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Abstract 

Peter Godfrey-Smith recently introduced the idea of representational ‘organization’. When a 

collection of representations form an organized family, similar representational vehicles carry 

similar contents. For example, where neural firing rate represents numerosity (an analogue 

magnitude representation), similar firing rates represent similar numbers of items. Organization 

has been elided with structural representation, but the two are in fact distinct. An under-

appreciated merit of representational organization is the way it facilitates computational 

processing. Representations from different organized families can interact, for example to 

perform addition. Their being organized allows them to implement a useful computation. Many 

of the cases where organization has seemed significant, but which fall short of structural 

representation, are cases where representational organization underpins a computationally 

useful processing structure. 
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(1) Introduction 

Representations are a fundamental explanatory tool. They provide the basis for 

behavioural explanation throughout the cognitive sciences. So it is important to understand 

their properties. One notable characteristic of some representations is that they come in 

organized families. Honeybees use a waggle dance to signal the location of nectar: the more 

waggles, the greater the distance to nectar. (Similarly with angle of the dance and the direction 

of nectar.) There are neurons in the brain whose firing rate represents numerosity: the greater 

the firing rate, the larger the number of objects being represented. A visual bath thermometer 

varies in colour with the temperature of the water: redder is hotter, bluer is colder. In each of 

these cases, representations form a family. Only one representation in the family is tokened at 

a time. Different representations within the family are systematically related. 

In all of these cases, the salient interrelation within the family is that similar vehicles 

carry similar contents.1 The representations display ‘organization’ (following Godfrey-Smith 

2017). What is the representational significance, if any, of the fact that similarity corresponds 

to similarity? How does that representational significance arise? Some merits of 

representational organization have been noted before. The aim of this paper is to add another 

merit – a deeper reason why representations often come in organized families. Organized 

representations from different families can interact in a way that is suited to moving between 

contents in useful ways. If, neurally, the firing rate of two neurons is added together in a third 

neuron, then that transformation is suited, at the level of content, to calculating the sum of the 

quantities represented by the first two neurons. If used to perform addition, the pattern of 

transitions between representational vehicles is faithful to their contents. So it is an interaction 

between vehicles that is useful for performing computations – ‘computation’ here understood 

broadly to cover content-faithful transitions of any kind, not just those characteristic of classical 

computationalism.  

The purpose of this paper is to show that organized representations can enter into 

internal processing in a way that is relied on to perform useful computations. Possessing 

representations that form organized families is therefore an advantage. Their computational 

role is also a reason why organization is semantically significant: why it is right to capture the 

                                                       
1  There may be other kinds of interrelation amongst representations that should count as instances 

of representational organization. The discussion here is confined to similarity relations since 

this covers the canonical examples. 
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semantic mapping from vehicles to contents at the level of the family as a whole, in terms of a 

systematic function which maps similar vehicles to similar contents. 

Section (2) characterises representational organization precisely and distinguishes it 

from structural representation. Section (3) shows how the distinction applies to mental 

representations. Section (4) argues that interactions between organized families of vehicles can 

form the basis of a computationally useful processing structure. Section (5) drills down into 

the difference between being organized and being symbolic (in one sense of that term). Section 

(6) concludes by defending the central claim – that organization can form part of a processing 

structure which is useful for implementing certain computations – against the charge of 

liberality, hence triviality. It argues that the idea of computational usability relied on here is 

not so liberal as to be unexplanatory. 

 

(2) Representational Organization 

Before getting into the merits of representational organization (§4) we need to 

characterise the phenomenon more precisely. Representations in a family display organization 

when the function mapping vehicles to contents applies systematically across all vehicles in 

the family, mapping similar vehicles to similar contents.2 This section uses examples to 

elaborate on that definition, re-stating it in greater detail at the end of the section. 

First off, we need to forestall a potential terminological confusion. When a family of 

representations display organization it is tempting to call the similarity relation within the 

family a ‘structure’. But that would be misleading. Within-family similarity is not structure in 

the sense that a sentence is structured or a map is structured. It is not a relation between parts 

of a representational vehicle. The vehicle doing the representing is not structured. The bath 

thermometer simply displays a patch of colour. The patch has no structure that relates to its 

meaning. Any representational vehicle will of course have some kind of structure – physical 

parts, say – but in cases like the bath thermometer the structure of the vehicle has no semantic 

significance. It is not like the compositional structure of a map or of a sentence – structure that 

systematically relates to the content of the whole. Kevin Lande uses the qualifier ‘extrinsic’ to 

distinguish these cases, using the term ‘extrinsic structure’ for the interrelations in an organized 

                                                       
2  This definition fits with the way Godfrey-Smith (2017, 279) introduces the term (he does not 

define it explicitly). Planer & Godfrey-Smith (2021, 754-55) add two further requirements, 

applicable to sender-receiver signalling, that I do not adopt here. 
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family (Lande 2021), but I will avoid referring to the similarity relation between different 

vehicles drawn from the same organized family as a kind of ‘structure’. We are interested in a 

feature that characterises the family of representations – a systematic relation between them. I 

will reserve ‘representational structure’ for the relation between parts of a complex 

representation. 

