershman & Daw, 2017; Pritzel et al., 2017). An episodic memory store records each state
encountered, together with the total reward received in subsequent time-steps (discounted as
they occur further in the future). For example, in a system learning to play video games, each
state is a representation of the array of pixels on the screen (embedded in a lower dimensional
state space). What counts as a reward is winning the game, so the discounted future reward in a
state is effectively an estimate of the probability of winning the game starting from that state
(i.e., that arrangement of pixels). A model-free RL system would simply record a reward value
for each state in a fixed list of states, updating these values when reward is delivered (e.g., using
temporal difference learning). A system with an episodic memory store can record what hap-
pened each time a given state was encountered, storing each as a separate entry. It can also
store actions and record the rewards achieved in response to each action that it performed on
every encounter with a given state. When encountering a new state, the value of each potential
action is calculated by averaging the action values recorded for similar states, weighted by the
degree of similarity to the current state. For example, encountering a slightly different array of
pixels for the first time, it will look at the rewards received when starting from closely related
frames (states that are nearby in the state space in which pixel space is embedded). At the same
time, a DNN uses gradient descent learning based on the reward signal gradually to improve
the embedded state representations (Pritzel et al., 2017; see also Wayne et al., 2018).

Episodic deep RL is a “non-parametric” model, since the number of parameters whose
values need to be learnt is not fixed. The amount of storage dedicated to memory expands as
more states are encountered and stored in episodic memory. The computation of value does,
however, become increasingly demanding as more episodes are stored, since they must all be
searched in order to find the k nearest neighbours to enter into the similarity computation
(Blundell et al., 2016, p. 3; Yang, Qin, Xu, Li & Wei, 2020, p. 129276). The advantage is that the
system can do one-shot learning about a newly encountered state, giving it a good chance of
acting appropriately when encountering that state again.

An early example of this architecture was the differentiable neural computer (DNC) of
Graves et al. (2016). Although the DNC has proven difficult to scale to high dimensional prob-
lems (Rae et al., 2016), it has been an important step forward, leading to further developments
(Chen, Lu, Beukers, Baldassano & Norman, 2021; Putin et al., 2018). The general idea of
supplementing a DNN with an explicit memory store has proven useful in many domains
(e.g., Jaderberg et al., 2019). I will focus on the DNC as an early, specific example.

When the system has a store of explicit memories, a further step is to use “experience
replay” to drive further learning in a DNN (Hassabis et al., 2017; Liu, Mattar, Behrens, Daw &
Dolan, 2020). Representations of past states and rewards are used “offline” to drive learning in
a DNN, as well as “online” when deciding how to act on encountering a new state. Experience
replay allows a system to learn long-distance associations that they have not directly encoun-
tered. For example, having observed pairs like “hat”-“dog” and “dog”-“key” during training, the
system can learn that “hat” goes with “key” even though they have never seen these stimuli
paired together before (Banino et al., 2020).

Al systems have also begun to introduce some forms of compositionality, representing states
using recombinable elements (Eslami et al., 2016; Higgins et al., 2016; Lake, Ullman,
Tenenbaum & Gershman, 2017; Locatello et al., 2020; Madarasz & Behrens, 2019; Santoro

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

SHEA WI L EY | 161

et al., 2017). Furthermore, the model-free learning of episodic deep RL can be combined with
model-based reasoning about the task. Unlike a model-free system, a model-based system repre-
sents aspects of the structure of its environment, for example, the way actions cause particular
outcomes, or the way states are related to each other spatially or causally (Lake et al., 2017).
For example, AlphaGo was given the rules of Go—a world-model of how states of the game
unfold. It could then search through branching trees to see how a game might unfold from a
given position (Silver et al., 2016). Deep RL systems often fail in environments where actions
make a big difference to the outcomes and to the rewards accessible from a given state
(Botvinick et al., 2020; Hassabis et al., 2017). Separating learning about how states are struc-
tured from learning about rewards has helped overcome this problem (Madarasz &
Behrens, 2019). Nevertheless, we are still a long way from seeing flexible planning using
recombinable elements (Botvinick et al., 2020; Hassabis et al., 2017; Marcus, 2018), presenting
as it does the potential for a computationally demanding combinatorial explosion.

In summary, although the dispositional approach has considerable mileage, for example, in
meta-RL systems, adding a store of explicit memory has opened up a whole swathe of new com-
putational possibilities, developments that are already beginning to overcome the limitations of
the earlier DNN and deep RL systems. This advance comes at a computational cost. As more
memories are stored and used in computations, working out how to act becomes increasingly
demanding of processing time and power.

3 | ADDING EXPLICIT MEMORY TO A DISPOSITIONAL
SYSTEM

Graves et al. (2016) identify two key attributes which give the DNC an advantage over the basic
DNN architecture. This section looks at the first, concerning memory. That lays the ground-
work for a second attribute, less obvious but arguably more fundamental, that we turn to in
Section 4.

The first advantage of the Graves et al. model is that its way of storing information about
the past is extensible. Learning is “non-parametric”: It is not just a matter of adjusting a fixed
set of parameters (weights) to deal with the training set. As well as being a more efficient use of
storage, this also helps with interference, since learning about a new episode does not immedi-
ately require any change to what has been learnt already. A new episode is stored explicitly,
using new resources.

The discovery that there are practical benefits to storing memory explicitly chimes with an
older, more theoretical argument. Long before the recent advances in DNNs, Charles
R. Gallistel was arguing that it is of critical importance to separate memory from computation
(Gallistel, 2006, 2008; Gallistel & King, 2010). He has two arguments. The first is a proof in the
theory of computation. It is based on the limitations of a finite state automaton. What this tells
us about neural networks, artificial or biological, depends on tricky issues about implementa-
tion. Computational theory implies that a powerful computation must be able, in some sense,
to write information to memory and read it to inform behaviour. What it does not tell us is
whether gradient descent learning in a standard DNN implements this principle in some way
(Morgan, 2020).

Whichever way that issue turns out, Gallistel and King (2010) have a second, more prag-
matic argument. They observe that across huge amounts of experimentation and innovation in
practical computing machines in the last 80 years, all the ones which have done anything useful

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

&I_WI LEY SHEA

(as of 2010) have built in an architectural separation between computation and explicit memory
(Gallistel & King, 2010, p. 144). The basic ANN architecture makes no such separation. That
makes it resource-intensive for the system to deal with situations where the appropriate output
depends on past events, or on a long chain of inputs.

ANNSs combine computation and memory together. They “remember” the past by changing
the weight matrix, which is the basis for their computational dispositions. Training changes the
way distributed representations are processed, that is, it changes the computational processes
operative at this level. Suppose which output is appropriate at a time depends upon an input
n time steps earlier. For example, it might be best to turn left at the lone pine now because you
observed nearly ripe fruit at a different location some days ago. How the organism should react
to a range of things it could observe at the current time may be completely different depending
on what was observed at various points in the past. The system needs to be set up in such a way
that it can react appropriately.