Peter Godfrey-Smith introduced the term ‘organization’ (Godfrey-Smith 2017, 279-

280). He explains organization by contrasting it with an example of a non-organized, nominal 

representational system. Paul Revere used a system of lanterns to signal of the arrival of the 

British army: one if by land, two if by sea. The number of lanterns had no semantic significance: 

this was a nominal representational system. If, instead, they had used the brightness of a lantern 

to signal the size of the approaching army, that would have been an organized representational 

system. Similar vehicles (light intensity) would map to similar contents (size of approaching 

army) in a way that is semantically significant. The right way of giving the content of these 

representations would be by way of a systematic function specified at the level of the whole 

family – a mapping from light intensity to army size. The actual Paul Revere system was 

nominal (i.e. non-organized). Its content is given by a mapping from one vehicle to the content, 

the British are arriving by land, and from the other vehicle to the content, the British are 

arriving by sea. 

Godfrey-Smith’s helpful observation is that representations that are syntactically 

unstructured can still display organization. The brightness-signals-size scheme is one example. 

Syntactically structured representations do also display organization. Two complex 

representations (e.g. two sentences) can be similar because they share a syntactic constituent 

(e.g. ‘Layla runs’ and ‘Layla sleeps’). The focus of this paper is on the kind of organization 

displayed by the brightness-signals-size scheme: a family of representations that display 

organization, but where the individual representations in the family lack semantically-

significant constituent structure. Call this mere organization. 

Godfrey-Smith’s examples depend on explicit convention. Both nominal and organized 

representational systems are also found in nature, for example in animal signalling. Vervet 

monkeys have different alarm calls for eagles, snakes and leopards (Seyfarth, Cheney, and 

Marler 1980). This is a nominal system. There is no systematic relation between calls that 

reflects what they represent (eagle, snake, leopard); nor the actions they direct (look up, look 

down, climb). The system relies on pointwise correlations between each call and a type of 

danger (Shea 2018, 119). Camp (2021) nicely captures the contrast between this case and the 

bee dance: the vervet signalling system could equally well have one, or thirteen, different 
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instances each implemented by a distinct mechanism. By contrast, the honeybee nectar dance 

is implemented in a mechanism that responds to all the dances in the family. It is an organized 

representational system, one in which similar numbers of waggles represent similar distances. 

Some theorists have taken cases like the bee dance to be map-like. Maps, however, 

display a stronger property. They are a complex representation in which there are relations 

between parts of the representational vehicle; and that vehicle relation is itself representational, 

that is, it carries a representational content. That is to say, maps are an instance of structural 

representation: 

 

Structural representation 

A complex representation in which a relation on representational vehicles v1, …, vn 

represents a relation on the entities represented by v1, …, vn 

(Swoyer 1991; Ramsey 2007, 77-92; Shagrir 2012; Shea 2018, 118). 

 

Spatial relations between points on a map represent spatial relations between the locations 

represented by the points. In the nectar dance, there is indeed a similarity relation between 

different dances, but that relation is not a bearer of content. If two different dances are danced, 

the relation between them does not make a semantic contribution to the contents represented. 

No two dances are ever considered together. The obtaining of a relation between two token 

dances never makes a difference to downstream processing or behaviour (at least as the case is 

standardly described). It is not something that consumer bees are sensitive to. They react to the 

number of waggles in individual dances. So this is not a case where a relation on 

representational vehicles represents a relation on the entities represented (Shea 2013a, 2014; 

2018, 127) – it is not a case of structural representation. 

The honeybee nectar dance is, however, an organized representational system. The 

semantic mapping from vehicles to contents applies systematically to the family of vehicles, 

mapping similar vehicles to similar contents. As noted, maps and sentences also display 

organization. They do so in virtue of their compositional structure. Nectar dances lack 

semantically-significant structure3 but nevertheless form an organized representational system. 

They display mere organization. 

                                                       
3  Millikan (1984) argues that the bee dance does have compositional structure, with the time and 

place that a dance is performed being part of the semantically-significant constituent structure 

of the representation. For reasons that there is not space to go into here, I do not take time and 
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Families of representations that display mere organization are often characterised as 

being analogue.4 However, many other features are also in play in drawing the analogue-digital 

distinction (Peacocke 2019b). Maybe the representational vehicle has to be continuous 

(Goodman 1968, 160; Camp 2007, 155). A related idea is that analogue representations are 

dense: between any two representations there is a third (Maley 2011). An organized 

representational system need not be continuous or dense. The contrast between nominal 

representational systems and mere organization captures just one feature that theorists have 

taken to be distinctive of analogue representations. There is not scope here to join the wider 

debate as to how best to formulate the analogue-digital distinction. This paper will be relevant 

to that debate to the extent that being a mere organized representational system captures one 

feature that theorists have associated with being analogue. 

To recap, we have seen examples of three types of representational system. A map is a 

structural representation. The honeybee nectar dance is a mere organized representational 

system. It is not a structural representation. And the signalling system used by Paul Revere 

(one lantern represents the British are coming by land; two lanterns represents the British are 

coming by sea) is a nominal representational system. The latter is also symbolic, in one sense 

of that term: similarities and differences between the different representations in the family 

have no semantic significance. We return to the property of being symbolic, in this sense, in 

section (5). 

When a family of representations display organization, similar vehicles represent 

similar contents. It not just that similar vehicles happen to map to similar contents, as they 

might in a pointwise system of the kind discussed by Camp (where a system has thirteen 

different instances each implemented in a distinct mechanism). Something stronger must be 

                                                       
place to be varying aspects of the representational vehicle which serve to map to different 

contents, in the way that the singular term and predicate in a sentence can be varied, or that the 

spatial relations represented on a map vary with where points are placed. Nor are they the basis 

for relations that carry semantic content. Two dances performed on different occasions are 

temporally related – they are separated by time t. But the temporal separation t is not something 

consumer bees are sensitive to or that otherwise enters into downstream computations. 

Similarly for the places at which two dances are performed (within the hive, or when the hive 

moves). 
4  Lee, Myers, and Rabin (2022) put organization – what they call ‘analog mirroring’ – at the 

centre of their account of what it is to be analogue. 
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true. The similarity between vehicles must have semantic significance. That is not something 

we can specify by just considering the mapping from vehicles to contents extensionally. It is a 

property of the vehicle-content mapping considered intensionally. Recall that a collection of 

representations form a family when instances of the different types (e.g. two waggles, three 

waggles, …) exclude one another. The family is a determinable. A determinate vehicle is 

tokened on each occasion. A family of representations display organization if and only if their 

content is specified by a systematic function, at the level of the whole family, which has the 

effect that similar vehicles represent similar contents. The similarity relation between vehicles 

then has semantic significance in the sense that the function-in-intension taking vehicles to 

contents applies to a vehicle property in a way that ensures similar vehicles represent similar 

contents. 

 

(3) Organized Mental Representations 

 We are building up to being able to discuss the merits of representational organization 

(§4). An important preliminary, though – in fact, a large part of the philosophical task – is to 

characterise the phenomenon precisely. For simplicity, I started with examples from overt 

signalling systems. This section elaborates on the phenomenon in the mental realm. 

A rich source of examples derives from cases where the brain is standardly described 

as performing analogue computations. For instance, analogue magnitude representations of 

numerosity are relied on to perform many useful computations (Nieder 2016). In these cases, 

internal magnitudes like neural firing rate are used to represent external magnitudes like the 

number of items in a set (Peacocke 2019b). The way internal magnitudes interact realises a 

computation over the represented magnitudes (Peacocke 2019a, 52-59). For example, the firing 

rate of two neurons can be aggregated by a third neuron so that the firing rate of the third 

reflects the sum of the first two. That pattern of internal transitions can be used to calculate 

addition. The third neuron will represent the sum of the numbers of objects represented by the 

first two neurons.5 These kinds of processes over neural vehicles are thought to be the way 

analogue magnitude representations are used to calculate sum, difference, product, etc. 

(McCrink and Spelke 2010). 

                                                       
5  The vehicle to content mapping is unlikely to be completely linear, but treating it as such is a 

harmless simplification for present purposes. 



  8 

 In our simple neural addition circuit, three families of organized representations interact 

to perform a computation. But it is not a case of structural representation. In a structural 

representation, a relation on representational vehicles carries content. It represents a relation 

on the entities represented by the relata. (E.g. spatial separation between points on a map 

represents the distance between the locations represented by the points.) In the neural circuit 

for addition, there are of course various relations between neuron1 and neuron2. There is a 

relation between their firing rates, for example. But this relation does not act as a bearer of 

content. It does not even figure in a vehicle-level causal description of how processing unfolds. 

The special science generalisations capturing the neural dynamics take the firing rates of 

neurons 1 and 2 as input and produce a firing rate of neuron 3 as output. It is not a case where 

the relation between neurons 1 and 2 is acting as a representation of the entities represented by 

neurons 1 and 2. 

 By contrast, the spatial cognitive map realised by neural structures in the medial 

temporal lobe is, plausibly, a case of structural representation. This case has been described 

extensively elsewhere (Grieves and Jeffery 2017; Shea 2018, 113-6), so here I will just mention 

some key aspects. When moving around, activity of place cells in the hippocampus correlates 

with current location. The same system is used offline to calculate potential routes. Offline 

activity proceeds through chains of place cells, chains that correspond to potential routes 

through the environment. Different chains of place cell firing can be compared. Picking the 

shortest chain of firing between start and end place cells is a way of picking the shortest route 

between the two corresponding locations.6 It is the chain of activated place cells that constitutes 

a structural representation. (We are not here looking at the standing structure of synaptic 

connections in virtue of which place cells are wired together as they are.) Suppose place cell 

PC1 represents location L1 and place cell PC2 represents location L2. In performing an offline 

route calculation, the activation of PC2 by PC1 represents that L2 is near to L1. The co-

activation relation carries content. It represents spatial proximity. PC1-activating-PC2 is a 

vehicle of content. Its content is L1 is near to L2. So this is a case of structural representation. 

 The activation of an analogue magnitude representation of numerosity is not a structural 

representation. It is the tokening of one out of a family of representations (which display 

organization). The content of a family of analogue magnitude representations (e.g. of a neuron 

                                                       
6  There are many different proposals for the way route-finding computations make use of the co-

activation structure over place cells, including processes that take place in parallel across the 

whole array, e.g. Khajeh-Alijani, Urbanczik, and Senn (2015). 
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that can fire at different rates) is specified by a systematic function, at the level of the whole 

family, such that the number of items represented equals firing rate multiplied by a constant. 

This semantic mapping has the effect that similar vehicles (firing rates) represent similar 

contents (number of items represented). The similarity relation does not carry content – it is 

not a vehicle of content.7 Indeed, in the cases we have described, no two representations within 

the same family are tokened at once (or otherwise tokened in a relation to one another that 

plays a computational role). The family displays organization, but not in virtue of 

compositional semantic structure. It is a mere organized representational system. The place cell 

representation of spatial proximity is organized, of course, but it is not a mere organized 

representational system. It is a structural representation. 