We could consider the whole chain of states encountered in the last n time steps as a single
input, with respect to which there is some appropriate output: I; (unripe fruit), I, ..., I, should lead
to output O;, whereas I,’ (ripe fruit), I, ..., I,, calls for a different output, O,". A machine could be
set up so that it is in a state which disposes it to deal appropriately with both of these (long) inputs.
Its input-output characteristics map I, I, ..., I, to O, and I/, I, ..., I,, to O;'. The problem is, to do
that the system must have dispositions to react to a very large number of inputs. It needs comput-
ing machinery ready to react in an individual way to each. Just as a look-up table needs one line
for every input it might encounter, a dispositional-style computer needs to have a physically
realised computational state to underpin the input-output disposition called for by every chain of
n states it could encounter. The number of possibilities is exponential in the length of the input.

Dealing with past states thus runs up against the “infinitude of the possible” (Gallistel &
King, 2010, p. 136). A system that relies only on input-output dispositions can remember the
past only by changing the state of the processor. A machine with explicit memory for past
inputs can side-step this problem by writing an input to memory and then computing with it
only when subsequently relevant. For this reason, Gallistel and King argue that, in practical
terms, “a machine with read/write memory [is] vastly more capable than a machine that can
remember the past only by changing the state of the processor” (p. 147).

Gallistel and King (2010, pp. 43-54) argue that dealing with the past is a matter of
implementing an input-output function that takes many arguments as input (n arguments, if
you need to take account of the past n time steps). A function of n arguments can be
decomposed into a series of functions of two arguments. The output of one function acts as the
input to the next. But a function of two arguments cannot be decomposed into a series of func-
tions of one argument. The computational step calculating that function has to take both argu-
ments as input and compute with them together. In a classical computer a function of
n arguments is implemented by breaking it down into a series of functions of two arguments
and calculating each using the same processing machinery. (As we will see, this depends on the
availability of a computational process that is independent of the particular values of the task
variables.) The dispositional-style way of implementing a function of n arguments is to dedicate
processing machinery to each of the possible n-argument inputs. For example, GPT-3 can pro-
duce context-relevant outputs by dealing with what are in effect long sequences at input: a few
examples of the task it is supposed to perform plus a query prompt (one shot or few shot learn-
ing: Brown et al,, 2020)." Dealing with a long input string by means of a dispositional

YUnlike meta-RL, the Transformer architecture of GPT-3 achieves meta-learning without recurrence.

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

SHEA WI L EY | 163

computation thus requires many more dedicated computational resources than does the classi-
cal computational solution. That is reflected in the large number of free parameters in the
weight matrix of the DNNs which have been trained to perform real-world tasks.”

There are various ways of objecting to Gallistel and King's argument, but even if it is not as
decisive as they think, their claim does point to a distinction that is evident in practical cases
and has proven to be important. In fact, we can see these two ways of dealing with the past at
work in meta-RL and deep episodic RL, respectively (Botvinick et al., 2019). A meta-RL system
is trained on a range of different, related RL problems so that the trained weight matrix is
equipped to deal with them all. A particular RL problem, consisting of certain reward contin-
gencies associated with particular stimuli, is presented to the system as a sequence of inputs.
The trained system is in a position to deal appropriately with this sequence without changing
the weight matrix. For each element of the sequence, it “remembers” that input by going into a
new state appropriate to what it should do with the next element in the sequence. It exemplifies
a complex if-then disposition suited to dealing with short chains of inputs, its dynamics
exhibiting rapid model-free reinforcement learning about these inputs (Duan et al., 2016; Wang
et al., 2016; Wang et al., 2018). The success of meta-RL shows that dispositional computation
has more mileage than Gallistel and King suppose. So too does the success of meta-learning in
the transformer architecture (Brown et al., 2020). But, these solutions also run up against the
infinitude of the possible and the escalating cost of a solution which effectively dedicates com-
puting machinery to a very large number of possible input sequences.

Episodic deep RL solves the problem in a completely different way. It makes use of an
explicit read-write memory—-the principle whose practical efficacy was so striking to Gallistel
and King in surveying extant computing machines. The fact that adding explicit memory to a
DNN has enabled a new generation of Al systems to overcome the limitations of earlier models
demonstrates that relying on this different computational principle does indeed bring practical
benefits. It has its own costs—more processing is required to take a decision when many
explicit memories have to be taken into account—but the recent results show that this is often
a cost worth paying. DNNs with an explicit memory store have proven adept at tasks as diverse
as text-based inference, navigating a transport network, designing novel chemical molecules,
and playing a multi-player video game (Chen et al., 2021; Graves et al., 2016; Jaderberg
et al., 2019; Putin et al., 2018).

The episodic deep RL described by Botvinick et al. (2019) accepts this cost, calling for all epi-
sodic memories to be recalled and assessed for similarity in deciding which to enter into the
similarity calculation and hence how to act on a new input (Yang et al., 2020). However, being
able to retrieve only memories with relevant contents (content-addressable memory) could
make that computation simpler. Episodic memory retrieval in the brain appears to be content-
based, using pattern completion in the hippocampus to recall just one (or a small number) of
relevant memories from a large, sparsely represented set (Botvinick et al., 2020; Wixted
et al., 2014). So there are ways that the computational demands inherent in making use of a
large store of explicit memories can be mitigated.

In short, since the early success of 2012, the basic DNN architecture has been supplemented
significantly to achieve astonishing levels of performance in an increasingly wide range of
domains. The moral I venture to draw from these modifications is as follows. Inherent to dispo-
sitional-style computation there is a fundamental limitation, a limitation that is being overcome
by architectures like deep episodic RL and the DNC of Graves et al. (2016). Elements of these

2GPT-3 uses 175 billion free parameters (Brown et al., 2020).

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

MWI LEY SHEA

models work in a completely different way, separating memory from computation—recording
past experience by storing explicit memories rather than by adjusting the system's computa-
tional dispositions directly.

4 | NON-CONTENT-SPECIFIC COMPUTATION

The second advantage that Graves et al. identify in their explicit memory system is that it
deploys an algorithm that is independent of the particular values of task variables. That is a key
insight. The DNC operates on retrieved memories by applying the same procedure to whatever
data is retrieved. For example, when encountering a new state, it retrieves all the episodic mem-
ories that have already been stored and calculates the similarity of each to the current state.
The similarity computation is performed the same way whatever the current input state
is. Plus, in calculating similarity it performs the same procedure on each retrieved episodic
memory. The algorithm acts in a way that is independent of the particular values of the task
variables. That is a fundamental difference from the dispositional style of computation found in
a basic ANN.

I have been using the term “dispositional-style computation” as an intuitive shorthand, but
the key point is not dispositions per se—any computational step realises some disposition or
other—but the specificity of the collection of dispositions in a trained DNN. So I will introduce
the more precise notion of a “content-specific”’ computation, to contrast with computations that
operate in a uniform way whatever the input (e.g., an algorithm that computes the distance
between any two vectors in activation space). Typically a computational step (transition
between layers) in a trained basic DNN works as a special-purpose mapping from some states
to others. It is somewhat like a tabular solution to an RL problem, where each possible state
has its own entry in an exhaustive “table” of possibilities (Botvinick et al., 2020).> Different
regions of input space are mapped to disparate regions of output space. In many parts of state
space small differences at input lead to large differences at output, as called for by the training
set. At the level of distributed representations, few common processing principles are apparent.