 

(4) Merits of Representational Organization 

 Just as the bee dance differs from vervet alarm calls, analogue magnitude 

representations of numerosity differ from a piecemeal way of representing number (having one 

detector for 3 and another for 11, for example). The fact that a family of representations form 

an organized representational system confers a number of benefits. This section argues that a 

merit that has been under-appreciated is that having representations in organized families is 

computationally useful. 

What I have been calling representational organization has been recognized as 

beneficial even by those who accept that mere organization falls short of structural 

representation (Shea 2014; 2018, 128; cf. Artiga forthcoming). First, it is more efficient to 

implement. A piecemeal implementation, with a different mechanism for each quantity, would 

be unwieldy. Second, the system extends non-accidentally to new cases. With the bee dance, 

even if nectar 400m away happened never to have occurred when the system evolved, if now 

a current worker bee discovers nectar at 400m and performs a four-waggle dance, the 

mechanism in consumer bees will cause them to do the right thing. That is no accident. The 

mechanism has evolved to effect a certain simple transformation from number of waggles to 

flight distance. The same is true of the ability of the analogue magnitude system to represent 

new quantities (within its overall range). 

                                                       
7  I am using ‘vehicle’ inclusively to cover, not just particulars, but also properties and relations 

that carry semantic values. 
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A third benefit of an organized representational system is that it is error-tolerant. Noise 

from external and internal sources will affect the firing rate. But similar rates represent similar 

numerosities. In many circumstances, the calculations or behaviour that result will still be 

accurate enough to be useful. For example, when comparing two collections in order to pick 

the largest (Barth et al. 2006), noise that somewhat perturbs an analogue magnitude 

representation will not often cause the agent to make the wrong choice. Vehicles that are nearby 

in the neural similarity space (nearby firing rates) represent contents that are nearby in the 

represented similarity space (numerosities). 

These three merits of representational organization are also reasons why the semantic 

mapping that accurately portrays the way vehicles carry contents is one that applies at the level 

of the family of vehicles, consisting of a rule or systematic function that maps similar vehicles 

to similar contents. That is to say, the fact that the system counts as a case of representational 

organization is closely connected to the reason why it displays these merits. The causal 

dynamics of the system are described at the level of the determinable: variations in numerosity 

cause variations in firing rate; variations in the number of waggles cause variations in the 

distance flown by outgoing bees. The same is true of the way neural firing rates interact to 

implement addition. Non-semantically, those interactions are described in terms of a causal 

relation that applies in a uniform way across the families of potential neural firing rates. A 

theory of content will, then, plausibly ascribe contents to vehicles at the level of the 

determinable, in a systematic way across vehicles in the family. 

To justify that claim properly would require a too-long diversion into theories of 

content. What makes it plausible is a commitment shared by many theories of content: the way 

vehicles interact causally, and the ways they are causally connected to the world at input and 

output, are important to fixing their content (Block 1986; Dretske 1981, 1986; Fodor 1990; 

Millikan 1984; Neander 2017; Papineau 1984; Ramsey 2007; Shea 2018). Since these causal 

relations are captured at the level of vehicle families, the semantic mapping delivered by a 

theory of content will typically end up applying systematically at the level of the family. It is 

these causal relations between vehicle families inter se, and between vehicle families and the 

world, that make the system have the three merits just mentioned (being efficient to implement, 

error-tolerant and extensible non-accidentally to new cases). 

We have finally arrived at the central claim of the paper: that there is a further merit of 

representational organization which has not been recognized as such in the existing literature. 

It is also something that arises from the way different families interact in internal processing. 

My claim is that representational organization is often part of a processing structure that is 
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made use of computationally. In our analogue addition example, representations from three 

families interact so as to perform addition. Neuron 3 represents the sum of the numerosities 

represented by neurons 1 and 2. The computational process (performing addition) is achieved 

by the interaction of the firing rates of the three neurons. Neuron 3 is configured so as to fire 

at a rate that is the sum of the rates of neuron 1 and neuron 2. That processing structure is 

computationally useful. It can be – and is – used to calculate addition. The way it is used trades 

on the fact that similar firing rates correspond to similar numerosities. That is a further reason 

why the semantic mappings characterising the contents carried by neurons 1, 2 and 3 are each 

such that similar firing rates map to similar numerosities – why they qualify as cases of 

representational organization. 

The fundamental insight of the representational theory of mind (RTM) is that transitions 

between representational vehicles can be configured such that the transitions respect semantic 

content. In many circumstances, to behave appropriately the organism must combine and weigh 

various sources of information in order to work out how and when to act, given the current 

circumstances and environment. One good way to do that is to manipulate internal 

representations, vehicles that carry content and whose interactions respect those contents. The 

way vehicles interact forms a processing structure. In the example involving analogue addition, 

interactions between vehicles forms a useful processing structure because it enables the 

organism to add quantities together. In this way, three organized representational systems 

(three families representing numerosity) interact in a way that forms a computationally-useful 

processing structure. 

The idea that vehicle transitions are configured so as to be faithful to semantic contents 

is a staple of representational theories of behaviour and of philosophical theories of 

representation. An example of the former is the architecture of convolutional neural networks 

doing image classification (LeCun, Bengio, and Hinton 2015). The architecture is set up so that 

the network learns common local transformations applied in the same way to all parts of the 

visual array. That processing disposition reflects the transitional invariance of images. The 

latter is described by Cummins (1991) and Ramsey (2007, 73) as the Tower Bridge picture: 

physical transformations from one representation to another march in step with computations 

on the contents they stand for. A symbolic system set up to do logical proofs fits this 

description. When it performs a modus ponens inference, the transition performed on 

representational vehicles of a certain form is faithful to their contents. The point I want to 

highlight is that, in families of representations displaying mere organization, the similarity 
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relations can be a crucial part of the way transitions are configured so as to be faithful to 

content. 

Theorists have tended to elide computational processing structure with structural 

representation (Ramsey 2007, 77-92; Gallistel 1990, 15-30). As we have seen, the two 

phenomena are in fact distinct. In a processing structure, transitions between representations 

mirror meaningful transitions between contents. The vehicle-level transition that aggregates 

firing rates mirrors the content-level transition from two quantities at input to their sum at 

output. In a structural representation, the structure of a complex representation itself has 

representational content: a relation between parts of the complex vehicle represents a relation 

between the entities represented. Where a similarity relation within a family of vehicles 

corresponds to a similarity relation between corresponding contents, vehicles from that family 

can readily interact with vehicles from other families so as to form processing structures. That 

is not a form of structural representation but the basis of a processing structure. 

Ramsey distinguishes between structural representations and what he calls IO 

representations. Organized representations are closer to his IO representations (Ramsey 2007, 

68-77). Similarly, I have argued that representational content (in subpersonal cases) can be 

based on one of two kinds of exploitable relation: exploitable correlational information or 

exploitable structural correspondence (Shea 2018). Organized representations typically fall in 

the former camp. Representations based on exploitable correlations need not display 

organization, as we have seen in the case of the macaque signalling system, but many do. They 

are then based on ‘exploitable correlational information carried by a range of states’ (Shea 

2018, 78). Similarly with receptor representations (Ramsey 2007, 118-150; Artiga 2022).8 

Receptor representations divide into organized and nominal representations, with most 

canonical examples showing organization. Unlike structural representations, organized 

receptor representations display mere organization. 

So far I have argued that organized representations are computationally useful because 

representations from different families can be put together into a processing structure. 

Processing structure is a non-semantic characterisation of the causal dynamics of the system, 

of how states of the system unfold. These are non-semantic and not rational or content-based 

characterisations. They must capture an aspect of the causal dynamics. For example, the spikes 

emitted by two neurons may be more or less similar in terms of the exact timing at which spikes 

                                                       
8  Artiga argues, contra Ramsey, that receptors or detectors count as representations within 

Ramsey’s class of IO representations. 



  13

are emitted (synchrony). That kind of similarity will be causally irrelevant unless there are 

downstream processes that can detect and respond to synchrony (which there may well be). 

Vehicle similarities are only part of a processing structure if they are a real feature of the causal 

dynamics. 

Many different kinds of computation can be implemented in suitable processing 

structures (Shagrir 2001; Shea 2013b; Egan 2014). One much relied-on neural configuration is 

the neural accumulator. Often a neural accumulator comes with a bound which, when reached, 

triggers some categorical output or behaviour (Beck et al. 2008). For example, the probabilistic 

population coding scheme described by Pouget, Dayan, and Zemel (2003) is good for 

accumulating sensory evidence of all kinds and using it in the service of a binary decision. A 

different neural scheme is suitable for computing divisive normalisation (Carandini and Heeger 

2012). The emerging field of computational cognitive neuroscience is concerned with 

enumerating and characterising the kinds of computations that transformations over neurons 

(biological or artificial) are suited to implementing. The vast majority of this work makes use 

of (what I have been calling) organized representations. The focus is on the way organized 

representations can be combined into processing structures, and on the kind of computations 

those processing structures are suited to implementing. 

 I am not here arguing that the content-involving description of how processing unfolds 

constitutes a further level of content (e.g. neo-Fregean content). However, the contentful 

description of how computations unfold does capture something of what Fregean contents were 

supposed to give us. It tells us something about the way the system is representing the states of 

affairs that it represents. Contrast the analogue magnitude representation of numerosity in our 

three-neuron addition circuit with a (hypothetical) pointwise way of representing numerosity. 

Suppose the latter just represents 3, 7 and 11, with a separate vehicle for each and no relevant 

similarity structure.9 (Embellishing, we could suppose there are different behaviours 

appropriate to flowers with 3, 7 or 11 petals and the organism uses detectors for each so as to 

condition its behaviour accordingly.) There, the semantic mapping from vehicles to contents 

would be point-wise, like a look-up table. That contrasts with the way quantities are represented 

and computed with in the analogue magnitude system that adds firing rates to compute addition. 

 There is a three-way distinction here between structural representation, a mere 

organized representational system and a nominal representational system. In a structural 

                                                       
9  The mantis shrimp plausibly has a different detector for each of a dozen different colours but 

no common similarity system: Thoen et al. (2014), quoted by Lau (2022, 207). 
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representation, a relation between parts of a complex representational vehicle carries semantic 

content. The relation will figure in a causal description of the way processing unfolds. To put 

it another way, there will be a special science law or special science generalisation, that 

captures the system’s dynamics, in which the vehicle relation will figure causally. In the mere 

organized representational system, the relevant vehicle property (e.g. firing rate) figures in the 

causal dynamics, and the special science law that captures the way processing unfolds will treat 

similar vehicles in similar ways (e.g. two firing rates are aggregated into a third), but the 

relation between vehicles in a family does not figure as such in the causal dynamics. A 

computation in which similar vehicles map to similar contents makes use of this processing 

structure. In a nominal representational system, any similarities between vehicles are irrelevant. 