To define the distinction between content-specific and non-content-specific computation, I
need to appeal to the way contents are involved in making a computational step “faithful” to
content (Shea, 2018). In many cases, being “faithful” is a matter of truth preservation: The out-
puts are guaranteed to be true if the inputs are true. In many other cases, a computational step
is faithful to content because the conclusions are likely to be true if the premises are true. There
is no guarantee that the outputs of an image classification network will be correct but, after
training, they are likely to be. A content-specific computational step is one that is faithful to
content only because of the specific contents represented at input and output: because inputs in
region I; tend to be images of trains, say, and output O; represents the label “train”; ditto for all
the other input-output dispositions trained into the network. The computations at work in a
classical computational architecture are more general (as are those at work in the lower-level
processing that implements a DNN architecture). They perform regular logical and mathemati-
cal functions. These are non-content-specific computations.

Our episodic deep RL systems apply non-content-specific computations to stored memories.
That is the second advantage identified by Graves et al. Doing so is not a requirement for

The network as a whole does not function like a look-up table, since a function computed by an early processing step
can be relied on multiple times in subsequent layers (Buckner, 2019).

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

SHEA WI L EY | 165

making use of explicit memories. For example, recurrent networks like LSTM hold online a
temporary memory of past states (Hassabis et al., 2017; Hochreiter & Schmidhuber, 1997).
Although not stored for the long term, that too is a case of explicit memory. However, in the
way the memory is used it is treated as another content-specific input, rather than being input
into a non-content-specific computation, as in the DNC. So use of explicit memory does not
require the capacity for non-content-specific computation. It seems it is the fact that the mem-
ory store in a DNC is non-parametric (indefinitely extensible) that encourages the system to
deploy computations that are non-content-specific.

Looking at the other direction, does non-content-specific computation require explicit mem-
ory? No. Online inputs can also be treated in a general, non-content-specific way. However,
although there is no necessary connection in either direction, in the episodic deep RL models
we see that it is particularly useful to combine the two: to deal with the past by storing explicit
memories and then to compute with them using non-content-specific algorithms. That high-
lights the benefits that accrue to a system which can supplement content-specific computational
dispositions with the capacity for non-content-specific computation.

The capacity for non-content-specific computation need not be hand-crafted into the system.
It can itself be learnt, including by a DNN architecture (Garnelo, Arulkumaran &
Shanahan, 2016; Garnelo & Shanahan, 2019). For example, a system can learn to tell which
item performs a given role in a story even when the answer violates correlations observed in
training (Chen et al., 2021). It is instructive that we see the use of an explicit memory store at
work here too (in fact, the DNC).

It has long been recognised that variable binding is a key attribute of classical computa-
tional systems (Bottou, 2014; Gallistel & King, 2010; Graves et al., 2016; Kriete, Noelle, Cohen &
O'Reilly, 2013; Penn, Holyoak & Povinelli, 2008; Santoro et al., 2017). The distinction I am mak-
ing is related, but is more general than variable binding. (It is also more general than the related
idea of role-filler independence.) The computation of similarity in an episodic deep RL system
is not performed on variables, but on specific episodic memories. The computation is performed
in the same way whatever representation is taken as input, but the computation takes place
over contentful inputs, not variables (representations whose content is yet to be specified).

To illustrate the contrast, consider the following two short chains of inference:

All sparrows fly, Abe is a sparrow, therefore Abe flies.
(x-1P=x-2x+1,.2x=x+1-(x-1)>~

The first deploys a computation that is performed in the same way whatever representations
are taken as input, but it is carried out on contentful representations (sparrows, Abe, flying) not
variables. It is non-content-specific, unlike the dispositional transformations from specific
inputs to specific outputs trained into a standard DNN. The second, in addition to being non-
content-specific, also makes use of variables. Graves et al. (2016) treat these two attributes as a
package. I would argue, however, that it is the former which allows episodic deep RL to tran-
scend the limitations of dispositional computation—its ability to deploy algorithms that are
independent of the particular values of the representations it takes as input.

Now consider the related idea of role-filler independence. A system capable of role-filler
independence can reason about certain relations no matter which items stand in that relation,
that is, play that role. For example, if we use line connectors to represent relations of descent in
family tree, there is no restriction on who can be represented in the role parent of. If a family
tree is drawn using pictures of people, as in Figure 1, then the roles are not represented using

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

MWI LEY SHEA

1613-1645

¢ ‘ ﬂ

révorm WANY Prascovia Somykova Eudoxle Lopoukhine PIERRE | lo Grand
676682

? A na; u—@ L 0
| L

CATHERINE |
Sophia Alexeievna 17280721

wde Catherine ANNA Ivanovna Frédeéric- Chares Anna Petrovna ELISABETH1
Mecklembourg-Schwerin 17304740 S erom o

4762

Anna Léopoldovna PIERRE I CATHERINE 11 Grande PIERRE 11
17274730

%
Tl
[

FIGURE 1 Family tree deploying specific representations (of people). (House of Romanov, from https://
commons.wikimedia.org/) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Tree diagram connecting variables. Sketch from Charles Darwin's First Notebook on
Transmutation of Species (1837)

variables. The pictures represent particular people. Contrast Darwin's famous diagram of a phy-
logenetic tree, which does use variables (Figure 2). Nevertheless, the representational scheme
in Figure 1 exhibits role-filler independence since the relations are represented in a way which
does not depend on any particular individual playing a given role. Non-content-specific compu-
tations can be performed over variables, but non-content-specific computations can also be

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

8UBD17 SUOWIWOD AAIERID 3|qea|dde ayy Aq peusenoh ae sajpiLe YO ‘38N JO Sajni 1oy Aig 1 auluQ A3|IAA Lo (suonj

https://commons.wikimedia.org/
https://commons.wikimedia.org/
http://wileyonlinelibrary.com

SHEA WI L EY | 167

performed over contentful representations, provided they exhibit something like role-filler
independence.

Penn et al. (2008) set out a computational model in which role-filler-independent reasoning
in a “physical symbol system” takes place over contentful representations, representations that
have been learnt by a connectionist system. They argue that the physical symbol system is
needed to account for the way that humans perform a range of relational, analogical and rule-
based reasoning tasks. (We can set to one side the question of whether any non-human animals
also have this capacity.) Their computational model combines the trained dispositions of a con-
nectionist system with role-filler-independent reasoning in a classical symbolic system. Stan-
dardly, researchers have focused on the difference in representational structure and
compositionality between these two systems. What is striking for our purposes is something
else, namely that their model combines two different primitive computational styles: content-
specific computations in the connectionist system and non-content-specific computations in the
symbolic system.

In short, the key innovation is the ability to perform the same procedure in general way, on
many different data. What makes it the right procedure to use is independent of the particular
values of the input. It is non-content-specific. This is quite unlike a disposition engine, where
the appropriate computational transformation for a possible input I; precisely depends on the
value of I;. That is content-specific. Using variables is a particularly flexible way, but not the
only way, of doing non-content-specific computations.*

The way I have drawn the distinction may seem quite abstract. In the next section I make it
more intuitive by illustrating it in a more familiar realm—in the way we reason with concepts.
With the distinction more firmly in hand, I then return to DNNs and ask which computational
steps in the models we have been considering are in fact content-specific, and which are not.