They are not relevant to the way processing unfolds and they do not figure in the correct 

semantic mapping from vehicles to contents. 

 This section has argued that, in addition to previously-recognised merits, organization 

is beneficial because organized representations can be arranged into processing structures that 

perform useful computations. This claim faces an obvious objection – isn’t the property that is 

supposedly useful here actually so liberal as to be trivial, to have no distinctive purchase? I 

answer that objection in the final section (§6), but first I illustrate the idea of computational 

usefulness further by contrasting the way organized representations function with 

representations that are ‘symbolic’ (in one sense of that term). 

 

(5) Symbols vs. Non-Symbolic Representations 

 This section illustrates the relation between organization and processing by looking at 

artificial neural networks. There, a distinction is made between organized representations and 

what are often called ‘symbolic’ representations. I have said that similarities are irrelevant in a 

nominal representational system, but that is too quick. A degenerate form of similarity and 

difference is relevant. Two token representations can be of the same type or of a different type. 

This kind of similarity and difference is relevant to whether we have an instance of the same 

representation again. It individuates the bearers of content. No other kind of similarity and 

difference has semantic significance. There is no graded form of similarity that connects 

vehicles into a family. 

In fact, one way of drawing the contrast between symbols and non-symbolic 

representations is formulated in just these terms. ‘Symbolic’ is used to mean several different 

things: that a representation is structured or compositional; that operations on the representation 
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are rule-based rather than associative; that the system is model based, representing how things 

are related in the world (e.g. causally or spatially), rather than model free. One use of 

‘symbolic’ is just what we need: representations that do not fall into semantically related 

families. Thus, for LeCun, Bengio, and Hinton (2015): 

 

‘an instance of a symbol is something for which the only property is that it is either 

identical or non-identical to other symbol instances. It has no internal structure that is 

relevant to its use’ (LeCun, Bengio, and Hinton 2015, p. 441) 

 

Nominal representations have no compositional structure and do not display 

organization. They are symbolic in this sense. However, nominal representations have 

complete contents at the level of a correctness condition or a satisfaction condition (e.g. the 

British are coming by sea). Symbols are usually taken to be sub-propositional representational 

constituents, representations that compose with other representations, for instance in a sentence 

or a thought, in order to form a complex representation which has a correctness condition or a 

satisfaction condition (e.g. ‘Layla runs’). These constituents, too, can be symbolic in the sense 

of LeCun, Bengio and Hinton (2015). Paradigm names do not come in organized families. Any 

similarities between them have no semantic significance. The only semantically relevant 

property is whether we have an instance of the same vehicle again, or a different vehicle. 

Here are some names: Pam, Sam, Zadie, Zadie. The first three are tokens of different 

symbols. The last two are tokens of the same symbol. The first two are similar, but their 

similarity is not relevant to their content. The firing rate of an analogue magnitude 

representation represents numerosity. There, similarities in firing rate correspond to similar 

contents and are relevant to the way they are processed. LeCun et al.’s point is that 

representations in deep neural networks are usually like that. Similarities between 

representations (distributed patterns of activation) are computationally significant. The point is 

not just that the vehicles vary along one or more dimensions. That is true of letters and words. 

It is that those similarities and differences are part of a processing structure that makes them 

semantically significant. That is to say, representations in deep neural networks often display 

organization. Of course names causally interact with other names in reasoning (as they do with 

symbols of other types), but similarities and differences between the representational vehicles 

– for example that ‘Pam’ is more similar to ‘Sam’ than to ‘Zadie’, – do not make a semantically-

significant difference to how they are processed (nor to what is represented). 
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Representations realized by patterns of activation in an artificial neural network are 

typically organized and non-symbolic. (That is the genesis of the symbolic / non-symbolic 

dichotomy.) However, there may in fact be cases where patterns of activation in a layer of a 

neural network count as symbols by LeCun et al.’s definition. Transitions between layers can 

be non-linear. Suppose downstream processing serves to divide up state space into ten discrete 

regions (as in Figure 1). The network may do something different in response to each region, 

with variations within a region making no difference to what happens downstream. Then 

downstream processing has effectively carved boundaries in the state space. If so, the regions 

or clusters will be symbols (Shea 2007; Azhar 2016). Although different tokens in a cluster are 

more or less similar to one another, that is irrelevant. The only property that matters is being 

an instance of the same symbol or of a different symbol. Two token patterns of activation either 

fall in the same cluster or different clusters. 

 

< INSERT FIGURE 1 ABOUT HERE > 
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Figure 1. The state space of the third hidden layer of a deep neural network trained to 

classify greyscale images of items of clothing, projected into a two dimensional 

visualisation using the technique t-SNE. From Qiao, Gao, and Shi (2020). 

 

 

 That form of processing would make for fully symbolic representations in a neural 

network layer. Intermediate cases are also possible. Suppose operations on state space lead to 

discontinuous and unrelated results across boundaries in state space, as before. Which output 

points in Cluster1 should be mapped to is irrelevant to the question of which output points in 

Cluster2 should be mapped to (Shea 2023). It could be that, nevertheless, relations between 

points within a cluster are semantically significant. Perhaps clusters distinguish between 

different categories; but the arrangement of points within a cluster is informative about how 

large a particular individual is. If downstream processing relies on this dimension of variation, 

the placement of a point along this dimension within a cluster would represent that the 

individual has a certain size. Similarities between points within a cluster would have semantic 

significance. At the same time, the distinction between different clusters, with different clusters 

representing different categories, is symbolic. 