5 | CONCEPTS DO BOTH

So far, I have argued that in the basic DNN architecture, the trained network implements a col-
lection of content-specific computations. Recent developments have seen this supplemented
with non-content-specific algorithms, in particular involving explicit representations of previ-
ously encountered states and outcomes. The hybrid models have exhibited improved perfor-
mance in a range of different tasks. In this section I want to make the content-specific/non-
content-specific distinction clearer by showing how it plays out in a familiar domain, the
domain of human concepts.

Concepts are so useful precisely because they can figure in both content-specific and non-
content-specific computations, and can mediate between the two. Concepts allow us to catego-
rise the objects and events we experience and generalise our experience to new instances. But
they are more than just a device of generalisation. Perception involves representations that cate-
gorise stimuli and generalise to new samples, but they do not on their own amount to
recombinable elements of thought (Eimas, Siqueland, Jusczyk & Vigorito, 1971). Concepts are
representations that, amongst other things, figure in our reasoning and deliberate thought
(Camp, 2015; Stanovich & Toplak, 2012), sub-propositional elements that are freely
recombinable with one another to generate novel thoughts (Camp, 2004; Evans, 1982).

“That raises the problem of how to achieve variable binding. Gallistel and King (2010) argue that we do not yet know
how variable binding is implemented in the brain.

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

&I_WI LEY SHEA

Concepts are involved in content-specific computations. The transition from seeing a certain
arrangement of shapes, textures and colours to thinking that'’s a cat is probably well-modelled
by DNNs (Cichy et al., 2016; Yamins et al., 2014). The thinker's caT concept is wired up, as a
result of experience, to a region of perceptual input space so that a transition from perception to
thought happens relatively automatically. That is an appropriate transition to make. It will not
often go wrong, in normal environments, but only because of the specifics of the representa-
tions involved. It works because of the specific contents at input and output (certain shapes, col-
ours and textures; cat). Content-specific transitions also occur in the other direction, when our
thoughts give rise to sensory imagery or expectations—from ROAST CHESTNUTS to a certain image
and delicious odour.

Crucially, concepts are represented in such a way that they can be abstracted from any of
the particular content-specific dispositions they are embedded in. We can reason with concep-
tual representations in a domain-general way. We saw an example with the inference about
sparrows mentioned above. (All sparrows fly, Abe is a sparrow, etc.) Specific concepts are
involved, but the inference pattern works whatever concepts are involved. It is non-content-spe-
cific. Probabilistic reasoning can work the same way. Goodman, Tenenbaum and
Gerstenberg (2015) develop an ingenious model of the way abstract probabilistic reasoning
using concepts can be combined with computations that draw on the specific content of those
concepts.

The trick needed to get all of this to work is that a concept—the very same representation—
can be involved in content-specific computations on some occasions and non-content-specific
computations on others. Hummel and Holyoak (2003, 2005) give us a “how possibly” computa-
tional model of how this could be achieved. LISA is a hybrid symbolic-connectionist system
which performs syntactic inferences over “role” representations within a “physical symbol sys-
tem” (PSS). The basic idea is that categorisation and simulation occur in a perception-like
system, which is then linked to a more symbolic-like representation (role representation) on
which the system can do logical inference. Thus, the symbolic system is grafted on to a distrib-
uted connectionist architecture performing content-specific computations. A more recent model
implements concepts as symbolic labels that are grounded in disentangled visual properties
learnt by a DNN (Higgins et al., 2018). In either case, the key difficulty is to achieve dynamic
role-filler binding without interfering with the role-filler independence required for reasoning
within the symbolic system (Penn et al., 2008). In our terms, this is a matter of having content-
specific computations in the ANN component connected to constituents of combinatorially
structured representations (concepts) over which non-content-specific computations are per-
formed. This is precisely what the human conceptual system somehow manages to achieve.
Indeed, Penn et al. (2008) argue that it is this ability which accounts for the special power of
human cognition.

Another promising model of how this can be achieved is Chris Eliasmith's semantic pointer
architecture (Eliasmith, 2013). Concepts are modelled as relatively abstract representations in
higher layers of an ANN. Vector operations support modes of composition that approximate the
syntactic structure of a sentence (e.g., distinguishing between agent and patient)
(Eliasmith, 2013, pp. 121-162). But the relatively abstract representations also “point” to the
more specific perceptual contents from which they were abstracted. Computations that go on
among the pointers are relatively non-content-specific, whereas unpacking a pointer into the
less abstract representations to which it points is a content-specific operation. Jake Quilty-Dunn
has also argued that pointing is a good way to understand the relation between a concept and
the information which it encodes (Quilty-Dunn, 2021). This philosophical model is quite

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

SHEA WI L EY | 169

different from Eliasmith's semantic pointer architecture, but shares with it the idea that con-
cepts are a species of representation, pointers, over which computations can occur without call-
ing on the information to which they point. From our perspective what is crucial about pointers
is that they support non-content-specific computations.

I would add something further to these models. Concepts can be involved in content-specific
transitions of a different sort, ones that take place between conceptual representations directly.
Just as a model-free system can learn to recognise patterns in inferences (Lake et al., 2017), a
thinker may be disposed to move directly from thinking Fido is a dog to Fido barks. If made
directly, the inference does not depend on representing a minor premise, dogs bark (cf. Lea,
Mulligan & Walton, 2005). Nor is it mediated via sensory representations (imagining a dog and
hearing it barking)—although that too is possible. Another example: A disposition to make
transitions from x is whale to x is a mammal may be directly “wired in” to our concepts WHALE
and MammMAL (Murphy, 2002, p. 209). If we are disposed to make these kinds of transitions
between conceptual representations directly, then they are quite different from non-content-
specific transitions like the logical inference based on universal quantification we saw above.
Instead, these are content-specific computational steps, occurring within conceptual cognition.

Observing that concepts seem to be involved in computations of both kinds is just the start
of the enquiry. It raises many questions. A pressing issue is the problem of relevance-based
search—the (philosophical) “frame problem” (Murphy, 2001; Samuels, 2010). When concepts
are being manipulated in ways that are not specific to their particular contents, there are a very
large number of other representations that they could be manipulated with. We saw a hint of
this with the increasingly demanding operation required to retrieve similar states when an epi-
sodic deep RL system builds up an increasingly large store of explicit memories. With concepts,
the problem is even more substantial, since their compositional power gives rise to an
unbounded number of ways they can be composed into representations that can enter into com-
putations. Just highlighting the existence of non-content-specific computations in the human
conceptual system does not yet tell us how these substantial problems are or should be over-
come. That is a topic for another day.

6 | WHICH TRANSITIONS WITHIN A DNN ARE CONTENT-
SPECIFIC?

Having seen the idea of content-specific transitions illustrated in the case of concepts, we can
now circle back and ask which computational steps in a DNN count as content-specific. A
content-specific step is one that is faithful to content only because of the specific contents repre-
sented at input and output (Section 4). To a first approximation, the way the transition deals
with one type of input is uninformative about how it should deal with other inputs. A system
might be wired up to assume that dogs bark, but that tells us nothing about what if anything it
should assume about parrots and flying, say.

Contrast a logical inference, where the way the system should deal with the input “All men are
mortal, Socrates is a man” is very informative about how it should deal with the input “All meer-
kats are skittish, Oleg is a meerkat”. It should do something of the same form in response to both,
producing the outputs “Socrates is mortal” and “Oleg is skittish,” respectively. Are there transitions
in a DNN that consist of content-specific expectations, wired in as a result of learning, rather than
non-content-specific computations (like normalisation and regularisation)?

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

SHEA

FIGURE 3 Example reconstructions of the internal representations of the first three convolutional layers of
a DNN trained to categorise images (Giiclii & van Gerven, 2015) [Color figure can be viewed at
wileyonlinelibrary.com]

That is an empirical question. Furthermore, there is relatively little research on the inner
workings of DNNs, compared to the huge amount of work on how to make DNNs better at task
performance. Some results indicate, however, that learned transitions between layers are often
content-specific. For example, analysis by Giiclii and van Gerven (2015) suggests that the con-
volutional layers of a DNN trained to classify images act so as to progressively transform distri-
butions of contrast, blobs and edges, through contours, shapes and textures, into irregular
patterns and object parts (see Figure 3). This suggests that one distribution of edges is mapped
to one specific shape, a different distribution of edges to another. If so, these are content-specific
transitions: more like a collection of dog — barks cases than like a non-content-specific opera-
tion applied uniformly to all inputs.

It is unsurprising that layer-to-layer transitions in a DNN turn out to be content-specific
since the system is typically trained end-to-end to exhibit, in parallel, a large collection of
content-specific dispositions. To a first approximation, which portions of input space should be
mapped to the label “train” tells us nothing about which portions of input space should
be mapped to “cherry.” However, given a suitable task and a sufficiently rich architecture, we
might find that certain components are encouraged to discover non-content-specific computa-
tions. For example, there is evidence that, in Transformer models of natural language
processing, some components specialise in relatively non-content-specific operations, like
attending to words in the object role in a sentence, or keeping track of relations of co-reference
between elements of the input (Henderson, 2020; Rogers, Kovaleva & Rumshisky, 2020).

Content-specific computations may nevertheless be the result of features of the architecture
and learning process that are relatively domain general. For example, convolution builds in the

UONIPUOD PUe SWLB | 81 89S *[5202/60/6T] U0 ARIq1T8UIUO AB1IM ‘UOPUOT JO AISLBAIIN *ARRIqIT 8SNOH BRUSS AQ Z8EZT BIIL/TTTT'0T/I0PAL0D A3 |IMARRIq 1 BUI|UO//SAIY WOI) PBPeOjUMOQ ‘T ‘€202 ‘LTO089YT

folmARIqIPUl

8UBD 1T SUOWIWOD AAIERID 3 |qedt|dde ay Aq peusenoh ae sapiLe YO ‘95N Jo Sa|ni J0j Ariq1auljuQ A|IM uo

http://wileyonlinelibrary.com

SHEA WI L EY | 171

assumption that relevant information in an image is invariant under translation. The weight
matrix of a convolutional step is common to many different spatial regions of the input array.
That does not imply, however, that the transitions encoded by the resulting weight matrix are
non-content-specific. What it does with one pattern of edges, say, may be quite different from
what it does with another, even though it applies that wired-in assumption about edges to all
spatial regions of the input array. Other features of the architecture and learning process may
be specifically designed to filter out nuisance variation in the input (Buckner, 2018). That is a
domain-general procedure for homing in on the aspects of the incoming information that are
task relevant. But the weight matrix that is learnt as a result may then implement a content-
specific transition: Precisely because it reacts only to task-relevant information, and ignores the
rest, it transforms inputs to outputs in a way that makes sense given the specific contents it is
dealing with.

7 | RELATED DISTINCTIONS

ANNSs have been distinguished from classical computational systems in many different ways in
the existing literature. In this section I will contrast these existing distinctions with the one I
have drawn above.

First off, modularity. DNNs work like Fodorian modules, processing domain-specific inputs
in a fast, automatic way (Fodor, 1983). That is, however, a quite different distinction. The com-
putations inside a module can be classical, thus non-content-specific. Indeed, Fodor conceived
of modules as drawing on their own database of memories (Fodor, 1985, p. 3), naturally under-
stood as explicit representations, and operating on them classically. And although the content-
specific computations in a DNN are often encapsulated from information represented elsewhere
in the system, that is not compulsory. In a recurrent network, neurons in one layer are affected
by processing in higher layers. Representations elsewhere in the system can also act as
“top down” inputs, or affect intermediate layers. So although many DNNs do work like
modules, modularity is not a necessary concomitant of content-specific computation. Nor does
non-modular imply non-content-specific. Where encapsulation is broken, that can a matter or
responding in a content-specific way to inputs from elsewhere in the system (as with LSTM,
Hochreiter & Schmidhuber, 1997), or it may cross our Rubicon and introduce non-content-
specific computations on explicit memories.

Second, compositionality. The ability to use representations with compositional structure is
undoubtedly important. However, elements of compositionality can already be found in DNNs
that compute according to content-specific principles. For example, they can learn to extract
objects or features from images (Eslami et al., 2016; Higgins et al., 2016; Locatello et al., 2020).
Conversely, stored explicit representations need not have compositional structure, although
often they do. An episodic memory of a previously encountered state can simply be a record of
an input vector, without recombinable compositional structure. In the episodic deep RL dis-
cussed by Botvinick et al. (2019), Blundell et al. (2016) and Pritzel et al. (2017), the state repre-
sentations are stored together with a record of reward subsequently received, so the memory
state does have some compositional structure, but this is nothing like the rich grammatical
structure of a sentence.

Crucially for our purposes, computations performed on a compositionally structured represen-
tation can be content-specific. We only cross our Rubicon when a compositional representation is
input into an algorithm that is independent of the particular values of task variables, as with the

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

&I_WI LEY SHEA

algorithm in episodic RL that takes state representations and their values as input and calculates
their similarity to the current state. Sentences, the paradigmatic compositional representations,
freely support these kinds of operations. We saw an example with the inference about sparrows
above—replace “sparrow” with “robin” and the inference would still be performed in the same
way. Reasoning from explicit representations is an effective solution to the challenge that purely
dispositional computation faces when dealing with the past. Adding in compositionality vastly
increases the possible computations that can be performed with explicit representations, at the cost
of a combinatorial explosion which can prove computationally intractable (Bottou, 2014).

Third, consider the distinction between model-free and model-based RL (Butlin, 2021). Un-
supplemented, a deep RL system is model-free, learning the values of actions in world states
without having any representation of the causal structure that relates action to outcome or
world-state to world-state. I noted above that practical applications of DNNs often include a
model-based component, like tree search over board positions in the game of Go (Botvinick
et al., 2020; Silver et al., 2016). That component makes use of explicit representations of the
structure of the environment, that is, a model of the environment, which in some cases is learnt
from experience (Vikbladh, Shohamy & Daw, 2017). Lake et al. (2017) characterise the hybrid
system as being model-based. So model-based reasoning often does make use of explicit memo-
ries, and computes over them with non-content-specific algorithms.