Another kind of intermediate case is where relations between regions have semantic 

significance. Maybe there is a dimension in the overall state space that varies with perceived 

dominance (Olivola, Funk, and Todorov 2014). Discrete regions representing different 

individuals could be ordered along this dimension. Individuals at one end are represented as 

more dominant, those at the other end more subordinate. If this dimension were relied on 

computationally, then points in state space would come to represent dominance properties, as 

well as representing the individuals bearing those properties. With respect to which individual 

is represented, the only vehicle question is same/different (symbolic). With respect to which 

property is represented (highly dominant, moderately dominant, etc.) the arrangement of points 

along the dominance dimension is semantically significant. 

In short, we can indeed separate semantically-significant vehicle properties into two 

classes: those for which same-different is the only relevant dimension and those for which some 

dimension of variation across a family of vehicles has semantic significance. Intermediate cases 

arise where, for the same representational token, some vehicle properties fall in one class and 

some in the other. 
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(6) What Makes a Processing Structure Computationally Useable? 

 Section 4 argued that organized representations can be put together into processing 

structures that are computationally useful. That claim, however, faces an immediate worry 

about liberality. Can’t a pattern of transformations between vehicles perform more or less any 

transformation on contents, provided the way contents attach to vehicles is suitably arranged? 

Is there really any bite to the claim that transformations between vehicles are suited to 

performing some restricted class of computations (rather than just any way arbitrary of 

transforming contents)? This section addresses that worry. There is not scope here to give a 

full treatment of liberality objections to theories of content. What I do want to show, however, 

is that resources that a theory of content can rely on to cut down on problematic liberality are 

applicable to representational organization. Thus, the claim in section 4 about useful processing 

structures is not trivial. 

I proceed by considering what it takes, in general, for a processing structure to be 

computationally useful. I divide that question in two: what does it take for a processing 

structure to be computationally useable; and to be computationally used? For vehicles of any 

kind – nominal representations, structural representations or symbols – the way vehicles are 

divided into types that are recognised by a computational system must of course be useful in 

its workings in some way. This paper is focusing on a special case of that, where vehicle types 

display similarity and that similarity is relied on. The point of this section is to show that the 

claim that similarities between vehicle types are used or relied on is not trivial. 

A processing structure is a set of dispositions for making causal transitions between 

potential vehicles of content. We are focusing on the case where those transitions take place 

between vehicles displaying organization. There is surely an extremely large number of 

computational transitions that could be implemented by any given collection of vehicles, 

provided contents are assigned to vehicles appropriately. The idea that transitions can be used 

to implement computational steps thus faces a liberality objection that threatens to rob it of any 

explanatory purchase. As a way in, recall the liberality objection levelled against reliance on 

structural correspondence in a theory of content. That is a different objection, but close enough 

to be instructive. The objection was that the notion of correspondence or homomorphism is too 

liberal to determine the content of a structural representation (Cummins 1996; Ramsey 2007; 

Shea 2013a). Given enough representational vehicles, there is always some relation-preserving 

mapping between vehicles and referents that preserves any relation you like on the referents. 

(And where there is one, there will be many.) 
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 The same kind of problem arises in respect of processing steps. Recall the Tower Bridge 

picture (Cummins 1991, Ramsey 2007, 73): there is a non-semantic, vehicle-level process in 

which tokening of a vehicle or vehicles causes the tokening of other vehicles, and that process 

marches in step with a content-level computational transition on the contents the vehicles 

represent. The worry is that the same internal process will correspond to very many different 

situations in the world and transitions between contents (Fodor 1981, pp. 207-8). Theories that 

appeal to an isomorphism between internal computational steps and structures in the world 

(e.g. Gallistel’s ‘functioning isomorphism’ (1990, pp. 15-33)) need to say why one of the very 

many isomorphisms that exist is privileged and plays the content-constituting role. Indeed, 

theorists who fail to distinguish between structural representation and processing organisation 

treat the two forms of liberality as the same problem (Ramsey 2007, 93). If there is no 

restriction on how vehicle types map to contents, then any mechanism making transitions 

between putative vehicles is suited to calculating an extremely large number of functions. Of 

course, most of these mappings are useless for practical computational purposes. They would 

assign contents to vehicles in an implausible, gerrymandered fashion. The problem is to say 

why these are ruled out. 

 A triviality problem also arises in the theory of physical computation. The worry there 

is that any sufficiently complex system – a wall, a bucket of water – could implement any 

arbitrary computation (Searle 1990; Chalmers 1996; Godfrey-Smith 2009; Sprevak 2010; 

Coelho Mollo 2019; Shagrir 2020). The issues may play out somewhat differently when the 

task is to define physical computation, than with our question about the nature of representation 

(unless computation itself must be individuated semantically Shagrir (2020)). However, the 

structure of the problem is the same. Without substantial constraints, liberality threatens. That 

problem can be addressed, in theories of physical computation, by appealing to constraints 

based on causation, function and/or mechanistic explanation (Piccinini 2015; Coelho Mollo 

2019, 2021a, 2021b; Shagrir 2022). The particular challenge for the claim made in the present 

paper is to show that the notion of organization – use of similarity across a family of vehicles 

– does not face its own, more insurmountable liberality objection. Liberality is problematic, 

from our point of view, because it drains the substance out of the idea that some processing 

structures are computationally useful: useable for performing some particular set of 

computations. 

 The idea that a form of processing is useable computationally is commonplace in 

cognitive scientific practice. We have already seen some examples: adding or subtracting 

magnitudes; aggregating probabilistic evidence and calculating a maximum likelihood estimate 
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(Pouget, Dayan, and Zemel 2003); computing divisive normalisation (Carandini and Heeger 

2012). Indeed, one way of reconciling different neuroimaging findings about the functions of 

different neural areas is to categorise them not by the domains where they happen to be 

deployed (e.g. face processing, inanimate objects, etc.) but in terms of the computations that 

different brain areas are suited to performing (Poldrack 2010; Anderson 2016). Computational 

cognitive neuroscience is actively engaged in describing the different kinds of operations that 

can readily be performed in neural codes, as well as studying how these computational circuits 

are deployed to perform a diverse range of tasks. For example, recent neuroscientific evidence 

suggests that a hexagonal coding scheme, first described in the medial temporal lobe in 

connection with spatial navigation, is in fact widely deployed in representing more abstract 

properties (Doeller, Barry, and Burgess 2010; Bellmund et al. 2016; Constantinescu, O'Reilly, 

and Behrens 2016; Behrens et al. 2018; Whittington et al. 2020). This rich seam of empirical 

work strongly suggests that there is something substantial to the idea that certain patterns of 

neural processing are computationally useful. The liberality objection does not appear to 

impede scientific practice. 

 I won’t be able to give a full account here, but I do want to lay out the ingredients that 

I think will go into a theory of what makes a processing structure computationally useable. The 

first constraint we have seen already. The processing structure has to be a real feature of the 

causal dynamics of the system. With representational vehicles in organized families, that gave 

us the requirement that the way vehicles in an organized family interact causally with other 

vehicles is described by a determinable property such that similar values have similar causes 

and effects. (Contrast symbolic representations, where similarity between representations does 

not play a role in the content-relevant causal dynamics.) 

 Where the first ingredient concerns the nature of the internal transitions, the second 

ingredient concerns vehicle-world relations. I have pointed to two kinds of exploitable relations 

between vehicles and the world that are relevant to content-determination: correlational 

information and structural correspondence (Shea 2018). (There may be others.) Exploitable 

correlational information can be carried in a systematic way by a family of vehicles (Shea 2018, 

p. 78). For example, firing rate of a neuron may correlate with numerosity of an array of objects. 

Exploitable structural correspondence by its nature concerns a family of interrelated 

representations. Both notions define a privileged relation or relations on a family of vehicles: 

those that figure on the vehicle end of the exploitable relation. Where firing rate correlates with 

numerosity, vehicles are organised with respect to similarity and difference in firing rate. 
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Those exploitable relations give us a collection of candidate vehicle properties (there 

may be many) on both ends of an internal transition. In our toy example with two input neurons 

and one output neuron we home in on similarities in firing rate at input and output. Firing rates 

are transformed by simple summation. The third ingredient is to ascertain what functions those 

transitions are capable of instantiating, given potential contents at input and output. Putative 

contents are given by the other end of the respective exploitable relations. If Neuron1 and 

Neuron2 correlate with the numerosity of two arrays of objects, then the transition to Neuron3 

is suited to calculating their sum. Implementing that transition explains why Neuron3 comes 

to correlate with the sum of the two arrays of objects. If Neuron1 and Neuron2 also correlate 

with the surface area of arrays of objects presented at input, then the transition to Neuron3 is 

also suited to calculating the total surface area of all the objects presented. And so on, for each 

of the exploitable relations which the three vehicle families enter into. 

These considerations will not take us to unique content assignments. Far from it. We 

will still need to appeal to other constraints. Importantly, very substantial constraints derive 

from the task the system is called on to perform (Egan 2014; Shea 2018; Piccinini 2022). But 

we are no longer in the realm of complete liberality. We ask: given exploitable ways that 

putative contents attach to states, what functions is a given physical transition capable of 

implementing? Only some similarity relations on families of vehicles are candidates to figure 

in the transitions, and only some potential contents at input and output are candidates to figure 

in the semantic transformation implemented by that transition. A processing structure is 

collection of transitions between potential representational vehicles. It is useable for 

implementing only computations between conditions in which those vehicles stand in 

exploitable relations.  

This is not yet a full theory of what it is for processing organisation to be 

computationally useful. It just highlights the factors that will be relevant. But it does show how 

the liberality objection for representational organization can be addressed. Computational 

usability is a substantial enough notion to do significant explanatory work. What it is for a 

useable processing structure to actually be used is another deep question. That will ultimately 

depend on the final true theory of representational content (which is beyond the scope of this 

paper). However, a central commitment of RTM is that transitions between representations are 

faithful to representational content (in some circumstances). So it is very likely to turn out that 

the correct theory of content must select amongst the computationally useable transitions that 

a given processing structure exhibits. 
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(7) Conclusion 

 A system of representations that displays mere organization may not amount to a 

structural representation, as some have thought, but representational organization is important 

nonetheless. Representations from different organized families can interact to perform 

computations that are useful to the organism in order to achieve some outcome or perform 

some task. In such cases, the organization (the mapping from similar vehicles to similar 

contents) is made use of to perform the computation. A general feature of the representational 

theory of mind is that processing over vehicles is configured in such a way as to implement 

computations that are useful to the organism. An under-appreciated merit of organization – 

which at the same time is a reason that families of representations are rightly characterised as 

displaying organization – is that organized representations can form part of a computationally 

useful processing structure. 
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