On the other hand, model-free RL can also be—and outside DNNs standardly is—
implemented in a non-content-specific algorithm, one which calculates and updates state-
dependent action values based on reward feedback (Dayan, 2014; Sutton & Barto, 1998). These
are stored explicitly and recalled when the same state is encountered again. So model-based rea-
soning is a further step, one which may call for, but is not entailed by, the capacity for non-con-
tent-specific computation. If we compare a content-specific model-free system with a non-
content-specific model-based system, the pros and cons of each style of computation are laid
bare: The dispositional content-specific system requires lots of samples and becomes resource-
intractable unless operating in a restricted domain; for the model-based system, without short
cuts, calculating what to do becomes computationally intractable.

The explicit-implicit distinction is relevant here. These terms mean different things to dif-
ferent theorists (e.g., conscious vs. not). Here, I take a representation to be explicit just in case it
is a physical particular over which computation takes place (Shea, 2015, 2018). An explicit rep-
resentation is realised by tokening a vehicle of content. Information retrieved from episodic
memory is represented explicitly. Contrast a “literal” in which the value of a constant like IT is
embedded in a processor's input—-output dispositions (Gallistel & King, 2010, p. 151). Some of
what a system learns about its environment may be encoded in the form of the dispositions it
has acquired to move between explicit representations. Such information is represented implic-
itly. Information that is stored implicitly, in a disposition to move from one tokened representa-
tion to another, can only be made use of by tokening the representations between which the
disposition subsists (Shea, 2015, p. 81). The weight matrix of a trained DNN stores a huge
amount of information implicitly, for example, the information that inputs in the region I, of
input space are likely to be pictures of a dog.

Content-specific computation leans heavily on implicit representation, but not everything is
implicit. Samples are explicitly represented at input and output, and also in the state space of
hidden layers (Cichy et al., 2016; Giiclii & van Gerven, 2015; Yamins et al., 2014). What is true
is that, at the level of distributed representations in a basic DNN, memory of the past is entirely
implicit—implicit in trained dispositions to move between inputs, internal states and outputs.
Storing information from experience implicitly in an input-output disposition calls for a

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

SHEA WI L EY | 173

disposition which is specific to the particular contents presented at input. It is by having a spe-
cific disposition that the system records that the environment it experienced was one way rather
than another. Only when facts about the past are represented explicitly does the possibility arise
of doing non-content-specific computations on that information, thus of deploying algorithms
that are independent of the particular values of task variables.

A distinction that is potentially closer is that between rules and associations. There is much
controversy about what the difference comes to (Quilty-Dunn & Mandelbaum, 2019). Indeed,
the venerable contrast between learning a rule and being trained by association looks simplistic
when we consider model-based RL, which can learn about the causal structure of the environ-
ment by observing what are usually thought to be associations. The common-sense distinction
between rules and associations probably runs together various properties which, while paradig-
matically occurring together, can also dissociate (including the properties already mentioned in
this section). One precisification, which drills down to a deep computational difference, is pre-
cisely the one advocated here. A rule, in computation or reasoning, is a procedure that takes
representations as input and processes them in a way that is independent of their particular
values. If the rule is that from “x and y” one can infer “x,” then how that inferential step is per-
formed does not depend on which propositional representations are found at positions x and y.
Coming at the same issue from the other direction, a way of understanding what an association
is—as a style of computation rather than a form of learning, so that it can be contrasted with a
rule—is as a content-specific transition: a case where what has been learned is encoded in a dis-
position to move from certain specific inputs to certain specific outputs.

Another distinction in the same ballpark is that between symbolic and subsymbolic archi-
tectures. These handy labels in fact conjoin many of the forgoing distinctions. In symbolic com-
putation experience is typically represented explicitly, for example, stored in random access
memory, representations have compositional structure, they can enter into models, and are
processed using rules. Crucially for our purposes, symbolic architectures rely on non-content-
specific algorithms. More than that, they often work with variables. A paradigmatic sub-
symbolic architecture, like an un-supplemented DNN trained by backpropagation of error to
perform some task, has the contraries of all these properties.

Lake et al. (2017) argue that a deeper distinction than symbolic versus subsymbolic is that
between model-building systems and those which just do pattern recognition. Model-building
can be done in an architecture that combines symbolic components (e.g., representation of
objects, relations, agents, and goals) with subsymbolic representation in a trained DNN. The
pattern recognition component of their models operates according purely content-specific dis-
positional principles. What allows their hybrid system to transcend that, as we have seen, is not
building a model per se, but a computational innovation: the ability to deploy algorithms that
are non-content-specific. So I would argue that the content-specific/non-content-specific dis-
tinction is a better way to capture the contrast Lake et al. have highlighted.

8 | CONCLUSION

Recent years have seen impressive improvements in the capabilities of Al systems, with DDNs at
the epicentre of an explosion of new tools. The practical project of building computational systems
capable of tackling real-world problems can prove remarkably enlightening, revealing important
truths about the nature of computation, and of intelligence. (“What I cannot create, I do not
understand”: Richard Feynman, quoted in Dennett, 2017, Chapter 15). Adding a store of explicit

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

&I_WI LEY SHEA

memories has overcome some of the limitations of the basic DNN architecture. Examining how
that works, we have seen that the ability to perform non-content-specific computations is key.
Thus, looking at these developments brings to the fore a distinction between two computational
styles, the content-specific computations characteristic of a trained basic DNN, and the non-con-
tent-specific computations exemplified by the calculations performed on stored explicit memories.

There are, of course, many differences between the architecture of a basic ANN and that of
a classical computer. The symbolic/subsymbolic contrast is something of a catch-all for many
of these differences. The content-specific/non-content-specific distinction is more precise; also
more fundamental than distinctions like pattern-recognition versus model-building. Philosophi-
cal work on ANNs has largely focused on representational structure and the question of
whether distributed representations are or can be compositional. In this paper, recent develop-
ments in neural network modelling, together with older arguments about computation, have
shown that it is equally important to examine computational processes. Only when we turn
from structure to computation does it become clear that there is a significant difference between
two fundamentally different styles of computation, the content-specific and the non-content-
specific. The recent success of Al systems in solving real world problem is due, in no small
measure, to their ability to combine content-specific with non-content-specific computational
processes, trading on the complementary costs and benefits of each. This brings them closer to
modelling the distinctive mix of capacities involved in human cognition, and thus is another
step on the road towards artificial general intelligence.

ACKNOWLEDGEMENTS

I am particularly grateful to the following for helpful questions, comments and suggestions:
Ali Boyle, Patrick Butlin, Rosa Cao, Shamil Chandaria, Randy Gallistel, Raphaél Milliere and
Dimitri Mollo; audiences at the Deep Learning Reading Group at Columbia, the Cognition
Academy at the Max Planck School of Cognition in Berlin and the IP Lab Meeting; and two
reports from Mind & Language. This project has received funding from the European Research
Council (ERC) under the European Union's Horizon 2020 research and innovation programme
under grant agreement No. 681422 (MetCogCon).

Open access funding enabled and organized by Projekt DEAL.

DATA AVAILABILITY STATEMENT
As this article did not involve generating or analysing datasets, data sharing is not applicable.

ORCID
Nicholas Shea "® https://orcid.org/0000-0002-2032-5705

REFERENCES

Bahdanau, D., Cho, K. & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

Banino, A., Badia, A. P., Koster, R., Chadwick, M. J., Zambaldi, V., Hassabis, D., ... Blundell, C. (2020). Memo: A
deep network for flexible combination of episodic memories. arXiv preprint arXiv:2001.10913.

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J. Z., ... Hassabis, D. (2016). Model-free episodic con-
trol. arXiv preprint arXiv:1606.04460.

Bottou, L. (2014). From machine learning to machine reasoning. Machine Learning, 94(2), 133-149.

Botvinick, M., Ritter, S., Wang, J. X., Kurth-Nelson, Z., Blundell, C. & Hassabis, D. (2019). Reinforcement learn-
ing, fast and slow. Trends in Cognitive Sciences, 23(5), 408-422. https://doi.org/10.1016/j.tics.2019.02.006

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

https://orcid.org/0000-0002-2032-5705
https://orcid.org/0000-0002-2032-5705
https://doi.org/10.1016/j.tics.2019.02.006

SHEA WI L EY | 175

Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J. & Kurth-Nelson, Z. (2020). Deep reinforcement learning
and its neuroscientific implications. Neuron, 107(4), 603-616.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... Amodei, D. (2020). Language models
are few-shot learners. arXiv preprint arXiv:2005.14165.

Buckner, C. (2018). Empiricism without magic: Transformational abstraction in deep convolutional neural net-
works. Synthese, 195(12), 5339-5372.

Buckner, C. (2019). Deep learning: A philosophical introduction. Philosophy Compass, 14(10), €12625.

Butlin, P. (2021). Cognitive models are distinguished by content, not format. Philosophy of Science, 88(1), 83-102.

Camp, E. (2004). The generality constraint and categorial restrictions. The Philosophical Quarterly, 54(215),
209-231.

Camp, E. (2015). Logical concepts and associative characterizations. In E. Margolis & S. Laurence (Eds.), Concep-
tual mind: New directions in the study of concepts (pp. 591-621). London and Cambridge, MA: MIT Press.
Chen, C., Lu, Q., Beukers, A., Baldassano, C. & Norman, K. A. (2021). Learning to perform role-filler binding

with schematic knowledge. PeerJ, 9, e11046.

Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A. & Oliva, A. (2016). Comparison of deep neural networks to
spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.
Scientific Reports, 6, 27755.

Dayan, P. (2014). Rationalizable irrationalities of choice. Topics in Cognitive Science, 6(2), 204-228.

Dennett, D. C. (2017). From bacteria to Bach and back: The evolution of minds. London: Allen Lane.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, 1. & Abbeel, P. (2016). RL2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint arXiv:1611.02779.

Eimas, P. D., Siqueland, E. R., Jusczyk, P. & Vigorito, J. (1971). Speech perception in infants. Science, 171(3968),
303-306.

Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. Oxford: Oxford Univer-
sity Press.

Eslami, S., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., ... Hinton, G. E. (2016). Attend, infer, repeat: Fast scene
understanding with generative models. arXiv preprint arXiv:1603.08575.

Eslami, S. A., Jimenez Rezende, D., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., ... Hassabis, D. (2018). Neural
scene representation and rendering. Science, 360(6394), 1204-1210.

Evans, G. (1982). The varieties of reference. Oxford: Oxford University Press.

Floridi, L. & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 30,
681-694.

Fodor, J. A. (1983). The modularity of mind. London and Cambridge, MA: MIT Press.

Fodor, J. A. (1985). Précis of the modularity of mind. Behavioral and Brain Sciences, 8, 1-42.

Fodor, J. A. & McLaughlin, B. (1990). Connectionism and the problem of systematicity: Why Smolensky's solu-
tion doesn't work. Cognition, 35, 183-204.

Fodor, J. A. & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition,
28, 3-71.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3(4),
128-135.

Gallistel, C. R. (2006). The nature of learning and the functional architecture of the brain. In Q. Jing, M.
Rosenzweig, G. D'ydewalle, H. Zhang, H. Chen & K. Zhang (Eds.), Progress in psychological science around
the world (Vol. 1, pp. 63-71). New York, NY: Psychology Press.

Gallistel, C. R. (2008). Learning and representation. In R. Menzel & J. Byrne (Eds.), Learning and memory: A
comprehensive reference (pp. 227-242). New York, NY: Elsevier.

Gallistel, C. R. & King, A. P. (2010). Memory and the computational brain: Why cognitive science will transform
neuroscience. Oxford and Malden, MA: Wiley-Blackwell.

Garnelo, M., Arulkumaran, K. & Shanahan, M. (2016). Towards deep symbolic reinforcement learning. arXiv pre-
print arXiv:1609.05518.

Garnelo, M. & Shanahan, M. (2019). Reconciling deep learning with symbolic artificial intelligence: Representing
objects and relations. Current Opinion in Behavioral Sciences, 29, 17-23.

Gershman, S. J. & Daw, N. D. (2017). Reinforcement learning and episodic memory in humans and animals: An
integrative framework. Annual Review of Psychology, 68, 101-128.

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

MWI LEY SHEA

Goodman, N. D., Tenenbaum, J. B. & Gerstenberg, T. (2015). Concepts in a probabilistic language of thought. In
E. Margolis & S. Laurence (Eds.), The conceptual mind: New directions in the study of concepts. Cambridge,
MA: MIT Press.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, 1., Grabska-Barwinska, A., ... Hassabis, D. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.

Giiclii, U. & van Gerven, M. A. (2015). Deep neural networks reveal a gradient in the complexity of neural repre-
sentations across the ventral stream. Journal of Neuroscience, 35(27), 10005-10014.

Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence.
Neuron, 95(2), 245-258.

Henderson, J. (2020). The unstoppable rise of computational linguistics in deep learning. arXiv preprint arXiv:
2005.06420.

Higgins, 1., Matthey, L., Glorot, X., Pal, A., Uria, B., Blundell, C., ... Lerchner, A. (2016). Early visual concept
learning with unsupervised deep learning. arXiv preprint arXiv:1606.05579.

Higgins, I, Sonnerat, N., Matthey, L., Pal, A., Burgess, C. P., Bosnjak, M., ... Lerchner, A. (2018). Scan: Learning
hierarchical compositional visual concepts. Paper presented at the International Conference on Learning Rep-
resentations. arXiv:1707.03389.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

Hummel, J. E. & Holyoak, K. J. (2003). A symbolic-connectionist theory of relational inference and generaliza-
tion. Psychological Review, 110(2), 220.

Hummel, J. E. & Holyoak, K. J. (2005). Relational reasoning in a neurally plausible cognitive architecture: An
overview of the LISA project. Current Directions in Psychological Science, 14(3), 153-157.

Jaderberg, M., Czarnecki, W. M., Dunning, 1., Marris, L., Lever, G., Castafieda, A. G., ... Graepel, T. (2019).
Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science,
364(6443), 859-865. https://doi.org/10.1126/science.aau6249

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... Hassabis, D. (2021). Highly accu-
rate protein structure prediction with AlphaFold. Nature, 1-11.

Kriegeskorte, N. & Diedrichsen, J. (2019). Peeling the onion of brain representations. Annual Review of Neurosci-
ence, 42, 407-432.

Kriete, T., Noelle, D. C., Cohen, J. D. & O'Reilly, R. C. (2013). Indirection and symbol-like processing in the pre-
frontal cortex and basal ganglia. Proceedings of the National Academy of Sciences, 110(41), 16390-16395.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural net-
works. In F. Pereira, C. J. C. Burges, L. Bottou & K. Q. Weinberger (Eds.), Advances in neural information
processing systems 25 (pp. 1097-1105). New York, NY: Curran Associates.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. (2017). Building machines that learn and think
like people. Behavioral and Brain Sciences, 40, €253.

Lea, R. B., Mulligan, E. J. & Walton, J. L. (2005). Accessing distant premise information: How memory feeds rea-
soning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 387-395.

Liu, Y., Mattar, M., Behrens, T., Daw, N. D. & Dolan, R. J. (2020). Experience replay supports non-local learning.
bioRxiv. https://doi.org/10.1101/2020.10.20.343061

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J. & Kipf, T. (2020).
Object-centric learning with slot attention. arXiv preprint arXiv:2006.15055.

Madarasz, T. & Behrens, T. (2019). Better transfer learning with inferred successor maps. Advances in Neural
Information Processing Systems, 9029-9040. arXiv:1906.07663.

Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... Hassabis, D. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540), 529-533.

Morgan, A. (2020). Against neuroclassicism: On the perils of armchair neuroscience. Mind & Language, 1-27.

Murphy, D. (2001). Folk psychology meets the frame problem. Studies in History and Philosophy of Biological and
Biomedical Sciences, 32(3), 565-573.

Murphy, G. L. (2002). The big book of concepts. London and Cambridge, MA: MIT Press.

Penn, D. C., Holyoak, K. J. & Povinelli, D. J. (2008). Darwin's mistake: Explaining the discontinuity between
human and nonhuman minds. Behavioral and Brain Sciences, 31(2), 109-130.

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

https://doi.org/10.1126/science.aau6249
https://doi.org/10.1101/2020.10.20.343061

SHEA WI L EY | 177

Pritzel, A., Uria, B., Srinivasan, S., Puigdomeénech, A., Vinyals, O., Hassabis, D., ... Blundell, C. (2017). Neural epi-
sodic control. arXiv preprint arXiv:1703.01988.

Putin, E., Asadulaev, A., Ivanenkov, Y., Aladinskiy, V., Sanchez-Lengeling, B., Aspuru-Guzik, A. &
Zhavoronkov, A. (2018). Reinforced adversarial neural computer for de novo molecular design. Journal of
Chemical Information and Modeling, 58(6), 1194-1204.

Quilty-Dunn, J. (2021). Polysemy and thought: Toward a generative theory of concepts. Mind & Language, 36,
158-185.

Quilty-Dunn, J. & Mandelbaum, E. (2019). Non-inferential transitions. In T. Chan & A. Nes (Eds.), Inference and
consciousness (pp. 151-171). New York, NY: Routledge.

Rae, J. W., Hunt, J. J., Harley, T., Danihelka, I., Senior, A., Wayne, G., ... Lillicrap, T. P. (2016). Scaling memory-
augmented neural networks with sparse reads and writes. arXiv preprint arXiv:1610.09027.

Rogers, A., Kovaleva, O. & Rumshisky, A. (2020). A primer in bertology: What we know about how bert works.
Transactions of the Association for Computational Linguistics, 8, 842-866.

Samuels, R. (2010). Classical computationalism and the many problems of cognitive relevance. Studies in History
and Philosophy of Science Part A, 41(3), 280-293.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P. & Lillicrap, T. (2017). A simple
neural network module for relational reasoning. Paper presented at the 31st Conference on Neural Informa-
tion Processing Systems (NIPS 2017). Long Beach, CA, USA.

Shea, N. (2007). Content and its vehicles in connectionist systems. Mind & Language, 22(3), 246-269.

Shea, N. (2015). Distinguishing top-down from bottom-up effects. In S. Biggs, M. Matthen & D. Stokes (Eds.),
Perception and its modalities (pp. 73-91). Oxford: Oxford University Press.

Shea, N. (2018). Representation in cognitive science. Oxford: Oxford University Press.

Silver, D., Huang, A., Maddison, C. J., Guez, A, Sifre, L., van den Driessche, G., ... Hassabis, D. (2016). Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 1-74.

Stanovich, K. E. & Toplak, M. E. (2012). Defining features versus incidental correlates of Type 1 and Type
2 processing. Mind & Society, 11(1), 3-13.

Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
Vikbladh, O., Shohamy, D. & Daw, N. (2017). Episodic contributions to model-based reinforcement learning. Paper
presented at the Annual Conference on Cognitive Computational Neuroscience, CCN. New York, NY, USA.
Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z., ... Botvinick, M. (2018).

Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience, 21(6), 860-868.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ... Botvinick, M. (2016). Learning
to reinforcement learn. arXiv preprint arXiv:1611.05763.

Wayne, G., Hung, C.-C., Amos, D., Mirza, M., Ahuja, A., Grabska-Barwinska, A., ... Lillicrap, T. (2018).
Unsupervised predictive memory in a goal-directed agent. arXiv preprint arXiv:1803.10760.

Werker, J. F., Gilbert, J. H., Humphrey, K. & Tees, R. C. (1981). Developmental aspects of cross-language speech
perception. Child Development, 52(1), 349-355.

Wixted, J. T., Squire, L. R., Jang, Y., Papesh, M. H., Goldinger, S. D., Kuhn, J. R, ... Steinmetz, P. N. (2014).
Sparse and distributed coding of episodic memory in neurons of the human hippocampus. Proceedings of the
National Academy of Sciences, 111(26), 9621-9626.

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D. & DiCarlo, J. J. (2014). Performance-
optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National
Academy of Sciences, 111(23), 8619-8624.

Yang, D., Qin, X,, Xu, X,, Li, C. & Wei, G. (2020). Sample efficient reinforcement learning method via high
efficient episodic memory. IEEE Access, 8, 129274-129284.

How to cite this article: Shea, N. (2023). Moving beyond content-specific computation
in artificial neural networks. Mind & Language, 38(1), 156-177. https://doi.org/10.1111/
mila.12387

SUORIPUOD PUe SWIB | 8Y} 885 *[5202/60/6T] U0 ArIgITauNuUO /3|1 ‘UopuoT JO AISHBAIIN ‘ARIqIT 8SNOH 81eUsS Aq Z8EZTBIIW/TTTT OT/I0p/wod A8 | Ariq1ieul|uo//sdny woiy papeojumod ‘T ‘€202 ‘2T0089T

- Ao ARIGIRUIL

o),

el

95UB01 T SUOWILLIOD SAIERID 9|qeatjdde auyy Aq peusenob afe Sape VO ‘9N J0 S9N 10} ARIqITaUIUO AB]IA UO (SO

https://doi.org/10.1111/mila.12387
https://doi.org/10.1111/mila.12387

	Moving beyond content-specific computation in artificial neural networks
	1 INTRODUCTION
	2 OBSTACLES AND SOLUTIONS
	3 ADDING EXPLICIT MEMORY TO A DISPOSITIONAL SYSTEM
	4 NON-CONTENT-SPECIFIC COMPUTATION
	5 CONCEPTS DO BOTH
	6 WHICH TRANSITIONS WITHIN A DNN ARE CONTENT-SPECIFIC?
	7 RELATED DISTINCTIONS
	8 CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES

